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Abstract

We analyze empirical estimation of the distribution of total payoffs for stock

investments over very long horizons, such as 30 years. Formal results for recently

proposed bootstrap estimators are derived and alternative parametric methods are

proposed. All estimators should be viewed as inconsistent for longer investment

horizons. Valid confidence bands are derived and should be the focus when performing

inference. Empirically, confidence bands around long-run distributions are very

wide and point estimates must be interpreted with great caution. The scope for

distinguishing long-run aggregate return distributions across countries is limited and

any significant differences are concentrated to the lowest percentiles.
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1 Introduction

Many investors face very long horizons for some of their most important investment

decisions—such as college, pension, and other life-cycle savings—where holding periods of

30 years or more can be relevant. For investments in risky assets like stocks, the range of

possible outcomes over such horizons is extremely large, as the uncertain returns in each

period compound over time. In practice, this distribution of outcomes is not known to

the investor and needs to be empirically estimated from limited historical data, adding

additional uncertainty.

The focus of this study is the formation and sampling uncertainty of empirical estimators

of these long-run return distributions. Specifically, we consider different ways of formulating

empirical estimates for the payoff of a stock investment over long horizons and how to

obtain confidence bounds around these estimates. Empirically, long-run distributions

are inherently difficult to pin down, since we at most observe a handful of, say, 30-year

returns. Perhaps as a consequence, this question has received relatively little attention

in the academic literature. Some recent work has dealt with obtaining empirical point

estimates of long-run stock return distributions, but the central question of sampling

uncertainty has been left mostly unanswered (see Fama and French, 2018, FF henceforth,

and Anarkulova, Cederburg, and O’Doherty, 2022, ACO henceforth).1 A related recent

literature on long-run returns (Bessembinder, 2018, and Farago and Hjalmarsson, 2023ab)

highlights that long-run returns tend to be highly asymmetric (positively skewed) and mean

forecasts are therefore of limited use. We subsequently focus our analysis on estimates of

the entire distribution (i.e., the quantiles).

Our fundamental question is therefore: what is the statistical precision of estimated

quantiles of the long-run return distribution? Historical data for many countries begin

around 1900, leaving a sample of about 120 annual observations or n = 1, 440 observations

of monthly returns. In terms of long-run returns over, say, T = 360 month (30 year) periods,

1FF discuss some aspects of precision, but do so in the context of standardized results, rescaling the
long-run return quantiles by the standard deviation of the long-run returns. The standardization is
statistically convenient but recasts the problem in terms of an unknown scale that is not easily interpretable
to researchers and practitioners. FF do not present any confidence intervals for their estimates of the
actual return quantiles.
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this is a short time series that contains only four distinct 30-year returns. Directly inferring

population characteristics of long-run returns based on such a small sample is clearly

fraught with challenges. Instead, it seems more promising to infer such characteristics

indirectly by compounding the empirical distribution of monthly returns, as suggested

in FF and ACO. Both FF and ACO rely on bootstrap procedures, resampling monthly

returns. More straightforwardly, one can also think of the indirect approach as simply

scaling up the short-run (monthly) features to the appropriate horizon. For example, in a

(log) normal model, doubling the horizon doubles the expected return and quadruples the

variance, which pins down the distribution at the new longer horizon.

Intuitively, the indirect approach offers access to a vastly larger sample than a näıve

direct estimation (1, 440 monthly observations rather than four 30-year observations in the

above example). Despite this intuitive appeal, it is not clear that the indirect approach

will actually yield precise estimates of long-run returns. Compounding estimated monthly

returns over a period of T months also compounds the estimation error T -fold. The precision

of estimated monthly returns, suggested by a large sample of monthly observations, may

therefore not translate into precisely estimated long-run returns. We clarify theoretically,

and very precisely, how statistical uncertainty about compound returns depends on the

relative magnitudes of the compounding horizon and the number of observed monthly

returns.

Our theoretical analysis gives a disappointing assessment of the feasibility of obtaining

precise point estimates for the distribution of long-run returns. Specifically, we show that

the indirect approach faces the same fundamental sample-size constraint as estimation

based on actually observed long-run returns (e.g., the observed 30-year returns). This is

a feature of the complexity of the estimation task, not the choice of estimator. As our

benchmark, we consider a maximum likelihood estimator (MLE) that uses the information

contained in the observed monthly returns optimally. By the theory of maximum likelihood,

the efficiency of any other empirical strategy to infer properties of the long-run returns

from monthly returns is bounded by the efficiency of the MLE. If the MLE is inconsistent,

or “imprecise” for a given sample size and compounding horizon, then so are all other
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estimators, including the bootstrap estimators in FF and ACO or approaches based on

long-run returns computed from overlapping time periods.

We find that the rate of convergence for the MLE is identical to the rate of convergence

achieved if one were to form T -period returns and directly use these for inference. Second

order improvements can be achieved, and these can be important in terms of obtaining

better estimates. But “indirect” estimation (including bootstrap procedures) does not

avoid the small-sample problem faced in the “direct” approach. For investment horizons

and sample sizes that result in only a few unique long-run return observations, one should

therefore view all estimators of the long-run distribution as inconsistent, or “imprecise”.

Point estimates produced by an imprecise (inconsistent) estimator have to be interpreted

with caution. They are the outcome of sampling error as much as the true behavior of

long-run returns. Ignoring the sampling error may lead to erroneous conclusions. For

example, differences in the estimated return distributions for two countries may appear

very large, even though they lie within the margin of sampling error.

We propose a new confidence interval that quantifies the sampling uncertainty about

the distribution of long-run returns. Importantly, the confidence interval is valid even if

the investment horizon is large, relative to the sample size, and the point estimates are

formally inconsistent. This is an advantage of the indirect approach. In contrast, it is not

feasible to construct a valid confidence set from the small sample of actually observed

T -period returns, without imposing restrictive assumptions about the monthly return

distribution. In short, we find that (i) any estimator of the long-run return distribution

will inevitably be imprecise, but (ii) we can form valid confidence intervals even when the

estimator is not consistent.

Our theoretical analysis also offers new insights about the FF bootstrap. There are

no previous formal results on the validity of the FF procedure, but we show that it is

consistent under the same rate condition as the MLE.2 Furthermore, we suggest a new

estimator that emulates the positive characteristics of the bootstrap estimator but is

2We do not formally analyze the block bootstrap method proposed by ACO, but it is clearly very
similar in nature to the regular FF bootstrap. Since the block bootstrap is more general than the FF
bootstrap, the ACO block bootstrap will require at least the same conditions for consistency as the FF
bootstrap.
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computationally trivial and easy to implement. Indeed, an important and useful takeaway

from our analysis is that the FF bootstrap can be viewed as a skewness-corrected version

of the MLE under log-normality.

Precision of the estimators can be improved by using panel data, rather than a single

time series. However, even with a large cross section, the gains are limited by the cross-

sectional correlation of asset returns. We illustrate this using a simple return model

with a single market factor. If the common factor explains, say, about a third of the

overall variation in returns, access to a large panel will be equivalent to multiplying the

time-series dimension by about 3. That is, a panel with, say, 30 countries and 1,000

monthly observations for each country, would yield estimates of the same precision as a

single time-series with 3,000 observations. This is an important improvement over the

pure time-series case, but much less than one might expect from the vast increase in the

nominal sample size offered by the panel. The availability of panel data also raises the

question of whether the return series share a common underlying distribution and we

develop a formal test of equality of long-run return distributions.

In the empirical analysis, we revisit the question of the long-run distribution of global

stock returns, analyzed by ACO. We use the Dimson, Marsh, and Staunton (DMS) data

set, which provides annual stock return observations for 21 countries from 1900 to 2020.

Like ACO, we focus on real returns measured in local currency.

Our main empirical contribution is to quantify estimation uncertainty, both for the long-

run return distributions themselves and for cross-country differences in these distributions.

Our confidence intervals provide statistical error bands around our estimates of the global

and country-level long-run return distributions. In addition, our formal test evaluates the

statistical significance of apparent differences in the long-run return distributions across

countries.

It is sometimes posited that the U.S., in particular, is a “lucky survivor” and that

its historically strong stock market performance might not be representative of other

countries (e.g., Goetzmann and Jorion, 1999, and van Binsbergen et al., 2023). Here we

study whether long-run payoffs on global stock markets are supportive of this conjecture
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when we account for sampling uncertainty.

We estimate quantiles for the long-run global stock returns by pooling all the data.

The resulting global estimates are compared to individual country-level estimates. When

viewed without accounting for estimation uncertainty, the global and U.S. long-run return

distributions look strikingly different. For example, the estimate of the 5th percentile of

net 30-year global real stock returns is −55% and the corresponding figure for the U.S. is

+14%, lending support to the notion that the U.S. is different.3 However, the confidence

bands around these estimates are wide and overlap substantially: the 90% confidence

interval for the global 5th percentile stretches from −80% to −3%, and the confidence

interval for the U.S. 5th percentile stretches between -57% and 204%. The estimate of the

50th percentile (i.e., the median) of net 30-year global real stock returns is 307% and for

the U.S. 597%. But the corresponding 90% confidence intervals are again extremely wide:

for the global median it ranges from 104% to 709%, and for the U.S. median from 192%

to 1566%. Our formal test does reject equality for the 5th percentile (p-value = 0.03), but

fails to reject equality for higher percentiles such as the median (p-value = 0.17).

We extend the analysis beyond the U.S. to the other 20 countries in our sample.

Four main patterns emerge. First, when testing each country in turn, we detect several

countries that differ significantly from the global return distribution. Second, the U.S.

is not among those with the most pronounced differences. Third, significant differences

are found almost exclusively in the lower tail (our analysis focuses on the 5th percentile).

Fourth, once we account for the multiple testing problem inherent in comparing many

countries simultaneously, nearly all evidence of significant differences vanishes, and the

U.S. does not stand out as distinct from the global distribution.

The exact statistical significance that one attaches to the U.S. evidence depends on

the extent to which one is willing to ex ante assign the U.S. a special role and thus

(implicitly) ignore the multiple testing issue. At the same time, multiple-testing corrections

are unavoidably conservative, so the absence of significance cannot be taken as evidence of

the absence of differences.

3We consider three different estimators in our empirical analysis, all yielding very similar results. The
figures reported here correspond to the skewness-corrected MLE.
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Regardless of the precise interpretation, our analysis highlights the inherent difficulty

of distinguishing long-run return properties across countries. This lack of statistical power

is rooted in a fundamental scarcity of data: even the longest available time series yield

only a handful of independent 30-year returns. The small-sample nature of the problem

underscores the importance of reporting confidence intervals alongside point estimates.

Nearly all aspects of the long-run distributions are measured with considerable imprecision,

and without explicit error bounds and formal tests, it is easy to place undue weight on

the point estimates and the large apparent differences between them.

2 The big picture

Before delving into the formal theory, it is useful to first provide a simplified bird’s-eye

view of the problem we are trying to address. The basic setup is a follows. We have n

return observations at some moderately high frequency. In our main example, we observe

monthly returns over 120 years, such that n = 1, 440. Based on this sample, we wish to

perform inference on the total (compound) return over some investment horizon T .

If T is small relative to n, one could simply aggregate the original monthly data into

n/T (non-overlapping) observations of T -period returns. If T = 12, the monthly sample

with n = 1, 440 returns would aggregate to a sample of n/T = 120 annual returns. In

these aggregated data, the frequency of observation (annual) coincides with the return

horizon that we want to study, and standard statistical procedures can be applied. We

refer to this as “direct” inference.

When T is large relative to n, such that the number of distinct T -period observations

is small, direct inference seems less attractive. With n = 1, 440 and T = 360, there are

only four 30-year observations. Estimation based on such a small sample will be imprecise

and, importantly, diagnostic tools such as confidence intervals are not guaranteed to be

valid (unless very strict assumptions are imposed).4

4An alternative to a straightforward aggregation to T -period returns, would be to form overlapping
T -period observations. This may in some cases increase the efficiency of the estimation, relative to the
case with non-overlapping observations. However, the MLE that we subsequently consider is the most
efficient estimator given the initial monthly observations, and will therefore also be more efficient than
any estimator based on the overlapping T -period observations.
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With T large, it therefore seems more promising to infer the long-run distribution

“indirectly” from the observed monthly returns. In this vein, FF and ACO resample

monthly returns to create an arbitrarily large number of bootstrapped T -period returns.

Alternatively, one can estimate the properties of the one-period returns and then extrapolate

to the long-run returns. In both cases, estimation is based on a sample that is seemingly

much larger than the sample of observed long-run (T -period) returns.

The key question that we answer in our formal analysis is to what extent such “indirect”

methods actually escape the (very) small sample-size problem that one faces in the “direct”

approach. As discussed in detail in the following section, the disappointing answer is that

indirect methods are inevitably subject to the same fundamental sample-size problems as

the direct approach, and that the overall rate of convergence cannot be improved upon.

This is not to say that the direct estimation cannot be improved upon; in practice, second

order improvements to an estimator can be important. But the first-order precision of any

estimator depends upon the relative magnitudes of T and n, which cannot be altered for a

given sample size and return horizon. On a more positive note, we show that confidence

intervals based on indirect methods are valid even if the number of observed long-run

returns is small and without imposing strong parametric assumptions. This allows us to

empirically assess the (im-)precision of estimated long-run return distributions, which is

crucial in a setting where the point estimates are subject to great sampling uncertainty.

To provide some intuition for our results, we now consider a simplified example. Suppose

that one-period log returns are independent and identically distributed (i.i.d.) normal

(gross returns are log-normal) with unknown mean µy and known variance σ2
y. In this

case, the log T -period returns are i.i.d. normal with mean µY = Tµy and variance Tσ2
y.

Assuming that n/T is an integer, denote the original monthly log returns as y1, ..., yn, and

the corresponding log T -period returns as Y1, Y2, ..., Yn/T , where Y1 = y1 + ...+ yT , Y2 =

yT+1 + ...+ y2T , and so forth. A direct way to obtain an estimate of the unknown mean

µY is to take the average of the observed T -period returns. An indirect way is to first
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estimate the expected single-period log return µy, using

µ̂y =
1

n

n∑
t=1

yt,

and then scale up this estimate to the long-run horizon by multiplying by T . But both

approaches yield the same estimate of µY , since

µ̂Y =
1

n/T

n/T∑
s=1

Ys =
T

n

n/T∑
s=1

(
T∑

q=1

y(s−1)×T+q

)
=
T

n

n∑
t=1

yt = T × µ̂y. (1)

That is, the direct estimator of the mean log T -period return (µ̂Y ) is identical to

the mean estimator formed from the original monthly returns, multiplied by the return

horizon T (T × µ̂y). In this simplified normal case, with a known variance, the estimator

of the distribution of the long-run T -period returns (which is a function of the mean and

variance alone) is therefore identical irrespective of whether one performs direct inference

on the T -period returns or whether one indirectly infers the long-run distribution from

the monthly returns.

To get some sense of the precision of µ̂Y , note that

var (µ̂Y ) =
1

n2/T 2

n/T∑
s=1

var (Ys) =
T 2

n
σ2
y, (2)

since the Ys are independent with variance Tσ2
y. This implies that the standard error of

µ̂Y is proportional to T/
√
n. In order for µ̂Y to be “precise”, T/

√
n needs to be “small”.

In our formal theoretical analysis, we show that this rate condition—trivially derived

here, in our simplified example—is in fact a fundamental feature of the estimation problem,

restricting direct as well as indirect estimation approaches. The rate condition does not

rely on the normality assumption, but holds for general distributions of the one-period

returns. The obvious small-sample problem in the direct estimation approach is therefore

more binding than is at first apparent, even though the direct and indirect approaches

will not in general be equivalent. In the following section, we formalize these claims.
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3 Estimating the distribution of long-run returns

In this section, we formulate the estimation problem and derive theoretical results for dif-

ferent inferential approaches. In particular, we show under what conditions (i) consistency

of an estimator can be achieved and (ii) valid confidence intervals can be obtained. We

focus on asymptotic (large sample) properties, since finite sample results are typically only

obtainable under very restrictive assumptions.

3.1 Asymptotic framework

We consider settings where both the investment horizon T and the number of observed

one-period returns n are large. A key feature of our analysis is that we do not restrict

the number of long-run returns, n/T , nor the ratio T/
√
n introduced previously. The

number of long-run return observations, n/T , is therefore allowed to be small even as n

grows large, which mirrors the practical situation faced by empirical researchers observing

a large number of one-period returns but only a small number of distinct long-run returns.

Formally, we consider the asymptotic limit as the size n of the estimation sample grows

large and allow the investment horizon, T , to depend on the sample size, i.e., T = T (n).

A similar asymptotic framework is used in the literature on long-horizon forecasting

regressions, where the forecasting horizon is sometimes treated as a finite fraction of the

sample size (e.g., Richardson and Stock, 1989, Valkanov, 2003). However, our approach is

more general in that we do not assume T and n to grow at the same rate. Rather, we

allow T to grow at any rate, but find restrictions on this rate under which consistency and

inferential validity hold.

3.2 Notation and setup

Let xt represent the one-period gross return from t − 1 to t. For most of our analysis,

we take one period to be one month, and xt to represent monthly returns. The primary

exception is in the empirical section, where we work with annual returns data.

The long-run compound return, XT , accruing from an investment at time 0 held until
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time T , is defined as

XT ≡ x1 × x2 × ...× xT . (3)

Our focus is on the case when T is “large” and we use T = 120 months (10 years) and

T = 360 months (30 years) in our implementations.

Our goal is to conduct statistical inference on the quantiles of XT . We denote the

τ -quantile of XT by QXT
(τ). Setting τ = 0.5 gives the median long-run return and small

τ -quantiles correspond to the value-at-risk of the long-run investment. For example, the

0.05-quantile gives the minimal long-run return after excluding the worst outcomes with a

combined probability of 5%. Quantiles are measured in gross dollar-returns on a dollar

invested in period zero. For example, a gross return of 2 implies a 100% net return and

a gross return of 0.5 implies a −50% net return. For readability, we will often refer to

percentiles (e.g. 50th) rather than quantiles (0.5).

The gross compound returns XT are our primary interest, since these represent the

returns actually accruing to investors. Analytically, it is convenient to work with log-

transformed returns, as it allows us to appeal to large-sample approximations of sums, such

as the central limit theorem (CLT). The log-transformed one-period returns are denoted

by yt ≡ log (xt), and the long-run log returns by

YT ≡ log (XT ) = y1 + ...+ yT . (4)

Let QYT
(τ) denote the τ -quantile of YT . The quantiles of the gross returns are

completely characterized by the quantiles of the log-transformed returns via the equality

QXT
(τ) = exp (QYT

(τ)) . (5)

Based on this equivalence, we can construct estimators and confidence intervals for QXT

from estimators and confidence intervals for QYT
. This approach does not extend to other

features of the return distribution. For example, for the expected compound returns,

E [XT ] ̸= exp(E [YT ]).

Per equation (3), the joint distribution of single-period returns xt completely pins
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down the distribution of the compound return XT . If the xts are i.i.d., the marginal

distribution of xt completely specifies the return generating process. If the returns are

dependent over time (or exhibit heterogeneity), these aspects also need description. We

start by considering the i.i.d. setting. It admits a clear and intuitively interpretable

characterization of the role of sampling error. In Section 3.5, we discuss some extensions

to serially correlated returns.

3.3 Log-normal returns

To illustrate the difficulty of statistical inference on long-run returns in a simple setting,

we first consider a parametric specification of the return process. Specifically, we assume

that the single-period returns xt are i.i.d. log-normal. Equivalently, we assume that the

single-period log returns are i.i.d. normal, i.e.,

yt ∼ N
(
µy, σ

2
y

)
, (6)

for unknown parameters µy and σ2
y > 0, with yt independent across time. We interchange-

ably refer to this parametric setting as the normal or log-normal case.

The long-run log returns are normally distributed as

YT ∼ N
(
Tµy, Tσ

2
y

)
, (7)

and the τ -quantile of YT is given by

QYT
(τ) = Tµy +

√
TσyΦ

−1(τ), (8)

where Φ−1 (·) is the inverse cumulative normal distribution function. Plugging this equality

into (5) yields an analytic expression for the quantiles of the gross long-run return, XT .

For a parametric return process, standard optimality arguments imply that the most

efficient estimator of the long-run return distribution is the maximum likelihood estimator

(MLE). This means that the MLE achieves the highest precision of any possible estimator
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and makes it a valuable benchmark to assess the feasibility of consistent estimation of the

long-run returns.

The MLE of the τ -quantile of the logged long-run return is given by

Q̂ML
YT

(τ) = T µ̂y +
√
T σ̂yΦ

−1(τ), (9)

where

µ̂y =
1

n

n∑
t=1

yt and σ̂2
y =

1

n

n∑
t=1

(yt − µ̂y)
2 . (10)

The MLE of the τ -quantile of the gross long-run return is given by

Q̂ML
XT

(τ) = exp
(
Q̂ML

YT
(τ)
)
. (11)

The following proposition characterizes consistency of the ML estimator.

Proposition 1 (Consistent estimation in normal model). Suppose that single-period

log returns, yt, are i.i.d. normal or, equivalently, that single-period gross-returns, xt, are

i.i.d. log-normal. Then the ML quantile estimator Q̂ML
YT

(τ) is consistent for QYT
(τ), such

that

Q̂ML
YT

(τ)−QYT
(τ)

p→ 0 as n→ ∞,

if and only if T (n)/
√
n→ 0.

Proof. See Online Appendix.

This result ties consistency of the MLE to the fundamental ratio T (n)/
√
n that we

already motivated in Section 2. The MLE for the log-return distribution is consistent if and

only if the ratio T (n)/
√
n vanishes as n grows large.5 This is an asymptotic condition that

can be interpreted such that estimates are precise if this ratio is “sufficiently small”. In

5Since T = T (n) changes with n as n → ∞, consistency is based on the distance between an estimator
and a potentially drifting sequence of target parameters. This is different from the standard asymptotic
framework where the target parameter is fixed.
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our leading example with n = 1, 440 and T = 360, T/
√
n ≈ 9. In subsequent simulations,

we show that under reasonable parameterizations of the the return process, this value is

not “sufficiently small” and precise estimation is not feasible.6

Our parameter of interest is the gross return, not the log return. In Proposition A1 in

the Online Appendix, we show that the conditions for consistent estimation of the gross

return are even more restrictive than for the log return.7

Proposition 1 has implications beyond the log-normal model. Given the optimality

properties of ML estimation, inconsistency of the MLE suggests inconsistency of all

other estimators of the normal model. Furthermore, imposing log-normality reduces

the complexity of the estimation task. If consistency cannot be achieved in the log-

normal model, then it cannot be achieved in more general models with less restrictive

distributional assumptions. Therefore, Proposition 1 suggests a general impossibility

result: if its necessary conditions are not met, then consistent estimation of the long-run

return distribution is not possible. This is an intrinsic property of the complexity of the

estimation task and cannot be overcome by developing more sophisticated methods.

As an alternative to point estimation, we now consider interval estimation and provide

confidence intervals that are valid under much weaker conditions than those required for

consistent estimation. That is, even though consistent estimation might not be feasible,

valid confidence intervals are usually attainable.8 The confidence intervals characterize the

quantiles of the long-run returns up to an error margin that reflects fundamental statistical

uncertainty.

Let the lower and upper bounds of a (1 − α)-confidence interval for the τ -quantile

6Our confidence intervals allow us to link the ratio T/
√
n to a finite-sample error margin. This is

discussed below and makes the meaning of “sufficiently small” more precise.
7If T was treated as fixed, consistency of QXT

(τ) would follow from consistency of QYT
(τ) via Slutsky’s

lemma. This is not true for the large T case. Given that our primary focus is on valid confidence intervals,
where validity for QYT

(τ) immediately implies validity for QXT
(τ), we relegate the consistency result for

gross returns to the Online Appendix.
8Intuitively, our confidence intervals provide valid error bounds, but these bounds are not guaranteed

to shrink to zero as the sample size grows. Valid confidence intervals do not require the estimator to be
consistent, as illustrated by finite-sample inference for parametric models.
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QYT
(τ) be given by

Q̂ℓ,ML
YT

(τ ;α) =Q̂ML
YT

(τ)− T√
n
σ̂yΦ

−1 (1− α/2)ψT (τ), (12)

Q̂u,ML
YT

(τ ;α) =Q̂ML
YT

(τ) +
T√
n
σ̂yΦ

−1 (1− α/2)ψT (τ), (13)

where

ψ2
T (τ) = 1 +

1

2T

(
Φ−1(τ)

)2
. (14)

The corresponding lower and upper bounds of the confidence interval for the τ -quantiles

of the gross returns, QXT
(τ), are obtained via equation (5) and are given by

Q̂ℓ,ML
XT

(τ ;α) = exp
(
Q̂ℓ,ML

YT
(τ ;α)

)
, (15)

Q̂u,ML
XT

(τ ;α) = exp
(
Q̂u,ML

YT
(τ ;α)

)
. (16)

The two terms in ψ2
T can be interpreted as multipliers of different sources of uncertainty.

The first term emerges from uncertainty about the mean µy, whereas the second term

is due to uncertainty about the variance σ2
y. As T grows, the relative contribution of

the second term decreases, leaving the mean as the dominant source of uncertainty. An

important implication is that increasing the sampling frequency of the data used for

estimating µy and σ2
y (e.g., from annual to monthly or from monthly to daily) will at most

have a second order effect on the precision of the quantile estimator. It is well known that

increasing the sampling frequency will increase the precision of the variance estimator,

but not the mean estimator (e.g., Merton, 1980). In simulations reported in the Online

Appendix, we find that the quantile estimator has virtually identical precision regardless

of whether one uses daily, monthly, or annual data.9

9There is clearly a limit to how low a sampling frequency that one can use, before affecting the precision
of the quantile estimator. In the extreme case, one only samples T -period returns, which results in what
we refer to as the “direct” estimation approach. In our example with 120 years of data and a return
horizon of 30 years, this leaves a mere four observations. In this case, the second order effects become
important, because the estimator of the variance is now very imprecise, as is also illustrated by simulation
results in the Online Appendix. Thus, while the direct approach formally has the same rate of convergence
as the indirect approaches, the latter will still perform better in finite samples.
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The following proposition establishes that our confidence intervals are valid in the

sense that they cover the true quantile with probability approaching the nominal coverage

probability 1− α.

Proposition 2 (Confidence intervals for normal model). Suppose that single-period

log returns, yt, are i.i.d. normal or, equivalently, that single-period gross-returns, xt, are

i.i.d. log-normal. Then, for any τ ∈ (0, 1) and any sequence T = T (n),

P
(
Q̂ℓ,ML

YT
(τ ;α) ≤ QYT

(τ) ≤ Q̂u,ML
YT

(τ ;α)
)
→ 1− α, (17)

P
(
Q̂ℓ,ML

XT
(τ ;α) ≤ QXT

(τ) ≤ Q̂u,ML
XT

(τ ;α)
)
→ 1− α, (18)

as n→ ∞.

Proof. See Online Appendix.

The coverage guarantee in Proposition 2 requires no restrictions on the investment

horizon T . This mirrors results in the long-run predictability literature, where testing may

be possible even when consistent estimation is not (e.g., Valkanov, 2003, and Hjalmarsson

and Kiss, 2022).

The investment horizon affects the width of the confidence intervals, but not their

validity. The width is related to the familar ratio T/
√
n, allowing us to give a more precise

interpretation of the condition that this ratio must be small for the MLE to be precise

(see Proposition 1).

3.4 Non-normal returns

We now abandon the assumption of log-normal returns and discuss nonparametric estima-

tion for settings where the marginal distribution of the one-period return xt is unknown.

We maintain the assumption of independence over time.10

10Our theoretical results are derived under an i.i.d. assumption. Our arguments exploit independence,
whereas the assumption of identical distribution is less crucial. A relaxation of the “identical” condi-
tion seems possible, but would require cumbersome notation, additional technical conditions, and less
transparent theoretical results and arguments. We do not pursue such extensions here.
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3.4.1 A correction for non-normality

For a long investment horizon T , central limit theory suggests that the average monthly log

return approximately follows a normal distribution. This in turn suggests that the MLE

estimators Q̂ML
YT

(τ) and Q̂ML
XT

(τ) may produce informative estimates even if the assumption

of log-normal one-period returns does not hold; FF make a similar point in their study.

We formalize this intuition and show (see Lemma A4 in the Online Appendix) that

under i.i.d. but non-normal returns,

QYT
(τ) = Tµy +

√
TσyΦ

−1 (τ) +
1

6
σyγy

((
Φ−1(τ)

)2 − 1
)
+O

(
T−1/2

)
, (19)

where

γy =
E
[
(yt − µy)

3]
σ3
y

, (20)

is the skewness of yt. Comparing equations (19) and (8) reveals that the quantiles of

the long-run log return can be written as the sum of the corresponding quantiles under

normality, a skewness correction, and a higher-order approximation error. In particular,

for non-skewed log returns and an investment horizon T → ∞, the MLE for the (possibly

misspecified) log-normal model will be consistent under the conditions of Proposition 1.

For skewed returns, the MLE is biased even if the investment horizon T is large.

Equation (19) suggests a skewness-corrected ML estimator given by

Q̂ML-skew
YT

(τ) = T µ̂y +
√
T σ̂yΦ

−1 (τ) +
1

6
σ̂yγ̂y

((
Φ−1(τ)

)2 − 1
)
, (21)

with

γ̂y =
1
n

∑n
t=1(yt − µ̂y)

3

σ̂3
y

. (22)

An estimator of the gross returns is given by Q̂ML-skew
XT

(τ) = exp
(
Q̂ML-skew

YT
(τ)
)
.

Below, we show that Q̂ML-skew
YT

(τ) is consistent for QYT
(τ) under the same rate condition

16



as stated in Proposition 1. Before stating the formal result, we first discuss an alternative

nonparametric estimator.

3.4.2 The FF bootstrap

For the case with i.i.d., but not necessarily log-normal returns, FF develop the following

nonparametric bootstrap procedure to estimate the distribution of the long-run log return.

1. Sample, with replacement, T observations from {yt}nt=1. This gives a bootstrapped

return series y∗1, y
∗
2, ..., y

∗
T , from which a bootstrapped long-run return Y ∗

T = y∗1 + y
∗
2 +

· · ·+ y∗T is calculated.

2. Repeat Step 1 B times, where B is a large number (FF use B = 100, 000 and we use

the same value in our implementation). This generates a collection of bootstrapped

long-run returns,
{
Y ∗
T,b

}B
b=1

.

3. The cumulative distribution function (cdf) of YT is estimated by the empirical cdf of

the bootstrapped returns,
{
Y ∗
T,b

}B
b=1

,

F̂ boot
YT

(z) =
1

B

B∑
j=1

1
{
Y ∗
T,b ≤ z

}
, (23)

and the FF bootstrap estimate of the τ -quantile of YT is given by

Q̂boot
YT

(τ) = inf
{
z : F̂ boot

YT
(z) ≥ τ

}
. (24)

A corresponding bootstrap estimator for the gross return is given by Q̂boot
XT

(τ) =

exp
(
Q̂boot

YT
(τ)
)
.11

The FF bootstrap generates a large sample of synthetic long-run returns by resampling

from the empirical distribution of one-period returns. This is an intuitively appealing

11One can equivalently sample the gross one-period returns in Step 1 and calculate gross long-run returns
X∗

T = x∗
1 × x∗

2 × · · · × x∗
T . F̂

boot
XT

(z) and Q̂boot
XT

(τ) can then be directly calculated from the bootstrapped

gross returns
{
X∗

T,b

}B
b=1

, analogously to Step 3. This approach is more natural if one is interested in the
distribution of the gross returns. We present the bootstrap in terms of the log returns to conform with
the other estimation methods presented here, which all start with the log returns.
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remedy to the problem of observing only a small number of actual long-run returns. The

number of synthetic T -period returns is limited only by computing power.

The FF bootstrap is completely nonparametric in the sense that it makes no assumptions

about the marginal distribution of the one-period return xt. However, it crucially depends

on the assumption of independent returns to ensure that single-period returns can be

re-shuffled in any order without affecting the properties of the compound returns. ACO

relax this restriction, as discussed further in Section 3.5.

The synthetic returns recycle information from limited historical data and are therefore

not a replacement for a large sample of actual long-run returns. FF document this in a

simulation study where they compare estimation based on B re-sampled (bootstrapped)

long-run returns to estimation based on B observations of actual long-run returns. They

find the latter estimator to have much lower variance than the bootstrap estimator. This

suggests that re-sampling cannot overcome the inherent small sample problem that arises

with long investment horizons.

FF do not formally validate their bootstrap procedure or provide any results on its

theoretical properties. In the next section, we provide a sharp characterization of the

validity of the FF bootstrap, which clearly identifies the role of the relative magnitude of

T to n. This characterization is not obvious from standard bootstrap theory, since the

bootstrapped returns depend on T = T (n), with possibly T (n) → ∞.

3.4.3 Inference based on the skewness-corrected MLE and the FF bootstrap

The following proposition characterizes consistency of the skewness-corrected MLE and

the FF bootstrap estimator.

Proposition 3 (Consistent estimation in nonparametric model). Suppose that the

single-period log returns yt are i.i.d., have a continuous density, and have eight moments.

Then Q̂ML-skew
YT

(τ) and Q̂boot
YT

(τ) are consistent for QYT
(τ) if and only if T (n)/

√
n→ 0 as

n→ ∞.

Proof. See Online Appendix.
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The rate condition, in terms of the crucial ratio T/
√
n, is the same as for ML estimation

of the parametric log-normal model.

The proof of Proposition 3 proceeds by showing that the skewness-corrected MLE and

the FF bootstrap estimator are first-order asymptotically equivalent. This equivalence

leads to the neat interpretation of the FF bootstrap estimator as an alternative way of

implementing the skewness-corrected MLE.

Given the strict rate restrictions required for consistent estimation—which are arguably

often not satisfied empirically—we focus on obtaining valid confidence intervals. We

construct confidence intervals for the log returns, which can then be transformed to

confidence intervals for the gross returns via equation (5).

For sequences T = T (n) → ∞, the skewness-adjustment in equation (21) is of higher

order than the other terms. That is, it does not first-order contribute to sampling uncer-

tainty. Therefore, confidence intervals can be constructed by re-centering the confidence

interval for the MLE on the skewness-corrected ML estimate or the FF bootstrap estimate.

This is formalized in the following proposition.

Proposition 4 (Confidence intervals for nonparametric model). Suppose that the

single-period log returns yt are i.i.d., have a continuous density, and have eight moments.

Let Q̂YT
(τ) denote either the FF bootstrap estimator or the skewness-corrected MLE and

let

Q̂ℓ
YT
(τ) =Q̂ℓ,ML

YT
(τ) + Q̂YT

(τ)− Q̂ML
YT

(τ), (25)

Q̂u
YT
(τ) =Q̂u,ML

YT
(τ) + Q̂YT

(τ)− Q̂ML
YT

(τ). (26)

Then, for any τ ∈ (0, 1) and any sequence T = T (n) such that T (n)3/2/
√
n→ ∞,

P
(
Q̂ℓ

YT
(τ ;α) ≤ QYT

(τ) ≤ Q̂u
YT
(τ ;α)

)
→ 1− α, (27)

as n→ ∞.

Proof. See Online Appendix.
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A confidence interval for the gross return can again be constructed by exponentiating

the lower and upper bounds of the confidence interval for the log returns. That is, its

lower and upper bounds are given by,

Q̂ℓ
XT

(τ ;α) = exp
(
Q̂ℓ

YT
(τ ;α)

)
, (28)

Q̂u
XT

(τ ;α) = exp
(
Q̂u

YT
(τ ;α)

)
, (29)

and the resulting confidence interval is valid under the conditions of Proposition 4.

Proposition 4 imposes the rate condition T (n)3/2/
√
n → ∞. This condition ensures

that T is large enough for the pull of central limit theory to justify the approximation

in equation (19). A sufficient condition for the rate condition to be satisfied is that T (n)

and n are of the same order of magnitude, which arguably holds in our examples with

compounding horizons in excess of 10 years and sample periods spanning around 100 years.

3.5 Non-i.i.d. returns

The inferential methods described above are derived under the assumption of i.i.d. one-

period returns. As mentioned in footnote 10, violations of the “identical” part of the

i.i.d. assumption (e.g., time-varying variance) are unlikely to affect the validity of the

inferential approach. Dependence, and in particular serial correlation in returns, might

impact inference. However, serial dependence in stock returns is typically weak. Given the

bias-variance trade-off introduced by more general estimators, it is therefore not obvious

that trying to accommodate serial correlation will necessarily lead to better estimates.

In the simulations in Section 5, we show results for a stochastic volatility model, which

is a martingale difference sequence rather than an i.i.d. sequence, and find that the methods

derived in the i.i.d. setting works well in this case. We also study the proposed estimators

under a long-term mean reverting return process. For empirically reasonable levels of serial

dependence, inference is only marginally impacted and the proposed confidence intervals

retain very good coverage rates. Additional simulations in the Online Appendix show that

the ACO block bootstrap estimator, designed to control for serial correlation in returns,
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can in some cases reduce bias, but at the expense of increased variance.

Overall, based on the simulation results, serial correlation of the magnitude we might

expect in stock returns does not seem to be a major concern when estimating the long-run

distribution of returns. This is especially true when one considers the overall estimation

uncertainty, which tends to dwarf the empirical differences between most estimation

methods.

4 Analyzing long-run returns with panel data

So far, we have focused on using the return series of a single asset or market to estimate

long-run returns. We now extend the analysis to a panel setting, where return series from

multiple assets are available. A prominent example, also used in our empirical application,

is a panel of international stock indexes.

Such data naturally raise two questions: To what extent does access to a richer panel

improve the precision of inference on the long-run return distribution? And how can we

empirically detect differences in long-run return distributions across countries? We address

these questions in what follows.

4.1 Pooled estimation with multiple return series

Suppose that we observe K different return series and let yi,t denote the log return on

asset i at time t. For clarity, suppose henceforth that i = 1, ..., K is a country index and

that the time index t = 1, ..., n corresponds to different months. Suppose that all return

series are i.i.d. across time and share the same marginal distribution. We do not impose

any further structure on the joint distribution of the vector of cross-sectional returns

yt = (y1,t, . . . , yK,t)
⊤. In particular, we allow for cross-sectional correlation due to shared

factors.

Estimators of the shared mean µy, variance σ
2
y , and skewness γy of the one-period log
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returns are given by the pooled estimators,

µ̂pool
y =

1

nK

K∑
i=1

n∑
t=1

yi,t, σ̂2,pool
y =

1

nK

K∑
i=1

n∑
t=1

(
yi,t − µ̂pool

y

)2
, (30)

and

γ̂pooly =
1

σ̂3,pool
y nK

K∑
i=1

n∑
t=1

(
yi,t − µ̂pool

y

)3
. (31)

Based on these estimators, we obtain a pooled skewness-corrected ML estimator

Q̂ML-skew,pool
YT

(τ) = T µ̂pool
y +

√
T σ̂pool

y Φ−1 (τ) +
1

6
σ̂pool
y γ̂pooly

((
Φ−1(τ)

)2 − 1
)
. (32)

A bespoke estimator for the log-normal model Q̂ML,pool
YT

is obtained as a special case of this

formula by setting γ̂pooly equal to zero.12

A panel-version of the FF bootstrap can be implemented by simply resampling from

the entire pooled data set; we refer to this estimator as Q̂boot,pool
YT

(τ).13 For simplicity, in

the panel setting we restrict the formal analysis to the skewness-corrected MLE. Both the

simulations (reported in the Online Appendix) and the empirical analysis show that the

pooled skewness-corrected ML and the pooled FF bootstrap estimators yield very similar

results.

To construct a confidence interval around the pooled estimator Q̂ML-skew,pool
YT

, let

V̂t(τ) =
1

K

K∑
i=1

 yi,t

σ̂pool
y

+
1

2
√
T

(
yi,t − µ̂pool

y

σ̂pool
y

)2

Φ−1(τ)

 , (33)

and

σ̂2
V,τ =

1

n

n∑
t=1

(
V̂t(τ)−

1

n

n∑
s=1

V̂s(τ)

)2

. (34)

12We label the pooled estimator for the normal case with an “ML” moniker and refer to it as the pooled
or panel MLE to emphasize that it is a counterpart of the time-series ML estimator. In the presence of
cross-sectional dependence, it is not numerically identical to the true maximum likelihood estimator of
the panel model.

13ACO pursue a block bootstrap version of this in their analysis.
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For the τ -quantile of the long-run log return, the lower and upper bounds of a (1− α)-

confidence interval are given by

Lpool
YT

(τ ;α) = Q̂ML-skew,pool
YT

(τ ;α)−
√
n

T
σ̂V,τ σ̂

pool
y Φ−1(1− α/2), (35)

Upool
YT

(τ ;α) = Q̂ML-skew,pool
YT

(τ ;α) +

√
n

T
σ̂V,τ σ̂

pool
y Φ−1(1− α/2). (36)

We provide an asymptotic justification of this interval in the Online Appendix. A corre-

sponding confidence interval for the quantiles of the gross long-run returns can be obtained

by exponentiating the bounds for the log return. As in the time-series case, the confidence

interval can be recentered around the ML estimator to obtain an asymptotically valid

interval when the single-period log returns are non-skewed (i.e., when γy = 0).

4.2 The precision gains from pooling

To compare the panel confidence interval to the interval based on a single time series,

consider an illustrative example with a simple factor model given by

yi,t = µy + zt + ϵi,t, (37)

where zt is a zero-mean common factor affecting all countries and ϵi,t is an idiosyncratic

error term. Let λ = var(zt)/σ
2
y denote the fraction of the variance in the single-period

log returns that is explained by the common factor. Empirically, this fraction can be

estimated using the analysis of variance formula,

λ̂ = 1−
∑K

i=1

∑n
t=1 (yt,i − ȳt)

2∑K
i=1

∑n
t=1

(
yt,i − µ̂pool

y

)2 , (38)

where ȳt =
1
K

∑K
i=1 yt,i. This expression suggests the interpretation of λ as the R2 in a

CAPM regression. For international index data, the world CAPM has decent explanatory

power and an R2 of at least 30% is often observed (see, for instance, Ferson and Harvey,

1994). In our empirical analysis, we estimate λ = 0.396 in a global panel of returns.
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In the Online Appendix, we show that, up to higher-order terms,

var
(
V̂t(τ)

)
≈ var (zt)/σ

2
y +

var (ϵi,t) /σ
2
y

K
= λ+

1− λ

K
. (39)

Noting that σ̂y ≈ σy ≈ σ̂pool
y and ψT (τ) ≈ 1 if T is large, the length of the confidence

interval based on the panel data (see equations (35) and (36)) is therefore approximately

given by

Upool
YT

(τ ;α)− Lpool
YT

(τ ;α) ≈ (UYT
(τ ;α)− LYT

(τ ;α))
√
λ+ (1− λ)/K

=
2T√
n∗
σ̂yΦ

−1(1− α/2)ψT (τ),
(40)

where

n∗ =

(
K

λ(K − 1) + 1

)
n. (41)

Thus, the length of the panel confidence interval is roughly as long as a confidence interval

based on a single time series of length n∗ (see equations (12) and (13)). We can interpret

n∗ as a measure of the effective sample size in the panel, accounting for the information

loss due to the common factor. We require a time-series observed over n∗ time periods to

obtain the same precision as a K-country panel observed over n time periods. For example,

if λ = 0.4 and we observe K = 20 countries over 120 years of monthly data (n = 1440),

then the panel is about as precise as a single time series of n∗ ≈ 2.33 × 1, 440 ≈ 3, 350

observations. Compared to using a single time-series, the effective sample size increases

only by a factor of 2.33, even though the number of observations used for estimation has

increased twenty fold.

The effective sample size increases in K, but is bounded above by n/λ. That is, for

λ = 0.3, n∗ is at most n∗ ≈ 3.3× n, and for λ = 0.4, n∗ is at most n∗ = 2.5× n. In many

empirical settings, λ is likely to exceed 0.3. Under such circumstances, the panel gains are

limited to an equivalent of about three independent time series, regardless of the size of

the cross section.
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4.3 Testing for distributional differences

We now discuss a formal test for differences in the long-run distribution between one

focal country i = 1 and a pool of homogeneous countries i = 2, . . . , K. In particular, we

assume that we observe i.i.d. (across time) observations yt = (yt,1, yt,2, . . . , yt,K) where

the marginal log returns yt,2, . . . , yt,K share the same distribution QYT ,−1 with common

mean µy,−1, variance σ
2
y,−1, and skewness γy,−1. The marginal distribution of country 1

is QYT ,1 with mean µy,1, variance σ
2
y,1, and skewness γy,1. As above, we do not restrict

the cross-sectional correlations of the components of yt. In particular, the focal country

and the pool of comparison countries may be exposed to the same factors. The test also

applies in the special case when K = 2, such that the distribution of one country is tested

against the distribution of another single country.

We test for differences in the τ -quantiles of the long-run return distributions, QYT ,1(τ)

and QYT ,−1(τ). In particular, we test the null hypothesis

H0 : QYT ,1(τ)−QYT ,−1(τ) = ∆(τ), (42)

where ∆(τ) is a prespecified difference between the focal country and the pool of comparison

countries. Setting ∆(τ) = 0 tests for equality of the τ -quantiles. The alternative hypothesis

is simply H1 : QYT ,1(τ)−QYT ,−1(τ) ̸= ∆(τ).

To obtain an estimate of the τ -quantile for country 1, we let Q̂ML-skew
YT ,1 (τ) denote the

skewness-corrected MLE based on the return series of country 1. To estimate the τ -quantile

for the other countries, we use the correspodning leave-one-out pooled skewness-corrected

MLE that excludes country one. We denote this estimator by Q̂ML-skew,pool
YT ,−1 (τ).14 Our test

statistic is based on the estimated difference between country one and the other countries,

T∆(τ) =

√
n

T σ̂W,τ

(
Q̂ML-skew

YT ,1 (τ)− Q̂ML-skew,pool
YT ,−1 (τ)−∆(τ)

)
, (43)

where σ̂W,τ is an estimator of the variance of the estimated difference that is specified in the

14In the K = 2 case, where two individual countries are tested against each other, this pooled estimator
simplifies to the time-series estimator for country 2.
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Online Appendix. The null hypothesis is rejected if the absolute value of the test statistic

exceeds a critical value that is computed from the standard normal distribution; that is,

reject at the 5%-level if T∆(τ) ≥ 1.96 or T∆(τ) ≤ −1.96. Additional details, including a

formal asymptotic justification of this test, are found in the Online Appendix.

5 Simulation results

In this section, we present simulation results. Monthly period returns are generated

according to a number of different models and we evaluate the performance of the

empirical estimators described in previous sections. We focus on the case where a single

time series of returns is available for inference. This setup captures the situation where

one is attempting to determine the empirical distribution for a given country’s aggregate

stock market returns. In the Online Appendix, we present simulation results for a panel

data setting, where multiple time-series are available. The panel simulation results confirm

the theoretical predictions in Section 4 and the results are qualitatively very similar to

those presented for the time-series case.

Additional simulations in the Online Appendix show results for estimates based on a

smaller sample size (60 years of data rather than 120 years), which naturally leads to less

precise estimates. Moreover, the effect of changing the sampling frequency is evaluated,

and results show that the precision of the quantile estimates is virtually identical for daily,

monthly, and annual data; there are thus no gains to using higher-frequency data.

5.1 Return distributions

We simulate four different data generating processes (dgps), two with i.i.d. returns (log-

normal, log-normal-with-crashes) and two with non-i.i.d. returns (stochastic volatility,

long-term mean reversion).

• Log-normal: Gross period returns xt are i.i.d. log-normal and log returns yt are

thus i.i.d. normal. This specification is completely determined by the mean, µy,

and the variance, σ2
y , of the log returns. In our notation, we parameterize both the
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log-normal and normal distributions with µy and σ2
y, such that, xt ∼ LN

(
µy, σ

2
y

)
and yt ∼ N

(
µy, σ

2
y

)
.15

• Log-normal-with-crashes: The distribution of yt is given by a mixture of two normals

that are i.i.d. over time, and the gross-returns are given by a mixture of two

log-normals,

xt ∼

 LN
(
µ̃y, σ̃

2
y

)
with probability 1− p

LN
(
κ+ µ̃y, σ̃

2
y

)
with probability p

. (44)

If κ < 0, and |κ| >> σ̃y, the p-probability outcome corresponds to a (low-probability)

crash.

• Stochastic volatility: The gross-returns xt are generated by discretely sampling a

continuous time stochastic volatility (SV) process. In particular, xt is generated

from a continuous time diffusion model with a separate Brownian motion driving the

stochastic volatility process. The SV model is a deviation from the i.i.d. assumption

of the theoretical analysis and the period returns generated from it follow a martingale

difference sequence (m.d.s.) rather than an i.i.d. sequence.

• Long-term reversals: Log returns yt follow a moving average process of order q

(MA(q)) with negative MA coefficients and i.i.d. normal innovations. This leads

to returns that exhibit a q-month reversal effect. The gross return process is the

exponentially transformed linear MA process.

All distributions are parameterized to have identical (unconditional) mean µ and

variance σ2.16 The two moments are calibrated to aggregate market returns with the

average monthly returns µ set to 0.6% (µ = 1.006) and the volatility set to 6% (σ = 0.06).

These values are similar to those reported for the global real returns used in the subsequent

empirical analysis in Section 6 (and also similar to those reported in ACO; they report

15Let µ and σ2 denote the mean and variance of the gross returns. When gross returns are log-normal

(and log returns normal) the mean and variance of the log returns are then given by µy = log

(
µ2√
σ2+µ2

)
and σ2

y = log
(

σ2

µ2 + 1
)
.

16The MA-specification has the same mean and variance as the other processes, but its long-run variance
(and as a consequence the long-run mean) differs from the other specifications.
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that monthly real returns in their global sample have a mean of 0.55% and a volatility of

5.86%).

The parameters of the log-normal distribution are completely determined by µ and σ.

In the log-normal-with-crashes specification, we set p = 1/100 and eκ = 0.7, which implies

that crashes occur with 1% probability each month (on average one crash every 8 years)

and that each crash corresponds to a 30% expected loss; a complete specification is given

in the Online Appendix.

The SV model follows a fairly standard parameterization, apart from the fact that we

set the mean gross return to µ and the average volatility to σ. The correlation between

the price process and the stochastic volatility process is set to −0.5, which represents a

sizable but empirically reasonable so-called leverage effect.17

In the long-term reversal process, we set q = 60 (i.e., log returns follow an MA(60)

process), to capture a 5-year reversal effect in returns. Whether such reversals truly exists

remain a topic of some controversy. Here we simply simulate returns consistent with such

effects and evaluate the impact on the estimates of long-run return distributions.18 We

parameterize the MA process such that the returns have a variance ratio of 0.8. That is, in

the long run returns have 20 percent less variance than in the short run, which represents

a substantial deviation from the baseline random walk assumption; again, a complete

specification of the implementation is provided in the Online Appendix.19

We focus on compounding horizons of 10 and 30 years (T = 120 and T = 360).

5.2 Point estimate precision and confidence interval coverage

For each data-generating process (e.g., log-normal), we generate 10,000 sample paths with

n = 1, 440 monthly returns, representing 120 years of data. For each simulated sample

path, for a given horizon T and quantile τ , the ML (Q̂ML
XT

(τ)), the skewness-corrected ML

17Our simulation implementation for the stochastic volatility distribution follows Farago and Hjalmarsson
(2023a), who provide more details.

18There is a large literature evaluating long-term mean reversion in stock returns. The findings in Fama
and French (1988), Poterba and Summers (1988), Cecchetti et al. (1990), Cutler et al., (1991), Siegel
(2008), and Spierdijk et al. (2012), generally support long-term mean reversion. Several other studies,
including Richardson and Stock (1989), Kim et al. (1991), and Richardson (1993), are more negative.

19In brief, the MA coefficients, θk, k = 1, ..., q = 60, are assumed to decline for greater lags. We use the
parametric form θk = θ1√

k
, where the value of θ1 is set to achieve a variance ratio of 0.8.
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(Q̂ML-skew
XT

(τ)), and the FF bootstrap (Q̂boot
XT

(τ)) estimates of quantile τ of the long-run

distribution of returns are calculated, along with corresponding confidence intervals.

The results are shown in Figures 1 and 2 and Tables 1 and 2, for T = 120 and T = 360,

respectively. The figures and tables follow the same layout, with Panels A and B showing

results for the (i.i.d.) log-normal and log-normal-with-crashes models, respectively, and

Panels C and D showing results for the (non-i.i.d.) SV and long-term reversal specifications,

respectively.

The figures show simulation results for all quantiles of the long-run distribution. For a

simple explanation of the figures, fix a value of τ . For example, suppose that we want to

estimate the 20th percentile of the long-run distribution of returns (τ = 0.2). Find the

value 20 on the vertical axis and then move horizontally to the solid line to read the true

(population) quantile off of the horizontal axis.20 The estimators of this specific population

parameter have a sampling distribution that we characterize by its simulated 5th, 50th

(median) and 95th percentiles. These percentiles are computed as the empirical percentiles

of the 10,000 simulated estimates. It is important not to confuse percentile values on

the vertical axis (which define the parameter of interest) with the concept of a percentile

that characterizes the sampling distribution (for a given parameter of interest). For the

skewness-corrected ML, the 5th, 50th and 95th percentiles of the sampling distribution

are shown as dashed lines. For the bootstrap estimator, the percentiles are shown as

dashed-and-dotted lines. For the ML estimator, the median is shown as a dotted line and

the 5th and 95th percentiles are shown by the left and right edges of the shaded region,

respectively. The sampling distributions for different estimators are very similar, making

the lines corresponding to different estimators difficult to distinguish in the figures.

Starting from the value 20 on the vertical axis and then moving left to right, we first

encounter the 5th percentile, then the median and then the 95th percentile. For example,

in Panel A of Figure 1, the true value of the 20th percentile of the 10-year return is 0.96.

The estimates fall between 0.7 (5th percentile of the sampling distribution) and 1.3 (95th

percentile of the sampling distribution), 90 percent of the time. The horizontal distance

20We use simulations to obtain very precise approximations of the true quantiles.
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between the 5th and 95th percentiles gives an indication of the precision of the estimator.

The tables provide additional information for a selection of quantiles. In particular,

the tables show the median error (i.e., median bias) and the median absolute error of each

estimator. As a result of the exponential transformation (from log to gross returns), the

estimates of the quantiles of long-run compound gross returns tend to be mean biased

but median unbiased in the benchmark log-normal case. Given that the bias is primarily

induced by the non-linear exponential transformation, the median errors are therefore

more informative. In the top rows of each panel in the tables, the population quantiles are

shown together with the actual average coverage rates of nominal 90% confidence intervals

for each estimator.

We first discuss simulation results for the i.i.d. specifications, starting with the

benchmark log-normal model (Panel A of each figure and table). The sampling distributions

for all three estimators are virtually identical, both for T = 120 and T = 360. This is

evidenced by the percentiles of the sampling distributions plotted in Figures 1 and 2 and

the median and median absolute errors in Tables 1 and 2, which are essentially identical

for all estimators across all quantiles. In particular, there is no loss of precision from using

the more generally valid skewness-corrected ML or bootstrap estimators, as opposed to

the (correctly specified) MLE. The shared sampling distribution is median-unbiased for

the true population quantiles, such that our estimators recover the true long-run return

distribution “on average”.

The empirical coverage rate of the confidence intervals, as simulated by the average

coverage rate over the 10,000 simulations, is close to the nominal 90% level for all quantiles

τ and all three approaches. The confidence intervals thus reliably capture the sampling

uncertainty of the estimators.

This sampling uncertainty is substantial and, as predicted by our theory, even larger

for the longer horizon of T = 360 (30 years) than for T = 120 (10 years). For instance, for

the 10th percentile of the long-run distribution, the median absolute error increases from

0.09 for the 10-year horizon to 0.39 for the 30-year horizon (see Panel A in Tables 1 and 2).

For the 30-year horizon, the margin of sampling uncertainty dwarfs the magnitude of the
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true values. For example, the true value of the 10th percentile of the 30-year distribution

is equal to 1.07 (= 7% net gain), but the range of 90% probability outcomes in Panel

A in Figure 2 stretches from 0.4 (= 60% net loss) to 2.7 (= 170% net gain). Clearly,

interpreting the raw point estimates without considering sampling uncertainty can be

highly misleading.

We next turn to simulation results for the log-normal-with-crashes model (Panel B of

each figure and table). This return distribution is heavier-tailed and exhibits substantial

negative skewness that is driven by the rare crashes. Here, the ML estimator is misspecified

and exhibits a small bias when estimating the upper percentiles of the long-run return

distribution (as seen in Tables 1 and 2). As expected from the theory, the skewness-

corrected ML and bootstrap estimators are mostly median-unbiased and have similar

sampling distributions. All confidence intervals for the 10th percentile or higher have

empirical coverage rates close to the nominal 90% level (±4%). For the lowest percentiles,

the coverage is somewhat poor at the shorter 10-year horizon: the coverage rates for the 1st

percentile of the 10-year return are 78% for the MLE and 80% for the skewness-corrected

MLE and bootstrap estimator. In line with our large-T justification of the confidence

intervals, the coverage improves for the 30-year horizon, where the coverage rates are

always above 85%.

Turning to the non-i.i.d. distributions, we first consider the stochastic volatility (SV)

model (Panel C of each table and figure). This specification is one of the workhorse

models for modeling short-term stock return data and captures stylized features, such as

time-varying volatility and leverage. However, when returns are compounded over longer

horizons, these features do not appear to have a major impact. The MLE is able to capture

the long-run distribution quite well (in a median-unbiased sense). The bias-correction

provided by the skewness-corrected ML and bootstrap estimators is only noticeable at

the 95th percentile (or higher) of the long-run distribution. Apart from this, the three

estimators behave very similarly and have virtually identical median absolute errors. The

empirical coverage rates for the confidence intervals are close to the nominal 90% level,

with the exception of the lowest percentiles when considering 10-year returns. Similarly
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to the log-normal-with-crashes model, the coverage rates for the lowest percentiles are

considerably improved for the longer 30-year horizon (where they are always above 85%).

The long-term reversals specification introduces serial correlation (Panel D of each

table and figure). The non-i.i.d. aspect of this specification does not get washed out in

the long run: by construction the process has a long-run variance that is different from

its short-run variance (the ratio between the two variances is set to 0.8). Even though

none of our three estimation approaches control for serial dependence, they still perform

well. The bias is slightly larger than for the other specifications, but the coverage rates for

the 90% confidence intervals are still good (≥ 85%). Reliable inference in the presence of

serial correlation is therefore still possible with the estimators derived here.

6 Empirical analysis of global stock returns

6.1 The DMS data set

We now turn to an an empirical analysis of the long-run distribution of aggregate stock

market returns. Our data source is the panel of annual international stock returns described

in Dimson, Marsh, and Staunton (2021), and subsequently referred to as the DMS data set.

This data set is an updated and extended version of the panel of 21 countries constructed

and explained in detail by Dimson, Marsh, and Staunton (2002).

The data set contains uninterrupted return series from 1900 to 2020 for the 21 countries

originally included in the 2002 DMS data; see Table 3 for a list of countries. In addition,

there are returns for 11 countries for which the data start later than 1900. In our main

analysis, we focus on the 21 countries with a full history, since an identical sample period

allows for the cleanest cross-country and global-to-country comparisons. Below, when we

refer to the full panel of global returns, we refer to this 21-country panel. In the Online

Appendix, we present empirical results based on all 32 countries; the results from this

extended data set are very similar to those shown for our main specification, and do not

change any of our qualitative conclusions.21

21Figure A8 in the Online Appendix provides an overview of data availability for each country in the
extended data set.
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The return data are reported at an annual frequency. Our sample size is therefore

measured in years (n = 121 for the countries will a full history from 1900), and as before

we consider compounding horizons spanning T = 10 and T = 30 years. As discussed in

Section 3.3, and verified by simulations in the Online Appendix, whether one samples

returns on an annual or a monthly frequency has virtually no impact on the precision of

the estimates of the long-run distribution. Rather, it is the total time span of the data

(i.e., the number of years covered), that is the key determinant of estimation precision.

Throughout the analysis, we focus on real returns expressed in local currency, which

are provided directly in the DMS database. Table 3 shows descriptive statistics for the

one-period annual returns for each of the 21 countries in the sample, as well as for the full

panel pooling the return series from all these countries. The arithmetic (simple) mean

returns range from 5.02% to 9.31% per year, while the geometric mean ranges from 0.86%

to 7.06%. The relatively large differences between the arithmetic and geometric means

are mostly attributable to the presence of large negative returns, as evidenced by the

minimum values also presented in the table. The standard deviations of the return series

are between 16.73% and 33.64%, which is typical for yearly returns of equity indexes. The

full panel has an average return of 7.32% (4.63%) using the arithmetic (geometric) mean

and a volatility of 24.03%.

6.2 Long-run distributions of global real returns

We first consider the global long-run return distribution. To estimate the distribution of

global long-run returns, we pool the data from the panel of 21 countries with a full history

in the DMS data set. The three pooled estimators described in Section 4 are implemented;

that is, the normal ML (Q̂ML,pool
XT

(τ)), the skewness-corrected ML (Q̂ML-skew,pool
XT

(τ)), and

the FF bootstrap (Q̂boot,pool
XT

(τ)) estimators. Our implementation of the FF bootstrap

estimator follows the description in Section 3.4.2, with the number of bootstrap repetitions

set to B = 100, 000, sampling from the the pooled returns data from the 21 countries

in the panel. To quantify sampling uncertainty, confidence intervals are calculated from

equations (35) and (36). The confidence intervals are centered on each of the three pooled
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estimators.22,23

The informativeness of the pooled data depends on the extent to which the return

series are correlated. Our confidence intervals account for cross-sectional dependence in a

nonparametric way, without imposing any specific structure such as, for example, a factor

model. To provide an intuitive summary measure of the informativeness of the panel, the

effective sample size n∗ in equation (41) is also calculated. n∗ is derived under the more

restrictive assumption of a one-factor model, but provides an easily interpreted measure

that is also empirically relevant.24

To compute the effective sample size, we estimate λ based on equation (38), using

the full sample of 21 countries spanning the period from 1900 to 2020. This gives an

estimate λ̂Full sample = 0.396, indicating that approximately 40% of the variation in returns

can be explained by a common factor in the cross section. Based on this estimate for λ,

the effective number of time-series observations for the panel with K = 21 countries and

n = 121 years is

n∗
Full sample =

21

0.396× 20 + 1
× 121 = 2.354× 121 ≈ 285.

In other words, the 21-country panel, containing a total of 121 × 21 = 2541 annual

observations, is equivalent in estimation precision to a single time series with 285 years of

data.

Figure 3 and Table 4 show the empirical results for the long-run global real returns.

Figure 3 follows a similar format to Figures 1 and 2, which show results for the simulation

22As pointed out in Section 4.1, in the panel case we only formally validate the confidence intervals
around the pooled (skewness corrected) ML estimator, not around the pooled FF bootstrap estimator. As
seen from the empirical results, as well as the simulation results in the Online Appendix, the pooled FF
bootstrap estimator is very similar to the pooled skewness-corrected ML estimator.

23The theoretical results provide analytical confidence intervals for the log returns, which are then
simply exponentiated to achieve confidence intervals for the gross returns. The length of the confidence
intervals for the log returns is identical irrespective of the estimation method used for calculating the point
estimates. The length of the confidence intervals around the gross returns might differ slightly across the
different estimation methods, but these differences are solely due to the non-linearity of the exponential
transformation.

24In non-reported results, we find that confidence intervals, calculated by treating the pooled data as a
single time series with sample size n∗, yield a good approximation of our more generally valid confidence
intervals. This is not terrible surprising since the one-factor world CAPM, while far from a perfect model,
still has significant explanatory power for global index returns (e.g., Ferson and Harvey, 1994).
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exercises. Table 4 tabulates, for selected quantiles, the results shown in Figure 3. In

line with the theoretical analysis, as well as the simulation results, the tables and figures

present empirical estimates of long-run gross returns. When discussing the results in the

text, we translate the gross returns into net returns, expressed in percent, for ease of

interpretation. For instance, in Panel A of Table 4, the full-sample ML estimate of the

median of the 10-year gross return is found to be 1.57. In the text, we report this as a net

return of 57%.

Panels A1 and B1 in Figure 3 present empirical estimates for compounding horizons of

10 and 30 years, respectively, using the full sample period from 1900 to 2020. The dotted

line and shaded area in each panel are the point estimate and the 90 percent confidence

band, respectively, for the different quantiles based on the pooled ML estimator. The

dashed and the dash-dotted lines represent the pooled skewness-corrected ML and FF

bootstrap estimates, respectively, along with the corresponding 90 percent confidence

bands. There are some slight differences in the point estimates for the three methods for the

T = 10-year compounding horizon (Panel A1 in Figure 3). However, the differences across

the point estimates are small compared to the uncertainty of each estimate, represented

by their confidence bands. For example, the estimates of the median 10-year net return

are 57%, 64% and 62% according to the MLE, the skewness-corrected MLE and the FF

bootstrap estimator, respectively. The confidence interval for the median 10-year return

(based on the skewness-corrected MLE) stretches from 31% to 107%; exact numerical

values are found in Table 4.

The differences between the estimators are even less noticeable for the longer 30-year

compounding horizon (Panel B1 in Figure 3). The confidence interval for the median net

return, based on the skewness-corrected MLE, now covers the range from 104% to 709%

and the differences between the three point estimates are arguably negligible relative to

this large uncertainty in the estimates. In general, the uncertainty around the 30-year

returns is much larger than that around the 10-year returns, indicating the difficulty to

empirically pin down the distribution of very long-run returns.

Panels A2 and B2 in Figure 3 show estimates using the same panel of countries, but

35



restricting the sample to the years from 1960 to 2020. To the extent that one is unwilling

to draw strong inference from data in the distant past, this more recent sample is of

great interest (FF restrict their empirical analysis for the U.S. to start in 1963). The

post-1960 sample roughly corresponds to an era of more modern, as well as globally more

integrated, financial markets. This greater integration is reflected in the correlation of

returns across countries. The estimated value for λ, measuring cross-sectional correlation,

is λ̂Post-1960 = 0.527 for the post-1960 sample, which yields an effective sample size of

n∗
Post-1960 = 111. That is, the full panel between 1960 and 2020, containing 61× 21 = 1281

annual observations, barely dominates a single time series of 100 years of returns in terms

of estimation precision.

As a direct consequence of the shorter time series, and hence a much smaller sample

size, the estimation uncertainty substantially increases. This is particularly noticeable

for the longer 30-year horizon, as seen from comparing the full sample results and the

post-1960 results in Panels B1 and B2 of Figure 3. In the post-1960 sample, the median

net 30-year return can range from 66% to 1484%, whereas the corresponding range in the

full sample is from 104% to 709%, based on the 90 percent confidence intervals around the

skewness-corrected MLEs.25

6.3 Individual country returns

We next look at the long-run distribution for each country separately. Since the different

estimation methods lead to very similar outcomes, we only present results for the skewness-

corrected MLE. Estimation results for all three methods are tabulated in Tables A4 to A9

in the Online Appendix.

In the discussion of the country-specific results, our main focus is on comparisons

between the (pooled) global and individual country estimates. We try to assess whether

country-specific long-run returns are best viewed as the outcomes of unique processes, or

if they could be viewed as realizations from the same (global) data generating process.

25Table A10 in the Online Appendix repeats the results presented in Table 4, but using all 32 countries
in the extended DMS data set. The quantitative results are very similar and the overall conclusions do
not change when using the larger unbalanced panel.
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6.3.1 U.S. versus global

We start our analysis with considering the long-run stock returns for the U.S.. These are

of particular interest, both because the U.S. has by far the largest market capitalization

among all countries, and because of the historically strong performance of the U.S. market.

The latter phenomenon is sometimes posited as the U.S. being a “lucky survivor” and

that its performance is unlikely to be representative of other countries (Goetzmann and

Jorion, 1999, and van Binsbergen et al., 2023). Figure 4 contains a visual comparison

of global and U.S. long-run returns. Using the full sample from 1900 to 2020, Panel A1

shows results for the 10-year return distribution and Panel B1 shows results for the 30-year

distribution. The global estimates are formed using the pooled panel sample (including the

U.S.), whereas the U.S. estimates are based solely on the time-series of returns for the U.S..

The dashed lines represent the global point estimates, with the shaded area capturing the

90 percent confidence band. The solid lines are the U.S. point estimates, along with 90

percent confidence bands represented by the dotted lines. In addition, p-values from the

test in Section 4.3—for equality of the global and the U.S. percentiles—are displayed in

the lower-right corners of the graphs, for the 5th, 50th, and 95th percentiles.

An immediate observation is that, for both return horizons (Panels A1 and B1), the

point estimates of the U.S. distributions of long-run returns are to the right of the global

distributions, for all the percentiles shown in the graphs. The point estimate for the 5th

percentile of the 30-year returns is a 55% net loss globally, but a 14% gain in the U.S.. This

is a numerically large difference, but the 90 percent confidence interval for the 5th percentile

of the global net returns stretches from -80% to -3%, while the corresponding confidence

interval for the U.S. returns stretches from -57% to 204%. There is thus great estimation

uncertainty and a substantial overlap between the confidence intervals. However, the

formal hypothesis test for percentile equality shows that the 5th percentile for the 30-year

U.S. and global returns are statistically significantly different with a p-value of 0.03.26

26There is a seeming discrepancy between the great uncertainty in the estimates for the U.S. percentiles
and the ability of the formal test to reject the hypothesis of equality. This tension is explored in the
Online Appendix, where we illustrate how estimates of the differences between percentiles can be more
precise than the estimates of the actual percentiles, resulting in formal hypothesis tests that have greater
power than what one might expect based on the confidence intervals around each estimate.
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For the median net returns at the 30-year horizon, the global estimate is 307% and the

U.S. estimate is 597%. At face value, these appear very different, but again the estimation

uncertainty is great. The U.S. point estimate firmly lies within the 90% confidence interval

for the global median, which stretches from 104% to 709%. The p-value for the test of

equality is equal to 0.17 and we cannot reject that the global and U.S. medians are the

same. (All numerical values can be found in Tables A6 and A7 in the Online Appendix.)

The confidence bounds are uniformly narrower for the shorter 10-year horizon, compared

to the 30-year horizon. Despite the higher precision for the shorter horizon, the confidence

intervals for the global and U.S. returns substantially overlap for all percentiles. The

conclusions from the formal tests are identical for the 10-year horizon: the null hypothesis

of equality for the U.S. and the global percentiles are rejected for the 5th percentile (p-value

of 0.01), but not for the median or the 95th percentile.

We also note that the confidence bands for the U.S. are wider than for global returns,

which is simply a result of less data: when calculating the U.S. returns, we only have one

time series at our disposal, in contrast to the global returns, where we can make use of a

full panel of returns.

Panels A2 and B2 of Figure 4 present results based on the post-1960 sample. The

qualitative conclusions from this shorter sample are essentially the same as those we draw

from the full sample. There is now considerably lower precision in the global pooled

estimates (recall that the effective sample size, n∗, for this panel is equal to 111, and

thus offers less precision than the full 121-year U.S. sample used in Panels A1 and B1),

resulting in very considerable overlaps between the global and U.S. confidence intervals.

Overall, in this shorter sample, the U.S. distributions appear even more similar to the

global ones, especially for the longer 30-year horizon. For lower percentiles, the U.S.

distributions are still to the right of the global distributions, but the distributions now

cross at lower percentiles (around the 65th and 75th percentiles, for the 10- and 30-year

horizons, respectively). One can still reject the null hypothesis that the 5th percentiles

are identical for the 10-year U.S. and global distributions (p-value of 0.01), although

for the 30-year horizon the p-value is now 0.07, such that the result is only borderline
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significant. As in the full sample case, there is no evidence of statistically significantly

different medians.27

Viewed in isolation, the results in Figure 4 offer some support for the notion that

the U.S. stock market might not be representative for the global long-horizon return

distribution. The evidence is concentrated to the lowest percentiles and distinguishing

the central parts of the distributions (e.g., the medians) is not possible. However, by

focusing on the U.S. versus the global experience, one is singling out a country that ex

post had a strong performance, and then testing whether that country is different. In the

following analysis, we therefore perform analogous tests for all countries in our data set,

and calculate test statistics that also take into account the resulting multiple testing issue.

6.3.2 Other countries versus global

Figure 5 offers a concise comparison of the results for the 21 countries and the global

panel, using the full sample period from 1900 to 2020.28

The horizontal lines in Panel A1 (B1) in Figure 5 show 90% confidence intervals for the

5th percentile of the 10-year (30-year) returns for each country, with the point estimates

indicated by solid circles. The estimates are all based on the skewness-corrected MLE. The

corresponding global results (based on the pooled skewness-corrected MLE) for the 5th

percentile are shown with a vertical line (the point estimate) and a shaded area (the 90%

confidence band). The p-values from the test of equality between the global percentile and

each country-specific percentile are shown next to the horizontal bar for each country.29

Although there are differences in the point estimates across different countries, there are no

countries where the global and country-specific confidence intervals are disjoint. However,

the formal hypothesis tests show statistically significant differences (at the 5% level) for

27For the 10-year horizon, there is some evidence (p-value of 0.07) that the 95th percentiles are
significantly different. Since the U.S. distribution is to the left of the global distribution for high
percentiles, this would signal that the global 95th percentile is greater than the U.S. one.

28Analogous results to the more detailed ones presented for the U.S. in Figure 4, are found for other
countries in Figures A9 and A10 in the Online Appendix.

29The test of equality between the individual-country percentile and the global percentile uses the pooled
estimate with the given country excluded (see Section 4.3). In Figures 5 and 6, as well as in Figure 4, we
show the full global estimates, such that this estimate does not change depending on which country we
are testing against. In practice, the full pooled estimates and the leave-one-country-out estimates are very
similar.
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several countries: for T = 10 (Panel A1), there are 11 significant outcomes and for T = 30

(Panel B1), there are 7 significant outcomes. The p-values for the U.S. (equal to 0.01 and

0.03 in the T = 10 and T = 30 cases, respectively) are not the smallest ones observed.

Panels A2 and B2 follow the same format as Panels A1 and B1, presenting results

for the median (50th percentile) estimates. In this case, few point estimates lie outside

the global confidence interval, and there is little evidence of any statistically significant

differences (the lowest p-value is equal to 0.08, for Austria at the 10-year horizon). For the

upper tail of the distribution (Panels A3 and B3 show results for the 95th percentiles), the

only country-specific point estimate that lies outside the global confidence interval is for

Canada at the 10-year horizon (with a p-value of 0.05). Otherwise, there is no evidence of

statistically significant differences.

In Figure 6, corresponding results to those in Figure 5 are shown, using the shorter

post-1960 subsample. The conclusions drawn from the more recent data are similar to

those from the full sample, but the evidence of statistically significant differences is weaker.

For the 5th percentile (panels A1 and B1), 4 countries (including the U.S.) are found

significantly different (at the 5% level) for the 10-year horizon, and only one country

at the 30-year horizon (Italy). For the median (Panels A2 and B2), only Italy is found

significantly different. For the 95th percentile (Panels A3 and B3), only Canada is found

significantly different.

Figure 5 (and Figure 6) confirms that the evidence of statistically significant differences

is mostly concentrated to the lower percentiles. It also shows that the U.S. does not appear

that unique, when compared to other countries in a symmetrical way: when compared

to the global distribution of long-run returns, the 5th percentile of U.S. long-run returns

appear statistically significantly different, but the same holds true for a number of other

countries.

However, by testing all countries, one runs into a multiple-testing issue. The individual

p-values will tend to overstate the statistical significance, since we are not controlling for

the fact that we conduct many simultaneous tests. Thus, the p-values less than, say, 0.05

recorded in Figure 5 cannot be viewed as evidence of statistical evidence at the 5% level.
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Instead, a multiple-testing correction must be conducted. We use Holm’s (1979) step-down

procedure to correct for the multiple tests.30

Significance at the 5% and 10% levels, according to Holm’s multiple testing procedure,

is indicated with a dagger (†) and double-dagger (‡), respectively, next to the p-values

in Figures 5 and 6. As is evident, once one controls for multiple testing, the evidence of

significant differences is greatly reduced and almost eliminated. For the 30-year horizon,

no statistically significant differences can be established at the 5% level, for any country

or percentile, in either the full sample or the post-1960 sample. At the less stringent 10%

level, the 5th percentile for Australia and Canada are found signigicantly different in the

full sample (Panel B1 in Figure 5). For the shorter 10-year horizon, statistically significant

differences at the 5% level are found for the 5th percentile in the full sample (Panel A1 in

Figure 5) for Australia, Canada, and Denmark. In the post-1960 sample, only Canada is

found statistically significant for the 5th percentile (Panel A1 in Figure 6). In this shorter

sample, the 95th percentile for Canada is also found to be significantly (smaller) than the

global one.

6.3.3 Summary and interpretation

To sum up, our empirical analysis reveals large uncertainty around the distribution of

long-run stock returns. If one focuses on the U.S. alone, one would conclude that, for the

lower percentiles, the long-run return distribution for the U.S. likely differs from the global

pooled distribution. If one instead approaches the testing problem from a more agnostic

data-driven viewpoint, the U.S. does not stand out and the evidence of any significant

country-heterogeneity in long-run stock returns is quite weak, especially at the longer

30-year horizon. That is, from a purely data-driven perspective, one cannot rule out the

possibility that historical long-run returns in different countries are essentially different

outcomes of the same underlying global return distribution.

30Holm’s procedure is a form of sequential Bonferroni correction. For a given significance level
α, it proceeds as follows: (i) Compute the p-values, p1, p2, ..., pK , for each individual country. (ii)
Sort the countries according to their p-values, such that p(1) ≤ p(2) ≤ ... ≤ p(K). (iii) Let L =

min
{
j : p(j) > α/(K + 1− j)

}
. (iv) Reject the null hypothesis for all countries where pj < p(L). The

procedure controls the family-wise error rate (FWER) at level α.
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7 Conclusion

The distribution of compound stock returns over long horizons is of great interest to private

investors, as well as politicians and policy makers that manage and regulate savings in

pension funds and related vehicles such as sovereign wealth funds. We study empirical

estimation of such long-run distributions, and characterize the uncertainty inherent in

these estimates.

The main takeaway of our analysis is that for investment horizons greater than a

few years, estimation uncertainty is very large. At long horizons such as 30 years, the

point estimates are almost uninformative and one should instead focus on the confidence

intervals that we propose. Point estimators are formally inconsistent at longer horizons,

and one needs to be careful not to overinterpret them. Apparently large differences might

simply reflect statistical uncertainty, not true economic differences.
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Table 3: Descriptive statistics for individual country returns.

The table shows descriptive statistics for the annual returns of the 21 countries with a full history in

the DMS data set. For each country, there are 121 annual return observations, spanning the period

from 1900 to 2020. The final row gives the corresponding statistics based on the pooled sample from

all 21 countries, containing a total of 2, 541 observations. The first three columns gives, in percent, the

arithmetic mean (r̄a), the geometric mean (r̄g), and the standard deviation (i.e., volatility) of the net

returns. The following two columns provide the skewness and kurtosis, and the final two columns indicate

(in percent) the minimum and maximum annual net returns.

r̄a (%) r̄g (%) Stdev (%) Skew Kurt Min (%) Max (%)

Australia 8.27 6.78 17.36 -0.24 3.22 -42.51 51.48

Austria 5.02 0.86 30.32 1.25 7.12 -59.58 132.75

Belgium 5.30 2.68 23.49 0.52 4.52 -48.90 105.08

Canada 7.05 5.71 16.73 0.01 2.91 -33.77 55.20

Denmark 7.60 5.75 20.64 1.27 7.86 -49.17 107.81

Finland 9.31 5.55 29.26 1.20 8.17 -61.47 161.72

France 5.80 3.35 22.73 0.32 2.78 -41.48 66.07

Germany 8.08 3.33 31.06 1.44 8.79 -90.77 154.60

Ireland 6.93 4.36 22.70 0.23 3.87 -65.42 68.39

Italy 5.94 2.11 28.05 0.71 5.41 -72.85 120.66

Japan 8.67 4.24 28.95 0.50 5.34 -85.51 121.08

Netherlands 7.11 5.10 20.98 0.82 6.01 -50.43 101.59

New Zealand 8.13 6.48 19.07 1.12 9.70 -54.74 105.31

Norway 7.16 4.35 26.26 2.12 13.73 -53.61 166.89

Portugal 8.48 3.72 33.64 1.62 8.28 -76.60 151.83

South Africa 9.14 7.06 21.73 0.90 5.58 -52.23 102.88

Spain 5.60 3.46 21.55 0.72 4.85 -43.32 99.42

Sweden 8.14 6.05 20.84 0.08 3.22 -42.52 67.53

Switzerland 6.37 4.61 19.24 0.32 3.34 -37.83 59.36

UK 7.18 5.39 19.50 0.65 6.76 -56.60 99.31

U.S. 8.54 6.60 19.78 -0.23 2.75 -38.57 55.84

Full Panel 7.32 4.63 24.03 1.02 8.15 -90.77 166.89
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Table 4: Empirical estimates of global long-run returns

The table shows the pooled point estimates and 90 percent confidence intervals (in parentheses) for the

long-run distributions of the global gross returns based on the panel of 21 countries with a full history in

the DMS data set. Panels A and B show results for 10-year and 30-year compounding horizons, respectively.

The top row in each panel indicates what percentile of the distribution that is being considered (e.g., 10%

indicates the 10th percentile). Results are presented using data for the entire sample period (Full sample)

and for a subsample starting in 1960 (Post-1960), as indicated in the row headers. For each sample and

horizon, results for the pooled MLE, the pooled skewness-corrected MLE (ML-skew), and the pooled FF

bootstrap estimator are presented.

Panel A: T = 10

Percentiles

5% 10% 25% 50% 75% 90% 95%

I. ML

Full sample 0.47 0.61 0.96 1.57 2.58 4.03 5.26

(0.35-0.63) (0.47-0.81) (0.75-1.23) (1.25-1.98) (2.08-3.20) (3.28-4.95) (4.29-6.45)

Post-1960 0.50 0.66 1.03 1.71 2.84 4.47 5.87

(0.31-0.81) (0.42-1.03) (0.68-1.56) (1.18-2.49) (2.01-4.01) (3.22-6.20) (4.26-8.09)

II. ML-skew

Full sample 0.44 0.60 0.98 1.64 2.64 3.92 4.88

(0.33-0.58) (0.45-0.78) (0.76-1.26) (1.31-2.07) (2.13-3.27) (3.19-4.81) (3.98-5.98)

Post-1960 0.48 0.65 1.05 1.75 2.87 4.41 5.67

(0.30-0.78) (0.41-1.02) (0.69-1.58) (1.20-2.54) (2.03-4.06) (3.18-6.13) (4.11-7.82)

III. FF bootstrap

Full sample 0.46 0.63 1.00 1.62 2.56 3.84 4.93

(0.34-0.61) (0.48-0.83) (0.78-1.29) (1.29-2.04) (2.06-3.17) (3.13-4.72) (4.02-6.05)

Post-1960 0.49 0.66 1.06 1.74 2.83 4.36 5.66

(0.30-0.78) (0.42-1.03) (0.70-1.60) (1.20-2.54) (2.00-4.00) (3.14-6.05) (4.11-7.80)

Panel B: T = 30

Percentiles

5% 10% 25% 50% 75% 90% 95%

I. ML

Full sample 0.48 0.76 1.65 3.89 9.17 19.85 31.51

(0.22-1.05) (0.36-1.63) (0.80-3.40) (1.96-7.74) (4.75-17.73) (10.48-37.59) (16.80-59.10)

Post-1960 0.60 0.96 2.10 5.03 12.06 26.50 42.43

(0.16-2.17) (0.27-3.34) (0.64-6.90) (1.63-15.53) (4.13-35.24) (9.46-74.24) (15.47-116.43)

II. ML-skew

Full sample 0.45 0.74 1.69 4.07 9.40 19.29 29.21

(0.20-0.97) (0.35-1.58) (0.82-3.48) (2.04-8.09) (4.86-18.17) (10.19-36.54) (15.57-54.79)

Post-1960 0.58 0.94 2.12 5.13 12.19 26.16 41.02

(0.16-2.10) (0.27-3.30) (0.65-6.97) (1.66-15.84) (4.17-35.62) (9.34-73.30) (14.95-112.55)

III. FF bootstrap

Full sample 0.45 0.76 1.72 4.04 9.16 18.94 29.28

(0.21-0.99) (0.36-1.62) (0.83-3.54) (2.03-8.03) (4.74-17.70) (10.00-35.88) (15.61-54.93)

Post-1960 0.58 0.95 2.13 5.11 12.06 25.87 40.80

(0.16-2.09) (0.27-3.31) (0.65-6.99) (1.66-15.78) (4.13-35.22) (9.23-72.48) (14.87-111.95)
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Figure 1: Simulation results for T = 120.

The figure shows simulation results based on estimates with a sample size of n = 1, 440 and a compounding

horizon of T = 120. Monthly period returns are generated according to the four different return models

described in the main text: i.i.d. log-normal (Panel A); i.i.d. log-normal-with-crashes (Panel B); stochastic

volatility, SV (Panel C); long-term reversals (Panel D). All four specifications are parameterized such

that monthly gross returns have a mean µ = 1.006 and a volatility σ = 0.06. Three different estimators

are considered: (i) the MLE, (ii) the skewness-corrected MLE (ML-skew), and (iii) the FF bootstrap

estimator. The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th

percentiles of the estimated quantiles of the long-run gross return distributions (calculated across the

10, 000 estimates obtained from the simulated samples), for each of the three estimation procedures. The

solid line shows the true (population) quantiles in each graph. The dotted line shows the median estimates

for the MLE and the edges of the shaded region corresponds to the 5th and 95th percentiles of the ML

estimates. The dashed lines show the median and the 5th and 95th percentiles of the skewness-corrected

ML estimates of each quantile. The dashed-and-dotted lines show the corresponding estimates for the

bootstrap estimator.
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Figure 2: Simulation results for T = 360.

The figure shows simulation results based on estimates with a sample size of n = 1, 440 and a compounding

horizon of T = 360. Monthly period returns are generated according to the four different return models

described in the main text: i.i.d. log-normal (Panel A); i.i.d. log-normal-with-crashes (Panel B); stochastic

volatility, SV (Panel C); long-term reversals (Panel D). All four specifications are parameterized such

that monthly gross returns have a mean µ = 1.006 and a volatility σ = 0.06. Three different estimators

are considered: (i) the MLE, (ii) the skewness-corrected MLE (ML-skew), and (iii) the FF bootstrap

estimator. The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th

percentiles of the estimated quantiles of the long-run gross return distributions (calculated across the

10, 000 estimates obtained from the simulated samples), for each of the three estimation procedures. The

solid line shows the true (population) quantiles in each graph. The dotted line shows the median estimates

for the MLE and the edges of the shaded region corresponds to the 5th and 95th percentiles of the ML

estimates. The dashed lines show the median and the 5th and 95th percentiles of the skewness-corrected

ML estimates of each quantile. The dashed-and-dotted lines show the corresponding estimates for the

bootstrap estimator.
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Figure 3: Empirical estimates of global long-run returns

The figure shows the pooled point estimates and 90 percent confidence intervals for the long-run distri-

butions of the global gross returns, based on the panel of 21 countries with a full history in the DMS

data set. Panels A1 and A2 show results for a 10-year compounding horizon, and Panels B1 and B2

show results for a 30-year compounding horizon. Results are presented using data for the entire sample

period (Full sample, Panels A1 and B1) and for a subsample starting in 1960 (Post-1960 sample, Panels

A2 and B2). For each sample and horizon, results for the pooled MLE, the pooled skewness-corrected

MLE (ML-skew), and the pooled FF bootstrap estimator are presented. Each panel shows the point

estimates and corresponding 90% confidence bands for the long-run return distributions, for each of the

three estimation procedures. The dotted line and the shaded area show point estimates and confidence

bands using the pooled MLE. The dashed lines show the point estimates (the middle of the three dashed

lines) and the confidence bands using the pooled skewness-corrected MLE. The dashed-and-dotted lines

show the point estimates (the middle of the three dotted lines) and the confidence bands using the pooled

FF bootstrap estimator.
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Figure 4: U.S. returns versus global returns

The figure shows estimates of the long-run distributions of the global gross returns along with the

corresponding estimates for the U.S. gross returns. Panels A1 and A2 show results for a 10-year

compounding horizon, and Panels B1 and B2 show results for a 30-year compounding horizon. Results are

presented using data for the entire sample period (Full sample, Panels A1 and B1) and for a subsample

starting in 1960 (Post-1960 sample, Panels A2 and B2). All estimates are based on the skewness-corrected

MLE. The estimates for the global distribution are formed from the pooled panel of 21 countries with

a full history in the DMS data set. The dashed line and the shaded area show point estimates and

90% confidence bands, respectively, for the global return distributions. The solid line shows the point

estimates for the long-run return distribution based on returns data for the U.S; the dotted lines show the

corresponding 90% confidence bands. In addition, p-values are shown for the test of the null hypothesis

that a given percentile of the global return distribution is identical to the corresponding percentile for the

U.S. distribution. Specifically, p-values for the 5th, 50th and 95th percentiles, labeled p-val(p5), p-val(p50),

and p-val(p95), respectively, are displayed.
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Figure 5: Individual country returns versus global returns - Full sample

The figure shows estimates of selected percentiles of the long-run gross return distribution for individual

countries (horizontal lines) along with the corresponding pooled estimates for the global gross returns

(vertical lines and shaded areas). All results are based on the full sample period from 1900 to 2020, using

the skewness-corrected MLE. In each panel, the horizontal solid lines represent 90% confidence intervals

for the given long-run return percentile indicated in the panel header, for a given country. The solid

circles on each of these horizontal lines represent the corresponding country-specific point estimate of

that return percentile. The solid vertical line and the shaded area show the corresponding point estimate

and 90% confidence interval for the global long-run returns. These are formed from the pooled panel

of 21 countries with a full history in the DMS data set. In addition, the p-value for the test of the null

hypothesis that the given percentile of the global and country-specific return distributions is identical

is shown for each country. Significance at the 5% and 10% levels, according to Holm’s (1979) multiple

testing procedure, is indicated with a dagger (†) and double-dagger (‡), respectively, next to the p-values.

The left-hand side panels (A1-A3) show results for 10-year compounding horizons and the right-hand side

panels (B1-B3) show results for 30-year compounding horizons. The top panels (A1 and B1) show results

for the 5th percentile of the long-run return distribution; the middle panels (A2 and B2) show results for

the 50th percentile of the long-run return distribution; the bottom panels (A3 and B3) show results for

the 95th percentile of the long-run return distribution.

A1. T = 10, 5th percentile B1. T = 30, 5th percentile

0 0.2 0.4 0.6 0.8 1

U.S.
UK

Switzerland
Sweden

Spain
South Africa

Portugal
Norway

New Zealand
Netherlands

Japan
Italy

Ireland
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia p=0.00†
p=0.02

p=0.52
p=0.00†
p=0.00†

p=0.78
p=0.95

p=0.12
p=1.00

p=0.10
p=0.20

p=0.03
p=0.01

p=0.67
p=0.17

p=0.01
p=0.52

p=0.03
p=0.02

p=0.05
p=0.01

0 0.5 1 1.5 2 2.5 3

U.S.
UK

Switzerland
Sweden

Spain
South Africa

Portugal
Norway

New Zealand
Netherlands

Japan
Italy

Ireland
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia p=0.00‡
p=0.03

p=0.32
p=0.00‡

p=0.02
p=0.96

p=0.65
p=0.23

p=0.94
p=0.13

p=0.37
p=0.17

p=0.03
p=0.95

p=0.28
p=0.03

p=0.99
p=0.08

p=0.16
p=0.13

p=0.03

A2. T = 10, 50th percentile B2. T = 30, 50th percentile

0 1 2 3 4

U.S.
UK

Switzerland
Sweden

Spain
South Africa

Portugal
Norway

New Zealand
Netherlands

Japan
Italy

Ireland
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia p=0.11
p=0.08

p=0.14
p=0.49
p=0.60

p=0.73
p=0.22

p=0.99
p=0.84

p=0.24
p=0.88

p=0.93
p=0.25

p=0.65
p=0.68

p=0.20
p=0.29

p=0.34
p=0.73

p=0.68
p=0.20 p=0.20

0 5 10 15 20 25

U.S.
UK

Switzerland
Sweden

Spain
South Africa

Portugal
Norway

New Zealand
Netherlands

Japan
Italy

Ireland
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia p=0.09
p=0.09

p=0.18
p=0.37

p=0.45
p=0.66

p=0.29
p=0.74

p=0.85
p=0.24

p=0.96
p=0.79

p=0.21
p=0.79

p=0.70
p=0.15

p=0.38
p=0.27

p=0.90
p=0.60

p=0.17 p=0.17

A3. T = 10, 95th percentile B3. T = 30, 95th percentile

0 2 4 6 8 10

U.S.
UK

Switzerland
Sweden

Spain
South Africa

Portugal
Norway

New Zealand
Netherlands

Japan
Italy

Ireland
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia p=0.43
p=0.89

p=0.34
p=0.05

p=0.69
p=0.12

p=0.34
p=0.50

p=0.78
p=0.95

p=0.26
p=0.59
p=0.65

p=0.89
p=0.22

p=0.51
p=0.22

p=0.88
p=0.11

p=0.39
p=0.86 p=0.86

0 20 40 60 80 100

U.S.
UK

Switzerland
Sweden

Spain
South Africa

Portugal
Norway

New Zealand
Netherlands

Japan
Italy

Ireland
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia p=0.78
p=0.40

p=0.23
p=0.36

p=0.95
p=0.26

p=0.28
p=0.59

p=0.79
p=0.61

p=0.40
p=0.75

p=0.84
p=0.95

p=0.55
p=0.34

p=0.23
p=0.60

p=0.25
p=0.69

p=0.51 p=0.51



Figure 6: Individual country returns versus global returns - Post-1960 sample

The figure shows estimates of selected percentiles of the long-run gross return distribution for individual

countries (horizontal lines) along with the corresponding pooled estimates for the global gross returns

(vertical lines and shaded areas). All results are based on the subsample starting in 1960 and ending in

2020, using the skewness-corrected MLE. In each panel, the horizontal solid lines represent 90% confidence

intervals for the given long-run return percentile indicated in the panel header, for a given country. The

solid circles on each of these horizontal lines represent the corresponding country-specific point estimate of

that return percentile. The solid vertical line and the shaded area show the corresponding point estimate

and 90% confidence interval for the global long-run returns. These are formed from the pooled panel

of 21 countries with a full history in the DMS data set. In addition, the p-value for the test of the null

hypothesis that the given percentile of the global and country-specific return distributions is identical

is shown for each country. Significance at the 5% and 10% levels, according to Holm’s (1979) multiple

testing procedure, is indicated with a dagger (†) and double-dagger (‡), respectively, next to the p-values.

The left-hand side panels (A1-A3) show results for 10-year compounding horizons and the right-hand side

panels (B1-B3) show results for 30-year compounding horizons. The top panels (A1 and B1) show results

for the 5th percentile of the long-run return distribution; the middle panels (A2 and B2) show results for

the 50th percentile of the long-run return distribution; the bottom panels (A3 and B3) show results for

the 95th percentile of the long-run return distribution.
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This internet appendix covers the following items:

A1. Additional simulation results, showing the impact of altering the sample size in the

time-series case, altering the sampling frequency (e.g., annual instead of monthly),

as well as results for the panel data case. Simulation results for “direct” estimation

are also shown.

A2. Details on the return specifications used in the simulations.

A3. A discussion of the ACO block bootstrap procedure.

A4. Additional empirical results.

A5. Formal results for estimation and testing with panel data.

A6. Formal results for consistency of point estimates of quantiles of gross returns.

A7. Proofs of formal theoretical results.
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A1 Additional simulation results

A1.1 Smaller sample size

We repeat the same simulation exercise as in the main text, but using a sample with

n = 720 monthly observations, rather than n = 1, 440. That is, 60 years worth of data are

used, rather than 120 years. The results are shown in Figures A1 and A2, which follow

exactly the same format as Figures 1 and 2 in the main text.

As one would expect, the precision of the estimates is reduced substantially. The point

estimates of the 30-year distribution (Figure A2) are now almost completely uninformative.

While many markets have data available from around 1900, it is not obvious how

informative the earlier observations are for today’s (or tomorrow’s) conditions. A sample

length of 60 years might therefore be more relevant for many practical purposes. Fama and

French (2018, FF) restrict their analysis to post-1963 data because of such considerations.

The case with n = 1, 440 might be viewed as the very best we could hope for—120 years

of informative data—but real-world situations are likely to often be less favorable.

A1.2 Different sampling frequencies

As discussed in detail in the main text, the primary source of uncertainty in the estimates

of the long-run quantiles is the mean of (log) period returns. It is well known that the

precision of the estimation of the mean is not affected by the sampling frequency (e.g.,

Merton, 1980). There is therefore no reason to expect any significant precision gains

from using data sampled at higher frequency, such as daily, when estimating the long-run

quantiles. Vice versa, there is also no reason to expect any decrease in precision when

using lower frequency data, such as annual. In this subsection, we verify in simulations

that these conclusions hold.

We simulate daily, monthly, and annual data from the log-normal and stochastic

volatility (SV) specifications. In each case, the returns are parameterized such that the

corresponding monthly returns have the same mean and volatility as in the simulations in

the main text (i.e., mean µ = 1.006 and volatility σ = 0.06). We focus on the log-normal

2



and SV returns since the monthly specifications trivially map into corresponding daily

specifications in these cases. The annual returns are simply generated as non-overlapping

12-month returns, obtained from the simulated monthly data. The sample size is set to

120 years, such that 30, 240 daily observations (each month has 21 trading days), 1, 440

monthly observations, and 120 annual observations are used in each simulated sample.

10, 000 simulated samples are generated in each case.

The results are shown in Figure A3. The figure follows the same format as previous

simulation figures, but results for 10-year compounding horizons are now shown in the left

panels (A1 and A2) and results for 30-year compounding horizons are shown in the right

panels (B1 and B2). We show results only for the skewness-corrected MLE; the results

for the MLE and the FF bootstrap estimator are very similar. As is immediately seen

from the figures, there is very little difference between the estimates using data sampled at

the three different frequencies. In the log-normal return specification, there is hardly any

noticeable difference between the three sets of estimates. In the SV specification, there

are some very small visible differences across the three sampling frequencies. While it is

tempting to think that the daily estimates must be more precise, a close inspection shows

that the median annual estimates actually track the true distribution marginally better

than the daily estimates; the monthly estimates tend to be in between. The spread in

the estimates, as measured by the reported 5th and 95th percentiles of the estimates, are

also very similar for the three sampling frequencies. Importantly, compared to the overall

estimation uncertainty, these differences are all tiny.

A1.3 “Direct” estimation results

While the precision of the mean estimator of the log returns is not affected by the sampling

frequency, the precision of the volatility estimator is affected. As documented in Figure

A3, this change in volatility precision has no practical impact on the estimated long-run

distribution, when comparing daily, monthly, or annual sampling frequencies. However, if

the sampling frequency is coarse enough to result in very poor volatility estimates, the

resulting estimator of the long-run distribution will eventually be affected.
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In the extreme case, one follows the “direct” estimation approach and uses only the

non-overlapping observations of long-run returns for inference, as discussed in Section 2 of

the main text. That is, with n = 1, 440 monthly observations, the direct approach would

simply form estimates based on the n/120 = 12 observations of 10-year returns or the

n/360 = 4 observations of 30-year returns.

In Figure A4, we show simulation results from using “direct” inference. The simulation

specification is the same as in the previous subsection, where we compared different

sampling frequencies. We consider “direct” estimation, which can simply be viewed as an

approach where we sample the data at the same frequency as the investment horizons that

we are interested in. I.e., we sample the data at the 10-year or 30-year horizon, resulting

in 12 and 4 return observations, respectively. We focus on the normal MLE, which only

requires the mean and variance as inputs. As a comparison to the “direct” estimates, we

show results for the (“indirect”) MLE, based on monthly data.

The layout of Figure A4 is the same as for Figure A3, except we now show results for

the MLE rather than the skewness-corrected MLE. The shaded area in each panel show the

5th and 95th percentiles for the (indirect) monthly ML estimates. The dashed-and-dotted

lines show the median, as well as the 5th and 95th percentiles, of the direct estimates.

Starting with the 10-year horizon (Panels A1 and A2), where the direct estimator is

based on 12 observations, we see that the differences between the direct estimator and the

monthly indirect estimator are not that dramatic. In Panel A1 (and B1), the standard

(indirect) MLE is optimal. The direct estimator clearly performs somewhat worse, but not

terribly so. At the 30-year horizon, the differences are more stark. The direct estimator

now only uses 4 observations, and the resulting lack of precision in the volatility estimator

has a big impact on the resulting long-run distribution. The indirect estimator clearly

dominates, both in terms of precision and bias.

A1.4 Panel data results

We next present simulation results for estimates based on a panel data set, rather than a

single time series.
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A1.4.1 Return distributions

Suppose there are log returns yt,i, i = 1, .., K, representing K different market indexes.

These are generated according to a 1-factor model,

yt,i = βizt + ϵt,i, (A1)

where zt and ϵt,i are independent. In each generated sample, the βis are drawn from a

uniform distribution over [0.7, 1.3], such that the βis range from 0.7 to 1.3 and are on

average equal to 1. The number of markets is set to K = 20 and the number of monthly

observations is set to n = 1, 440. Each panel thus contain 28, 800 monthly observations.

The common factor zt captures 40% of the total variation in yt,i (λ = 0.4 in the notation

of Section 4 in the main text), which is very similar to the value we find empirically in

Section 6 in the main text. According to the derivations in Section 4.2 in the main text,

the effective sample size is therefore equivalent to about 3, 350 months of independent

time-series observations.

We consider two different specifications.

• Log-normal panel: zt and ϵt,i are both i.i.d. normally distributed across time, and

ϵt,i is mean zero. The gross returns xt,i are therefore log-normally distributed.

• Log-normal-with-crashes panel: zt and ϵt,i are both drawn from mixed-normal dis-

tributions with crashes. The mean of zt is adjusted to achieve a specific mean

return, controlling for the mean effect of the crashes. The gross returns follow a

log-normal-with-crashes distribution.

These two specifications are the panel data analogues of the corresponding time-series

specifications in the main text. In the pure log-normal specification, the extension to a

panel framework is completely straightforward. In the crash model, crashes can occur

in both the systematic and the idiosyncratic part. To keep the specification as aligned

as possible with the one in the time-series case, we assume that crashes occur with a

probability of p = 1/100 in a given period and that a given crash results in an expected
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loss of 30%. However, since crashes can occur in either the systematic or the idiosyncratic

part, we now assume that there is a p/2 = 1/200 probability that a crash occurs in either

of these components.1 Additional details on the panel specifications are given in Online

Appendix A2.

Since the panel is heterogeneous in the sense that βi varies across i, the “population”

distribution is not uniquely defined. In the below simulation results, we treat the distribu-

tion of the average, or typical, asset in the panel as the population distribution; i.e., the

distribution for an asset with βi = 1. As in the time-series simulations, we parameterize

the models such that µ = 1.006 and σ = 0.06 for the βi = 1 asset.

A1.4.2 Estimates based on panel data

We consider the pooled MLE, as well as the pooled skewness-corrected MLE and the pooled

bootstrap estimator, as defined in Section 4.1 of the main text. Confidence intervals are

calculated from equations (35) and (36) in the main text, but with the intervals centered

on each of the three pooled estimators.2 All results are based on 10, 000 repetitions; i.e.,

10, 000 panels of data are simulated for each specification.

The results are shown in Table A1 and Figure A5. In both the table and the figure,

the top panels correspond to the log-normal return specification and the bottom panels to

the log-normal-with-crashes return specification. The left-hand side shows the case with

T = 120 and right-hand side panels the case with T = 360. The panels in Figure A5 follow

the same format as Figures 1 and 2 in the main text. The plain solid line shows the true

quantiles in each case, defined as the population distribution for a βi = 1 asset.

A comparison of the results in Figure A5 with the corresponding time-series results in

Figures 1 and 2 in the main text highlights that the panel estimates have higher precision,

but not dramatically so. In Panel A in Figure 2 in the main text, the time-series estimates

1The probability of exactly one crash is no longer exactly equal to 1%, but the approximation is very
close. Two crashes can in theory occur in a single period, but the probability of this happening is tiny
(0.0025%).

2As pointed out in the main text, in the panel case the confidence intervals are only formally justified
for the MLE and the skewness-corrected MLE, but we also apply them to the pooled FF bootstrap
estimator. As seen in the simulation results, the pooled skewness-corrected MLE and the pooled FF
bootstrap estimator behave almost identically.
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of the 10th percentile of the 30-year distribution stretches from 0.4 to around 2.7. In

Panel B1 of Figure A5, the corresponding range for the panel estimates are 0.6 to 2.0.

Apart from this increase in precision, the panel estimators behave very similarly to the

corresponding time-series cases.

The actual coverage rates of the confidence intervals (see Table A1) are in most cases

close to the nominal coverage rate of 90 percent. For the log-normal specification (Panels

A1 and A2), the actual coverage rates are all between 88% and 90%, across all quantiles

and all three pooled estimators. In the log-normal-with-crashes specification (Panels B1

and B2), the coverage rates for the confidence intervals around the skewness-corrected

ML estimator and the FF boostrap estimator are all above 85% in the T = 120 case and

above 87% in the T = 360. As remarked upon in the discussion of the simulation results

in the main text, the coverage rates of the confidence intervals are expected to improve as

T increases.

A2 Details on simulation specifications

A2.1 Time-series specifications

A2.1.1 Log-normal-with-crashes

The i.i.d. log returns yt can be written as yt = ỹt + κbt, where ỹt ∼ N
(
µ̃y, σ̃

2
y

)
, bt ∼

Bernoulli (p), and κ is a constant. That is, bt is a discrete random variable that takes

on a value of 1 with probability p and 0 with probability 1− p. ỹt and bt are both i.i.d.

across time and bt is independent of ỹt. The distribution of yt is a mixture of two normals

and the gross-returns is a mixture of two log-normals,

xt ∼

 LN
(
µ̃y, σ̃

2
y

)
with probability 1− p

LN
(
κ+ µ̃y, σ̃

2
y

)
with probability p

. (A2)

If p is small, κ < 0, and |κ| >> σ̃y, the p-probability outcome corresponds to a (low-

probability) crash. The standard log-normal distribution is a special case where p = 0
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and/or κ = 0. With ỹt and bt independent, it follows easily that the first two moments of

xt are given by

E [xt] = (1− p+ peκ) eµ̃y+
σ̃2
y
2 = (1− p) eµ̃y+

σ̃2
y
2 + peκ+µ̃y+

σ̃2
y
2 , (A3)

E
[
x2t
]

=
(
1− p+ pe2κ

)
e2µ̃y+2σ̃2

y , (A4)

and the variance is subsequently equal to

V ar (x) =
(
1− p+ pe2κ

)
e2µ̃y+2σ̃2

y − (1− p+ peκ)2 e2µ̃y+σ̃2
y . (A5)

Conditional on a crash occurring,

E [xt| bt = 1] = eκ+µ̃y+
σ̂2
y
2 ≈ eκ, (A6)

where the last approximation is fairly accurate for any large crash. For a given crash-

probability p and crash-size κ, µ̃y and σ̃2
y can be set to match the mean, µ, and variance,

σ2, of the gross returns by using,

µ̃y = log

(
µ

(1− p+ peκ)

)
−
σ̃2
y

2
, (A7)

σ̃2
y = log

((
σ2

µ2
+ 1

)
× (1− p+ peκ)2

(1− p+ pe2κ)

)
. (A8)

In the simulated model, p = 1/100 and eκ = 0.7, such that a 30% loss (in expectation)

occurs on average once every 100 months (≈8 years). With µ = 1.006 and σ = 0.06, this

gives µ̃y = 0.00766 and σ̃2
y = 0.00265, which implies that

E [xt| bt = 1] = eκ+µ̃y+
σ̂2
y
2 = 0.7e0.00766+

0.00265
2 = 0.7063, (A9)

E [xt| bt = 0] = eµ̃y+
σ̂2
y
2 = e0.00766+

0.00265
2 = 1.009. (A10)

That is, to achieve the same expected return as in a process without crashes, the mean in

non-crash periods needs to be increased from 1.006 to 1.009.
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A2.1.2 Long-term reversals

The log returns yt follow a moving average process of order q (MA(q)), driven by i.i.d.

normal innovations,

yt = µy +

q∑
k=0

θkut−k, θ0 = 1, (A11)

ut ∼ i.i.d.N
(
0, σ2

u

)
. (A12)

The variance of yt is given by

σ2
y = V ar (yt) =

q∑
k=0

V ar (θkut−k) = σ2
u

q∑
k=0

θ2k. (A13)

The long-run variance of yt equals

Lr.V ar (yt) =
∞∑

j=−∞

Cov (yt, yt+j) = σ2
u

(
q∑

k=0

θk

)2

. (A14)

The variance ratio of the long-run to short-run variance is given by

V RLR/SR =
Lr.V ar (yt)

V ar (yt)
=

(
∑q

k=0 θk)
2∑q

k=0 θ
2
k

. (A15)

The variance-ratio provides a summary of the degree of serial correlation in yt and we

parameterize the process to achieve a certain variance ratio. Specifically, we assume that

the MA coefficients are declining for greater lags, and use the parametric form θk =
θ1√
k
,

θ0 = 1. In this case,

V RLR/SR =
(
∑q

k=0 θk)
2∑q

k=0 θ
2
k

=

(
1 +

∑q
k=1

θ1√
k

)2
1 +

∑q
k=1

(
θ1√
k

)2 . (A16)

We consider two lag lengths q, equal to 60 and 120 (where the latter one is only used in

the simulations in Online Appendix A3), and we target a variance ratio of 0.8. Setting

θ1 = −0.0075 for q = 60 and θ1 = −0.0050 for q = 120 almost exactly achieves this

variance ratio.
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To complete the parameterization of the process, we target a mean µ and variance

σ2 for the gross returns. Since yt is normally distributed (it is the sum of i.i.d. normal

innovations), xt is log-normal. We therefore specify (µ, σ2) and calculate
(
µy, σ

2
y

)
based

on the standard log-normal formula. Further,

σ2
y = V ar (yt) = σ2

u

(
1 +

q∑
k=0

θ2k

)
= σ2

u

(
1 +

q∑
k=1

(
θ1√
k

)2
)
, (A17)

and

σ2
u =

σ2
y

1 +
∑q

k=1

(
θ1√
k

)2 . (A18)

In practice, this adjustment to the variance of the innovations is very small.

A2.2 Panel specifications

The data are generated according to a 1-factor model,

yt,i = βizt + ϵt,i. (A19)

A2.2.1 Log-normal

The components zt and ϵt,i are i.i.d. log-normal across time and independent of each other.

The variances of zt and ϵt,i are set such that

V ar (zt) = σ2
z = λ× σ2

y, (A20)

and

V ar (ϵt,i) = σ2
ϵ = (1− λ)× σ2

y. (A21)

It follows that

V ar (yt,i) = β2
i λσ

2
y + (1− λ)× σ2

y , (A22)

such that for βi = 1, V ar (yt,i) = σ2
y.
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A2.2.2 Log-normal-with-crashes

In the log-normal-with-crashes specification, zt and ϵt,i are both i.i.d. log-normal mixtures.

The common component zt can be written as zt = z̃t + κbzt , where z̃t ∼ N (µ̃z, σ̃
2
z) ,

bzt ∼ Bernoulli (p/2), and κ is a constant. The idiosyncratic component ϵt,i can be written

as ϵt,i = ϵ̃t,i + κbϵt, where ϵ̃t,i ∼ N (0, σ̃2
ϵ ) , b

ϵ
t ∼ Bernoulli (p/2), and κ is a constant.

{z̃t, bzt , ϵ̃t,i, bϵt} are i.i.d. across time and mutually independent of each other.

For a given σ̃2
y and λ, we parameterize

σ̃2
z = λ× σ̃2

y and σ̃2
ϵ = (1− λ)× σ̃2

y . (A23)

To match the mean, µ, and variance, σ2, of the gross returns, we use the same transformation

described above for the time-series case. For a given (total) crash-probability p and crash-

size κ, µ̃z and σ̃2
y are set to

µ̃z = log

(
µ

(1− p+ peκ)

)
−
σ̃2
y

2
, (A24)

σ̃2
y = log

((
σ2

µ2
+ 1

)
× (1− p+ peκ)2

(1− p+ pe2κ)

)
. (A25)

This mapping relies on a small approximation, effectively treating the sum of the two

independent crash distributions, each with a probability of a crash given by p/2, as if it

was a single crash distribution with the probability of a crash given by p. The values of µ̃z

and σ̃2
y are therefore identical to those in the time-series specification (with µ̃z identical to

µ̃y in the time-series case).

Since the crash frequency and crash size are identical in zt and ϵt,i, this implies that the

variance decomposition between zt and ϵt,i, represented by λ, only captures the non-crash

variation. Since the implicit decomposition is 50-50 for the crashes, the total variance

(including crashes) attributable to the common factor is somewhat higher than the stated

λ of 40%. When λ is estimated in the simulations, the average value is about 0.45.
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A3 The ACO block bootstrap

In the simulations in the main paper, we showed that the (skewness-corrected) MLE

and bootstrap estimator were only marginally affected by empirically reasonable levels of

serial dependence in returns. The results presented in the main text thus suggest that

serial correlation is not a major inferential concern. Here we elaborate on this topic and

provide some additional simulation results for the block bootstrap estimator proposed by

Anarkulova, Cederburg, and O’Doherty (2022, ACO).

ACO extends the FF bootstrap to a block bootstrap method. The idea is identical to

the FF bootstrap, but instead of sampling individual returns from {yt}nt=1 (or {xt}nt=1),

“blocks” (i.e., contiguous sequences) of returns are instead sampled. This maintains serial

dependencies across returns in the bootstrapped samples, provided the blocks are long

enough. By maintaining, in the bootstrapped returns, the serial correlation present in the

original returns data, the hope is that the block bootstrap estimator will be robust to

serial dependence.

ACO provide no formal validation of their block bootstrap procedure and such an

analysis is also outside the scope of the current paper. Below, however, we provide

simulation results for the ACO block bootstrap and compare the results with those from

the estimators proposed in the current study.

We use the same simulation specifications as in the main text: i.i.d. log-normal,

i.i.d. log-normal-with-crashes, stochastic volatility (SV), and long-term reversals. The

parameterizations are also the same, with the mean and volatility of the gross monthly

returns set to µ = 1.006 and σ = 0.06, respectively. For the long-term reversal specification,

monthly log returns follow an MA(q) process. In the main text we set q = 60. Here we

also consider a specification with q = 120. In both cases, the MA(q) process is specified

to have a variance ratio equal to 0.8. The details of these specifications are found in the

main text and in Online Appendix A2. We thus evaluate the block bootstrap estimator

under specifications both with and without serial dependence.

The block bootstrap procedure samples blocks of length l, with replacement. In their

main implementation, ACO use randomly distributed block lengths (following a geometric
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distribution) with a mean of 120 months. We follow this choice, but as a robustness check

we also consider fixed block lengths of 60 months.3

Figures A6 and A7 show simulation results in the same format as Figures 1 and 2

in the main text, but with results for the block bootstrap estimators added in as well.

The block bootstrap estimators use either randomly distributed block lengths with a

mean of 120 months or fixed block lengths of 60 months. As a comparison to the block

bootstrap estimators, we show results for the skewness-corrected MLE. In order to keep

the graphs uncluttered, we omit results for the MLE and the FF bootstrap estimator.

The skewness-corrected MLE is very similar to the FF bootstrap, as seen in the main

text, and improves upon the standard MLE without any apparent loss of efficiency. As

previously, the simulations are based on samples with 1, 440 monthly observations and

10, 000 simulated samples. Investment horizons of T = 120 and T = 360 are used.

Following the format of the figures in the main text, Figures A6 and A7 show the

estimated quantiles of the long-run return distributions. The solid line shows the true

(population) quantiles in each graph. The dash-dotted lines show the median and the 5th

and 95th percentiles of the block bootstrap estimates of each quantile, using a random

block length with a mean of 120 months. The dotted lines show the corresponding results

for the block bootstrap estimator with a fixed block length of 60 months. The dashed line

shows the median estimates for the skewness-corrected MLE and the edges of the shaded

region corresponds to the 5th and 95th percentiles of the skewness-corrected ML estimates.

Additional results are shown in Tables A2 and A3, which follow the same format as Tables

1 and 2 in the main text.

Panels A and B in Figures A6 and A7 show results for the i.i.d. log-normal and i.i.d. log-

normal-with-crashes distributions. For both of these distributions, the skewness-corrected

MLE is essentially median unbiased. The block bootstrap estimator exhibits a small but

noticeable bias, especially when using the longer random block lengths. The differences

3In non-reported results, we also considered fixed block lengths of 120 months and random block
lengths with a mean of 60 months. The results for the fixed length of 60 months and the random lengths
with a mean of 120 months lead to the most disparate results. The other two alternatives thus end up
somewhere in between. We report results for only two different block lengths to keep the presentation
manageable.
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between the skewness-corrected MLE and the block bootstrap estimators are easily seen in

the lines capturing the 95th percentiles of the estimates. These are quite clearly different

for the block bootstrap estimators and the skewness-corrected MLE (represented by the

right-hand edge of the shaded region). There is a clear tendency for the block bootstrap

estimators to over-estimate the lower quantiles (i.e., estimate them with an upward bias).

In the case of i.i.d. returns, using the block bootstrap therefore comes at a cost, albeit a

small one.

Tables A2 and A3 further support this interpretation. The (median) biases for the

block bootstrap estimators are larger than for the skewness-corrected MLE and so are the

median absolute errors. Interestingly, these results are very similar across the log-normal

and log-normal-with-crashes specifications. The bias in the block bootstrap is therefore

not driven by non-normality. The results for the SV specification, shown in Panel C of the

figures and tables, are very similar to those for the two i.i.d. processes.

Panels D and E show results for the two MA specifications. Given that these speci-

fications exhibit serial correlation, one would expect the block bootstrap estimators to

provide less biased estimates, at the possible cost of greater dispersion. This is also what

we find. The bias is smaller for the block bootstrap estimator but, as seen in the tables,

the skewness-corrected MLE still tends to dominate in terms of median absolute error.

There is also still a tendency to overestimate the lower quantiles when using the block

bootstrap estimators, which is especially clear for the 30-year horizon shown in Panels D

and E of Figure A7. This bias is more severe for the longer (random) block length.

In Tables A2 and A3, we also show the coverage rates of confidence intervals centered

on the block bootstrap estimates (see top rows in each panel of the tables). That is, we

calculate the same confidence bands as used for the other estimators, but center them

instead on the block bootstrap estimators. There is no formal result supporting such a

confidence band, and poor coverage rates do not in and of themselves invalidate the block

bootstrap estimator. However, since the median block bootstrap estimates are still quite

similar to the median skewness-corrected ML estimates, differences in the coverage rates

still give some indication of differing dispersion in the estimates, as already evidenced
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in the figures. As seen from the tables, the coverage rates for confidence intervals based

on the block bootstrap estimates tend to be much worse than those centered on the

skewness-corrected ML estimates. This is especially true for T = 120.

To sum up, there is little evidence that the block bootstrap estimators perform

significantly better than the skewness-corrected MLE in the presence of serial correlation.

The block bootstrap can reduce the bias somewhat, but at the expense of greater dispersion.

When returns are i.i.d., or a martingale difference sequence in the form of a stochastic

volatility process, the block bootstrap is clearly dominated by the skewness-corrected MLE.

In all cases, the latter tends to dominate in median absolute error terms.

A4 Additional Empirical results

In this section, we add further information and results for the empirical analysis.

Figure A8 provides detailed information on the full set of countries included in the

DMS data set and for which time periods the data are available for a given country.

Tables A4-A9 show tabulated results for the country-specific estimates for 10-year and

30-year horizons, using the three different estimators for calculating the point estimates of

the long-run distributions. Tables A4 and A5 use the MLE. Tables A6 and A7 use the

skewness-corrected MLE. Finally, Tables A8 and A9 show results for the FF bootstrap

estimator. In each case, 90% confidence intervals are presented along with the point

estimates. Global-versus-individual-country comparison figures, analogous to Figure 4 in

the main text, are presented for each country in the original DMS data set in Figures A9

and A10.

Table A10 replicates the analysis in Table 4 in the main text, using the unbalanced

panel of all 32 countries that the DMS data set currently includes (see Figure A8 for a full

list of all countries).

Finally, Table A11 presents the ACO block bootstrap results from estimating the global

long-run returns, using the balanced 21-country panel. As a comparison, the FF bootstrap

results are also shown. The results confirm that differences between the estimators tend to

be quite small, especially when compared to the uncertainty in the estimates. However, the
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tendency for the block bootstrap estimator to produce estimates of the lower quantiles that

are larger than the corresponding estimates from the FF bootstrap is evident. Compared to

the sampling uncertainty, all differences are small and well within the confidence intervals.

A5 Formal results for estimation and testing with

panel data

In this section, we provide formal results and additional details for our discussion of panel

data in Section 4 in the main text. All proofs for the results in this section are gathered in

Section A5.3 below. The analysis is based on the skewness-corrected MLE. If one assumes

zero skewness in the one-period distributions, all results also apply to the plain MLE

without skewness correction.

A5.1 Asymptotic distribution of panel estimator

This section provides the theoretical foundation for the panel-based confidence intervals

defined in Section 4.1 in the main text.

We use the notation introduced in Section 4.1 in the main text and operate under the

assumptions specified there. In particular, we suppose that we observe i.i.d. observations

of the random vector yt = (y1,t, y2,t, . . . , yK,t), where all components share the same

marginal distribution with mean µy, variance σ
2
y , and skewness γy. We do not restrict the

cross-sectional dependence of the components of yt.

Proposition A1. Suppose that the vector yt = (y1,t, y2,t, . . . , yK,t) is i.i.d. and that all

its components share the same marginal distribution, which has a continuous density, a

positive variance, and eight moments. Then, for any τ ∈ (0, 1),

(
Q̂ML-skew,pool

YT
(τ)−QYT

(τ)
)
/σy

=
T

nK

n∑
t=1

K∑
i=1

{
yi,t − µy

σy
+

1

2
√
T

((
yi,t − µy

σy

)2

− 1

)
Φ−1(τ)

}

+Op

(
n−1/2 + T−1/2

)
.

(A26)
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This expansion immediately implies the following distributional result:

Proposition A2. Suppose that the vector yt = (y1,t, y2,t, . . . , yK,t) is i.i.d. and that all

its components share the same marginal distribution, which has a continuous density, a

positive variance, and eight moments. Let

Vt,τ =
1

K

K∑
i=1

(
yi,t − µy

σy
+

1

2
√
T

((
yi,t − µy

σy

)2

− 1

)
Φ−1(τ)

)
(A27)

and σ2
V,τ = E

[
V 2
t,τ

]
= var (Vt,τ ). If the sequence T = T (n) diverges fast enough such that

T 3/n→ ∞ then, for any τ ∈ (0, 1), we have

√
n

TσyσV,τ

(
Q̂ML-skew,pool

YT
(τ)−QYT

(τ)
)
⇒ N(0, 1). (A28)

To use this result for practical inference, we need a consistent estimator of σ2
V,τ . To

see why such an estimator is furnished by σ̂2
V,τ , defined in Section 4.1 in the main text,

note that V̂t,τ is an uncentered sample counterpart of Vt,τ , which replaces the population

quantities µy and σy by consistent estimators. Under the assumptions of Proposition A2,

σ̂2
V,τ = σ2

V,τ +Op

(
n−1/2

)
. (A29)

Thus, by standard arguments and the result of Proposition A1, we have

√
n

T σ̂pool
y σ̂V,τ

(
Q̂ML-skew,pool

YT
(τ)−QYT

(τ)
)
⇒ N(0, 1). (A30)

This result establishes the asymptotic validity of the confidence interval defined in Sec-

tion 4.1 in the main text.

Example with a single factor We now provide further details for our example with a

single factor from the main text. The one-factor model is given by

yt,i = µy + zt + ϵt,i, (A31)
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where zt is a common factor and ϵt,i is an idiosyncratic error term. Plugging the one-factor

model into the expression for Ut,τ , we obtain

Vt,τ =
1

K

K∑
i=1

(
yi,t − µy

σy
+

1

2
√
T

((
yi,t − µy

σy

)2

− 1

)
Φ−1(τ)

)

=zt/σy +
1

K

K∑
i=1

ϵi,t/σy +
1

2
√
T

(
(zt/σy)

2 − 1
)
Φ−1(τ)

+
Φ−1(τ)

2
√
TK

K∑
i=1

(ϵi,t/σy)
2 + (zt/σy)

Φ−1(τ)√
TK

K∑
i=1

ϵi,t/σy.

(A32)

It is now straightforward to derive that

var(Vt,τ ) =E [zt/σy]
2 +

1

K

K∑
i=1

E [ϵi,t/σy]
2 +O

(
T−1/2

)
=var (zt)/σ

2
y +

var (ϵi,t) /σ
2
y

K
+O

(
T−1/2

)
=λ+

1− λ

K
+O

(
T−1/2

)
.

(A33)

A5.2 Testing for differences in the distributions of long-run

returns

We observe K countries, indexed by i = 1, . . . , K, over n time periods. The log return of

country i at time t is denoted yi,t. We assume that the countries k = 2, . . . , K share the

same marginal return distribution. The τ -quantile of the T -period log return to investing

in a one-unit asset in one of the countries k = 2, . . . , K is denoted QYT ,−1(τ). For all

i = 2, . . . , K, the distribution of the one-period log returns has the moments

E [yi,t] = µy,−1, var(yi,t) = σ2
y,−1 and E

[
yi,t − µy,−1

σy,−1

]2
= γy,−1. (A34)

Country 1 faces a potentially different return distribution and its T -period log returns have

quantile function QYT ,1(τ). Country 1’s one-period log returns have mean µy,1, variance σ
2
y,1

and skewness γy,1. We assume that the return vector yt = (yt,1, yt,2, . . . , yt,K) is identically

and independently distributed over time, but we allow for any kind of cross-sectional

dependence. In particular, the variance matrix of yt may not be a diagonal matrix.
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Proposition A3. Assume that the vector yt = (y1,t, y2,t, . . . , yK,t) is i.i.d. and that the

components y2,t, . . . , yK,t have the same marginal distribution. Suppose that the yi,t have

continuous densities and eight moments and let τ = (0, 1) denote a quantile of interest.

Let Q̂ML-skew
YT ,1 (τ) denote the skewness-corrected ML estimator based on the return series of

country 1 and let Q̂ML-skew,pool
YT ,−1 (τ) denote the leave-one-out pooled skewness-corrected ML

estimator that excludes country 1. If the sequence T = T (n) diverges fast enough such that

T 3/n→ ∞ and

var

(
y1,t −

1

K − 1

K∑
i=2

yi,t

)
> 0 (A35)

then

√
n

TσW,τ

(
Q̂ML-skew

YT ,1 (τ)− Q̂ML-skew,pool
YT ,−1 (τ)− (QYT ,1(τ)−QYT ,−1(τ)

)
⇒ N (0, 1) , (A36)

where σ2
W,τ = var(Wt,τ ) and

Wt,τ =y1,t − µy,1 −
1

K − 1

K∑
i=2

(yi,t − µy,−1)

+
Φ−1(τ)

2
√
T

{
σy,1

((
y1,t − µy,−1

σy,1

)2

− 1

)
− σy,−1

(K − 1)

K∑
i=2

((
yi,t − µy,−1

σy,−1

)2

− 1

)}
.

(A37)

To define an estimator of σ2
W,τ , let µ̂y,1 and σ̂2

y,1 denote the sample mean and sample

variance of the return series of country 1:

µ̂y,1 =
1

n

n∑
t=1

y1,t and σ̂2
y,1 =

1

n

n∑
t=1

(y1,t − µ̂y,1)
2. (A38)

Let µ̂y,−1 and σ̂
2
y,−1 denote the leave-one-out pooled sample mean and variance that exclude

country 1:

µ̂y,−1 =
1

n(K − 1)

n∑
t=1

K∑
i=2

yi,t and σ̂2
y,−1 =

1

n(K − 1)

n∑
t=1

K∑
i=2

(yi,t − µ̂y,−1)
2. (A39)
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And let

Ŵt,τ =y1,t −
1

K − 1

K∑
i=2

yi,t

+
Φ−1(τ)

2
√
T

{
σ̂y,1

(
y1,t − µ̂y,−1

σ̂y,1

)2

− σ̂y,−1

(K − 1)

K∑
i=2

(
yi,t − µ̂y,−1

σ̂y,−1

)2
}
,

(A40)

denote an uncentered sample counterpart of Wt,τ . Now, an estimator of σ2
W,τ is given by

σ̂2
W,τ =

1

n

n∑
t=1

(
Ŵt,τ −

1

n

n∑
s=1

Ŵs,τ

)2

. (A41)

This estimator is consistent under the assumptions of Proposition A3. Therefore, by

Proposition A3, a test with test statistic

T∆(τ) =

√
n

T σ̂W,τ

(
Q̂ML-skew

YT ,1 (τ)− Q̂ML-skew,pool
YT ,−1 (τ)−∆(τ)

)
⇒ N(0, 1) (A42)

that rejects the null hypothesis H0 : QYT ,1(τ)−QYT ,−1(τ) = ∆(τ) if |T (τ)| > Φ−1(1−α/2)

has asymptotic size α.

Example with a single factor The power of the T∆(τ)-test is governed by the

magnitude of T σ̂W,τ/
√
n. By contrast, the width of the confidence interval for the long-

run (log) return distribution of a single-country is determined by T σ̂yψT (τ)/
√
n. Thus,

whether the objective is to learn about the return distribution or about differences in

return distributions, the precision of inference is constrained by the same asymptotic rate,

T/
√
n. However, the terms σ̂yψT (τ) ≈ σy (since ψT (τ) ≈ 1 for large T ) and σ̂W,τ ≈ σW,τ ,

may differ substantially. We illustrate this based on the one-factor model,

y1,t =µy,1 + zt + ϵ1,t and

yi,t =µy,−1 + zt + ϵi,t for i = 2, . . . , K,

(A43)

where the factor zt is a common factor for all countries and E [zt] = E [ϵi,t] = 0 and the

ϵi,t are independent across countries and identically distributed among countries 2, . . . , K.
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Plugging the factor model into the expression for Wt,τ , we obtain

Wt,τ =ϵ1,t −
1

K − 1

K∑
i=2

ϵi,t

+
σy,1Φ

−1(τ)

2
√
T

(
((zt + ϵ1,t)/σy,1)

2 − 1
)

− σy,−1Φ
−1(τ)

2
√
T

K∑
i=2

(
((zt + ϵi,t)/σy,−1)

2 − 1
)
.

(A44)

Therefore,

σ2
W,τ =var (Wt,τ )

= var (ϵ1,t) +
var (ϵ2,t)

K − 1
+O

(
T−1/2

)
=σ2

y,1(1− λ1) +
σ2
y,−1(1− λ−1)

K − 1
,

(A45)

where λ1 = var(zt)/σ
2
y,1 and λ2 = var(zt)/σ

2
y,−1 are the variance shares of the common

factor in the two return distributions that we are comparing. Under the null hypothesis

that all countries face the same return distribution, σ2
y,1 = σ2

y,−1 = σ2
y and λ1 = λ2 = λ. It

follows that

σ̂2
W,τ ≈ σ2

W,τ = σ2
y(1− λ)

K

(K − 1)
and σ̂2

y,1ψ
2
T (τ) ≈ σ2

y . (A46)

For example, if λ = 0.3 and K ≥ 4, then σ2
W,τ < σ2

y and inference on the distribution

of country 1 is less precise than inference on the difference in distributions for panels

with at least 4 countries. In the full-sample empirical analysis in the main text, λ ≈ 0.4

and K = 21. In this case, σ2
W,τ ≈ σ2

y × (1− 0.4)× (21/20) = 0.42σ2
y. It is therefore not

surprising if the tests of equality appear “more precise” than what one might expect from

the very wide confidence intervals around the individual countries.
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A5.3 Proofs for panel results

Proof of Proposition A1. We start by deriving an expansion for the pooled variance esti-

mator. First, note that Markov’s inequality implies that

(
µ̂pool
y − µy

)
/σy =

1

nK

n∑
t=1

K∑
i=1

yi,t − µy

σy
= Op

(
n−1/2

)
.

Therefore, we have that

σ̂2,pool
y /σ2

y =
1

nK

n∑
t=1

K∑
i=1

(
yi,t − µ̂pool

y

σy

)2

=
1

nK

n∑
t=1

K∑
i=1

(
yi,t − µy

σy

)2

−

(
µ̂pool
y − µy

σy

)2

=
1

n

n∑
t=1

{
1

K

K∑
i=1

(
yi,t − µy

σy

)2
}

+Op

(
n−1
)
.

In particular, by Markov’s inequality,

σ̂2,pool
y /σ2

y = 1 +Op

(
n−1/2

)
.

Noting that

√
w − 1 =

1

2
(w − 1) +O((w − 1)2),

for w > 0, we obtain the stochastic expansion

σ̂pool
y /σy − 1 =

1

2

(
σ̂pool,2
y

σ2
y

− 1

)
+Op

(
n−1
)

=
1

2

(
1

n

n∑
t=1

{
1

K

K∑
i=1

(
yi,t − µy

σy

)2
}

− 1

)
+Op

(
n−1
)
.
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By standard arguments, we obtain γ̂pooly −γy = Op(n
−1/2). By Lemma A4, we can therefore

write

√
n

Tσy

(
Q̂ML-skew,pool

YT
(τ)−QYT

(τ)
)

=
√
n
(
µ̂pool
y − µy

)
/σy +

√
n/

√
T
(
(σ̂pool

y /σ − 1)
)
Φ−1(τ) +Op(T

−1 +
(
T 3/n)−1/2

)
=

1√
n

n∑
t=1

Ut,τ +Op

(
T−1 +

(
T 3/n

)−1/2
)
.

Proof of Proposition A2. The result follows from Proposition A1 and the Lindeberg central

limit theorem.

Proof of Proposition A3. By standard arguments we obtain

σ̂y,1 = σy,1 +Op

(
n−1/2

)
and γ̂y,1 = γy,1 +Op

(
n−1/2

)
.

Hence,

Q̂ML-skew
YT ,1 (τ)−QYT ,1(τ)

=T (µ̂y,1 − µy,1) +
√
T (σ̂y,1 − σy,1) Φ

−1(τ) +Op

(
n−1/2 + T−1/2

)
.

Therefore, by Lemma A2,

√
n

T

(
Q̂ML-skew

YT ,1 (τ)−QYT ,1(τ)
)

=
1√
n

n∑
t=1

{
y1,t − µy,1 +

σy,1

2
√
T

((
y1,t − µy,1

σy,1

)2

− 1

)
Φ−1(τ)

}

+Op

(
T−1/2 + (T 3/n)−1/2

)
.
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By Proposition A1,

√
n

T

(
Q̂ML-skew,pool

YT
(τ)−QYT

(τ)
)

=
1

(K − 1)
√
n

n∑
t=1

K∑
i=2

{
yi,t − µy +

σy

2
√
T

((
yi,t − µy

σy

)2

− 1

)
Φ−1(τ)

}
+Op

(
T−1 + (T 3/n)−1/2

)
.

The conclusion follows by subtracting the two expansions and applying the Lindeberg

central limit theorem.

A6 Consistency for gross returns

Proposition A1 (Consistent estimation in normal model). Suppose that single-

period log returns, yt, are i.i.d. normal or, equivalently, that single-period gross-returns,

xt, are i.i.d. log-normal. Then the following results hold:

1. The ML quantile estimator Q̂ML
YT

(τ) is consistent for QYT
(τ) if and only if T (n)/

√
n→

0 as n→ ∞.

2. The ML quantile estimator Q̂ML
XT

(τ) is consistent for QML
XT

(τ) if and only if

lim sup
n→∞

2T (n)µy

log n
< 1 as n→ ∞. (A47)

The first part of Proposition A1 simply restates the result from Proposition 1 in the

main text. The second part of Proposition A1 states a rate condition for consistent

estimation of the gross long-run return. It is much stronger than the corresponding

condition for the log return, requiring T to be small compared to log n (instead of just

√
n). To understand why a stronger condition is needed, note that, under the log-normal

model, the variance of a single T -period gross return is equal to

var (XT ) = (1− exp(−Tσ2
y)) exp(2T (µy + σ2

y)), (A48)
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and hence grows exponentially with T , instead of linearly as in the log return case. This

makes “direct” estimation of the long-run gross return much more challenging than the

corresponding estimation of the log return. This is then also reflected in the rate condition

for the MLE.

A7 Technical derivations

A7.1 Proofs of main results

Proof of Proposition A1 (and thus Proposition 1). We first prove the first claim in the

proposition. Let

ψ2
T (τ) = 1 +

1

2T

(
Φ−1(τ)

)2
.

Define the positive sequence

an =
TσyψT (τ)√

n
.

By Lemma A2,

a−1
n

(
Q̂YT

(τ)−QYT
(τ)
)
⇒ N(0, 1).

If an → 0 then this implies immediately

Q̂YT
(τ)−QYT

(τ) = op(1).

On the other hand, if an → 0 does not hold, then there is positive constant c such that

an ≥ c along a subsequence. Pass to this subsequence. Along the subsequence we have

∣∣∣Q̂YT
(τ)−QYT

(τ)
∣∣∣ ≥ ca−1

n

(
Q̂YT

(τ)−QYT
(τ)
)
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and therefore, for any η > 0,

P
(∣∣∣Q̂YT

(τ)−QYT
(τ)
∣∣∣ > η

)
≥ P

(∣∣∣a−1
n

(
Q̂YT

(τ)−QYT
(τ)
)∣∣∣ > η/c

)
→ 2Φ (−η/c) ,

a positive number. Here, the convergence follows since the subsequence inherits convergence

to a normal limit from the original sequence. Noting that an → 0 if and only if T/
√
n→ 0

concludes the proof of the first claim.

Turning to the second claim, suppose first that lim supn→∞
2Tµy

logn
< 1. If T = T (n) is

bounded then consistency follows trivially. Suppose therefore that T is not bounded and

pass to a subsequence along which T diverges. We can write

Q̂XT
(τ)−QXT

(τ) = exp (QYT
(τ))

{
exp

(
Q̂YT

(τ)−QYT
(τ)
)
− 1
}
.

lim supn→∞
2Tµy

logn
< 1 implies that along all subsequences (in particular the one we just

passed to) T/
√
n→ 0. Under this condition, the first claim of the proposition implies

Q̂YT
(τ)−QYT

(τ) = op(1).

In particular, Q̂YT
(τ) − QYT

(τ) is bounded by log 1 with probability approaching one.

Hence, setting x = Q̂YT
(τ)−QYT

(τ) in the inequality |ex − 1| ≤ |x|e|x| implies

∣∣∣exp(QYT
(τ))

[(
Q̂XT

(τ)−QXT
(τ)
)
− 1
]∣∣∣ ≤ exp(QYT

(τ))
∣∣∣Q̂XT

(τ)−QXT
(τ)
∣∣∣

Arguing similarly as above, we have

Q̂YT
(τ)−QYT

(τ) = Op

(
T/

√
n
)
.
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Therefore, there is a constant C > 0 such that with probability approaching one,

exp(QYT
(τ))

∣∣∣Q̂XT
(τ)−QXT

(τ)
∣∣∣

≤C(T/
√
n) exp

(
Tµy +

√
TσyΦ

−1(τ)
)

≤C(T/
√
n) exp

(
Tµy

(
1 + C/

√
T
))

≤C exp

(
Tµy

(
1 + C/

√
T + (log T )/(Tµy)

)
− 1

2
log n

)
=C exp

{
−1

2
log n

(
1− 2Tµy

log n

(
1 + C/

√
T + (log T )/(Tµy)

))}
.

The condition, lim supn→∞
2Tµy

logn
< 1 guarantees that

1− 2Tµy

log n

(
1 + C/

√
T + (log T )/(Tµy)

)
> 0

for n large enough. Hence, combining the inequalities above, there is c > 0 such that with

probability approaching one

∣∣∣Q̂XT
(τ)−QXT

(τ)
∣∣∣ ≤ Cn−c.

This concludes the proof of sufficiency. To prove necessity, suppose that lim supn→∞
2Tµy

logn
≥

1. The inequality ex − 1 ≥ x implies

Q̂XT
(τ)−QXT

(τ) = exp (QYT
(τ))

{
exp

(
Q̂YT

(τ)−QYT
(τ)
)
− 1
}

≥ exp
(
Tµy +

√
TσyΦ

−1(τ)
)(

Q̂YT
(τ)−QYT

(τ)
)
.

Arguing as above, we have

√
n

Tσy

(
Q̂YT

(τ)−QYT
(τ)
)
⇒ N(0, 1)

and hence for η > 0

P

(√
n

Tσy

(
Q̂YT

(τ)−QYT
(τ)
)
> η

)
→ Φ(−η)
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Therefore, with probability approaching Φ(−η),

Q̂XT
(τ)−QXT

(τ)

≥ exp

{
1

2
log n

[
2Tµy

log n

(
1 + σyΦ

−1(τ)/(µy

√
T ) + log T/(Tµy)

)
− 1

]}
η

and lim supn→∞
2Tµy

logn
≥ 1 ensures that Q̂XT

(τ)−QXT
(τ) is bounded away from zero along a

subsequence with probability approaching Φ(−η) > 0. This proves necessity and concludes

the proof of the second claim.

Proof of Proposition 2. This follows immediately from Lemma A2.

Proof of Proposition 3. By Lemma A1, it suffices to prove the proposition for the bootstrap

estimator.

Any sequence T (n) is either bounded, diverges to infinity, or can be divided into a

bounded subsequence and a diverging subsequence. To prove the proposition, it suffices

therefore to prove the claim for arbitrary bounded subsequences and arbitrary diverging

subsequences.

Bounded subsequence: We first consider the case of a bounded subsequence and pass to this

subsequence, i.e., we assume T (n) ≤ T̄ . Necessity holds trivially since T/
√
n ≤ T̄ /

√
n→ 0.

Therefore, we only have to prove sufficiency. Let fYT
denote the density of YT . The

assumption that yt has a density and is supported on an interval, implies that, for fixed T ,

the density of its T -fold convolution is supported on an interval. Therefore, there is ϵ > 0

such that, for all y with |y −QYT
(τ)| ≤ ϵ, we have fYT

(y) ≥ ϵ. Since T ≤ T̄ we can find

ϵ > 0 such that this property holds for all T along the T (n) sequence. Let FYT
denote the

distribution function of YT and let F̂Y ∗
T
(a) = P (Y ∗ ≤ a | Yn). Let

δn = (2C1/ϵ)
T√
n

√
log

n

T 2
.

From here on, assume that n is large enough such that δn < ϵ. Define the event

En =

{
sup
a∈R

∣∣F (a)− F̂Y ∗
T
(a)
∣∣ ≤ δn(ϵ/2)

}
.
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Suppose that Q̂boot
YT

(τ) ≤ QYT
(τ)− δn. Then

F
(
Q̂boot

YT

)
− τ ≤ FYT

(QYT
(τ)− δn)− τ = −

∫ QYT
(τ)

QYT
(τ)−δn

fYT
(x) dx ≤ −δnϵ.

Since F̂Y ∗
T
(Q̂boot

YT
(τ)) = τ ,

F
(
Q̂boot

YT

)
− F̂Y ∗

T

(
Q̂boot

YT

)
≤ −δnϵ.

This cannot happen on En.

Conversely, suppose that Q̂boot
YT

(τ) ≥ QYT
(τ) + δn. Then

F
(
Q̂boot

YT

)
− τ ≥ FYT

(QYT
(τ) + δn)− τ =

∫ QYT
(τ)+τ

QYT
(τ)

fYT
(x) dx ≥ δnϵ.

Therefore,

F
(
Q̂boot

YT

)
− F̂Y ∗

T

(
Q̂boot

YT

)
≥ δnϵ.

This, too, cannot happen on En. In summary,

P
(∣∣Q̂boot

YT
(τ)−QYT

(τ)
∣∣ ≥ δn

)
≤ P (Ec

n) → 0,

where convergence follows from Lemma A3.

Diverging subsequence: We now turn to the case of a diverging subsequence and pass to

this subsequence, i.e., we assume T (n) → ∞. Let

Wn =T µ̂y +
√
T σ̂yΦ

−1(τ)−
(
Tµy +

√
TσyΦ

−1(τ)
)
,

an =(TνT (τ)σy) /
√
n,

where νT (τ) is defined in Lemma A2. By Lemma A5 we have

Q̂boot
YT

(τ)−QYT
(τ) =Wn +Op

(
n−1/2 + T−1/2

)
= op(1).
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Therefore, we have Q̂boot
YT

(τ) − QYT
(τ)

p→ 0 if and only if Wn
p→ 0. By Lemma A2,

a−1
n Wn → N(0, 1). Arguing similarly as in the proof of Proposition 1, it can be shown

that Wn vanishes in probability if and only if an → 0 or, equivalently, if and only if

T/
√
n→ 0.

Proof of Proposition 4. Let

Wn =T µ̂y +
√
T σ̂yΦ

−1(τ)−
(
Tµy +

√
TσyΦ

−1(τ)
)
,

an =(TψT (τ)σy) /
√
n.

By Lemma A5 we have

Q̂boot
YT

(τ)−QYT
(τ) = Wn +Rn,

where Rn = O
(
n−1/2 + T−1/2

)
. Lemma A1 implies that a similar expansion holds for the

skewness-corrected MLE. In the following, we will only consider the bootstrap estimator.

The proof for the skewness-corrected MLE is analogous.

Noting νT (τ)/ψT (τ) → 1, we have

a−1
n Rn = Op

(
T−1 + (T 3/n)−1/2

)
+ op(1).

Moreover, by Markov’s inequality and the fact that the fourth moment of yt is bounded,

σ̂y/σy − 1 = Op

(
n−1/2

)
and hence

a−1
n

{
T√
n
ψT (τ)σy (σ̂y/σy − 1)Φ−1 (1− α/2)

}
= Op

(
n−1/2

)
.
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Therefore, by Lemma A2,

a−1
n

(
Q̂boot

YT
(τ)−QYT

(τ)− T√
n
ψT (τ)σy (σ̂y/σy − 1)Φ−1 (1− α/2)

)
⇒ N(0, 1).

Thus,

P
(
Q̂ℓ

YT
(τ ;α) > QYT

(τ)
)

=P

(
Q̂boot

YT
(τ)−QYT

(τ)− T√
n
ψT (τ)σy (σ̂y/σy − 1)Φ−1 (1− α/2)

>
T√
n
ψT (τ)σyΦ

−1 (1− α/2)

)
=P

(
a−1
n

(
Q̂boot

YT
(τ)−QYT

(τ)− T√
n
ψT (τ)σy (σ̂y/σy − 1)Φ−1 (1− α/2)

)
> Φ−1 (1− α/2)

)
→P

(
N(0, 1) > Φ−1 (1− α/2)

)
= α/2.

In the same way, it can be shown than

P
(
Q̂u

YT
(τ ;α) > QYT

(τ)
)
→ α/2.

In summary,

P
(
QYT

(τ) /∈
[
Q̂ℓ

YT
(τ ;α), Q̂u

YT
(τ ;α)

])
=P

(
Q̂ℓ

YT
(τ ;α) > QYT

(τ)
)
+ P

(
Q̂u

YT
(τ ;α) < QYT

(τ)
)
→ α/2 + α/2 = α.
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A7.2 Supporting lemmas

Lemma A1 (Equivalence bootstrap and skewness-corrected MLE). Suppose that the

distribution of yt admits a density with respect to Lebesgue measure and that

E
[
|yt|8

]
<∞.

Then,

sup
ϵ≤τ≤1−ϵ

∣∣∣Q̂boot
YT

(τ)− Q̂ML-skew
YT

(τ)
∣∣∣ = Op

(
(n/T )−1/2 + T−1/2

)
.

Proof. Plugging in the expansion from Lemma A4,

Q̂ML-skew
YT

(τ)−QYT
(τ)

=T (µ̂y − µy) +
√
T (σ̂y − σ)Φ−1 (τ) +

1

6
(σ̂yγ̂y − σyγy)

((
Φ−1(τ)

)2 − 1
)
.

By standard arguments (see e.g. the proof of Lemma A2),

σ̂yγ̂y − σyγy = Op

(
n−1/2

)
.

The conclusion now follows by Lemma A5.

Lemma A2. Suppose that there is ϵ > 0 such that

E

[(
yt − µy

σy

)4+ϵ
]
<∞.

Let

ν2T (τ) = E

[(
yt − µy

σy
+

1

2
√
T

[(
yt − µy

σy

)2

− 1

]
Φ−1(τ)

)2]
.
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Then νT (τ) is bounded away from zero and infinity and

√
n

TσyνT (τ)

(
T µ̂y +

√
T σ̂yΦ

−1(τ)−
(
Tµy +

√
TσyΦ

−1(τ)
))

=
1√
n

n∑
t=1

{
yt − µy

σy
+

1

2
√
T

[(
yt − µy

σy

)2

− 1

]
Φ−1(τ)

}
/νT (τ) +Op

(
(nT )−1/2

)
.

The right-hand side converges to a standard normal random variable as n→ ∞.

Proof of Lemma A2. For later reference, we prove an asymptotic expansion of σ̂y

σy
− 1.

First, note that

µ̂y − µy

σy
= Op

(
n−1/2

)
and therefore

σ̂2
y/σ

2
y =

1

n

n∑
t=1

(
yt − µ̂y

σy

)2

=
1

n

n∑
t=1

(
yt − µy

σy

)2

−
(
µ̂y − µy

σy

)2

=
1

n

n∑
t=1

(
yt − µy

σy

)2

+Op

(
n−1
)
. (A49)

Thus, by Markov’s inequality and the fact that the fourth moment of (yt − µy)/σy is

bounded,

σ̂2
y

σ2
y

− 1 = Op

(
n−1/2

)
. (A50)

For w > 0,

√
w − 1 =

1

2
(w − 1) +O((w − 1)2).

This implies the stochastic expansion

σ̂y/σy − 1 =
√
σ̂2
y/σ

2
y − 1 =

1

n

n∑
t=1

{(
yi − µy

σy

)2

− 1

}
/2 +Op

(
n−1
)
,
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where the order of the remainder term follows from (A49) and (A50). Now,

T µ̂y +
√
T σ̂yΦ

−1(τ)−
(
Tµy +

√
TσyΦ

−1(τ)
)

=
T√
n
σy

(
1√
n

T∑
t=1

yt − µy

σy
+

√
n

T

(
σ̂y
σy

− 1

)
Φ−1(τ)

)

=
T√
n
σy

{
1√
n

T∑
t=1

(
yt − µy

σy
+

1

2
√
T

[(
yt − µy

σy

)2

− 1

]
Φ−1(τ)

)
+Op

(
(nT )−1/2

)}
,

where the last inequality follow from the stochastic expansion for σ̂y/σy − 1. We have

ν2T (τ) = 1 +
1√
T
γyΦ

−1(τ) +
1

4T
(κy − 1)

(
Φ−1(τ)

)2
bounded away from zero and infinity uniformly in T and over τ bounded away from zero

and one. This proves

√
n

TσyνT (τ)

(
T µ̂y +

√
T σ̂yΦ(τ)

−1 −
(
Tµy +

√
TσyΦ(τ)

−1
))

=
1√
n

n∑
t=1

{
yt − µy

σy
+

1

2
√
T

[(
yt − µy

σy

)2

− 1

]
Φ−1(τ)

}
/νT (τ) +Op

(
(nT )−1/2

)
.

The Lyapunov condition for the Lindeberg-Feller central limit theorem for triangular

arrays is easily checked and

1√
n

n∑
t=1

{
yt − µy

σy
+

1

2
√
T

[(
yt − µy

σy

)2

− 1

]
Φ−1(τ)

}
/νT (τ) ⇒ N(0, 1).

Lemma A3 (Glivenko-Cantelli for Fama-French bootstrap). Suppose that T 2/n → 0.

Then, there are universal constants C1, C2 and c such that

P

(
sup
a∈R

∣∣∣P (Y ∗
T ≤ a | Yn)− P (YT ≤ a)

∣∣∣ > C1
T√
n

√
log

n

T 2

)
≤ C2

(
T 2

n

)c

.
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Proof of Lemma A3. Below, we show that for functions g : R → [0, 1],

P
(∣∣E [g(Y ∗

T ) | Yn]− E [g(Y ∗
T )]
∣∣ > s/2

)
≤ 2e−

s2n
32T2 . (A51)

In particular, this convergence result holds for g(y) = 1 {y ≤ a} for fixed a ∈ R. In order

to extend this pointwise result to a uniform result, let aT,1 < . . . < aT,na such that, for each

a ∈ [0, 1], there exist âT,1(a), âT,2(a) ∈ {aT,1, . . . , aT,na} such that â1,T (a) ≤ a ≤ â2,T (a)

and

|E[1 {Y ∗
T ≤ a}]− E[1 {Y ∗

T ≤ âk,T (a)}]| ≤ s/2

for k = 1, 2. Using standard arguments for proving Glivenko-Cantelli results, it can be

shown that na can be taken to satisfy na ≤ C̃/s for a universal constant C̃. Note that,

even though the mass points aT,1, . . . , aT,na depend on T , na does not.

On the set

A =
na⋂
k=1

{∣∣E [1{Y ∗
T ≤ ak} | Yn]− E[1{Y ∗

T ≤ ak}]
∣∣ ≤ s/2

}
we have for all a ∈ R

E [1{Y ∗
T ≤ a} | Yn]− E [1{Y ∗

T ≤ a}] ≤
(
E
[
1{Y ∗

T,j ≤ â2,T (a)}
]
− E [1{Y ∗

T ≤ â2,T (a)}]
)

+ (E [1{Y ∗
T ≤ â2,T (a)}]− E [1{Y ∗

T ≤ a}])

≤s/2 + s/2 = s

and

E [1{Y ∗
T ≤ a} | Yn]− E [1{Y ∗

T ≤ a}] ≥
(
E
[
1{Y ∗

T,j ≤ â1,T (a)}
]
− E [1{Y ∗

T ≤ â1,T (a)}]
)

+ (E [1{Y ∗
T ≤ â1,T (a)}]− E [1{Y ∗

T ≤ a}])

≤s/2 + s/2 = s.
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Therefore, on A,

sup
a∈R

∣∣E [1{Y ∗
T ≤ a} | Yn]− E [1 {Y ∗

T ≤ a}]
∣∣ ≤ s

and by (A51)

P

(
sup
a∈R

∣∣E [1{Y ∗
T ≤ a} | Yn]− E [1 {Y ∗

T ≤ a}]
∣∣ ≤ s

)
≤PAc

≤
na∑
k=1

P
(∣∣E [1{Y ∗

T ≤ ak} | Yn]− E[1{Y ∗
T ≤ ak}]

∣∣ > s/2
)

≤(C̃/s)e−
s2n
32T2

=exp
(
log C̃ − log s− s2/32(n/T 2)

)
.

Now, choosing C1 large enough and s = (C1/2)
T√
n

√
log n

T 2 yields

P

(
sup
a∈R

∣∣E [1{Y ∗
T,j ≤ a}

]
− E [1{Y ∗

T ≤ a}]
∣∣ > (C1/2)

T√
n

√
log

n

T 2

)
≤ C2

(
T 2

n

)c

,

for universal constants C2 and c > 0. The conclusion follows by combining this inequality

with a bound on the bias. In particular, it suffices to show

sup
a∈R

|E [1{Y ∗
T ≤ a}]− P [1{YT ≤ a}]| ≤ 4T 2

n
≤ (C1/2)

T√
n

√
log

n

T 2
.

We show this by proving that, for all functions g : R → [0, 1],

|E [g(Y ∗
T )]− E [g(YT )]| ≤ 4T 2/n. (A52)

In preparation of the proof, we let Yn = (y1, . . . , yn) denote the vector of observed returns

in the estimation sample. The bootstrapped long-run return can be written as

Y ∗
T =

T∑
t=1

n∑
i=1

ω∗
ityi,

36



where Ω∗ = (ω∗
it)i=1,...,n,t=1,...,T is a n × T random matrix of bootstrap weights that is

independent of Yn and has the properties that (1) each column ω∗
•t has a multinomial dis-

tribution with parameters (1, 1/n, . . . , 1/n) and (2) columns (ω∗
•1, . . . , ω

∗
•T ) are independent.

Let Dn,T denote the event

Dn,T = Dn,T (Ω∗) = {none of the rows of Ω∗ has a row sum greater than 1}.

The matrix Ω∗ has exactly one one in each column and zeros in all other entries. All

possible configurations are equally likely to occur. Computing the probability of Dn,T is

therefore a counting exercise:

PDn,T =
# valid configurations compatible with Dn,T

# valid configurations

=
n(n− 1) · · · (n− T + 1)

nT
.

Thus,

0 ≤ 1− PDn,T =1− exp(logPDn,T )

≤1− 1− logPDn,T

≤−
T−1∑
j=0

log

(
1− j

n

)
≤− (T − 1) log

(
1− T − 1

n

)
≤(T − 1)

2(T − 1)/n

2− (T − 1)/n
≤ 2T 2

n

and therefore |PDc
n,T | ≤ 2T 2/n, where the second inequality follows from ex ≥ 1 + x and

the second-to-last inequality follows from the inequality

log(1 + x) ≥ 2x

2 + x
for x > −1. (A53)

Let FΩ denote the distribution of the random n × T matrix Ω∗. Let F n
y denote the

distribution of Yn. Note that F n
y =×n

i=1
Fy, where Fy is the distribution of the single-
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period log return y. Let ιT denote the T -vector of ones so that we can write Y ∗
T = Y ′

nΩ
∗ιT .

By Fubini’s theorem,

E [Dn,Tg(Y
∗
T )] =E [Dn,T (Ω

∗)g (Y ′
nΩ

∗ιT )]

=

∫
Dn,T (w)g(y

′wιT ) dFΩ(w) dF
n
y (y)

=

∫
w

Dn,T (w)

(∫
y

g(y′wιT ) dF
n
y (y)

)
dFΩ(w).

Now, consider the inner integral. If Dn,T (w) = 1 we can take wιT to be a vector with ones

in T distinct entries and zeros in all other entries. Therefore, the wιT sums T distinct

elements of y. The elements in y are independent and each have marginal measure Fy,

the same distribution as the population single-period return. Therefore, y′wιT sums up T

independent population single-period returns and the inner integral computes E [g(YT )].

Thus,

E [g(Y ∗
T )]− E [g(YT )] =E [Dn,Tg(Y

∗
T )]− E [g(YT )] + E

[
Dc

n,Tg(Y
∗
T )
]

=(PDn,T − 1)E [g(YT )] + E
[
Dc

n,T (wi,T )g(Y
∗
T )
]
.

Thus,

∣∣E [g(Y ∗
T )]− E [g(YT )]

∣∣ ≤ 2PDc
n,T ≤ 4T 2/n,

where we used the fact that the absolute value of g is bounded by one. This proves (A52).

Finally, we prove (A51). We consider the function f : Rn → R defined by

f(x) = E [g (Y ′
nΩ

∗ιT ) | Yn = x] = E

[
g

(
n∑

i=1

(Ω∗ιn)i yi

)
| Yn = x

]
.

Consider the maximal change in f(x) from changing the ith entry of x. Any such change

is bounded by one since 0 ≤ g ≤ 1. In the definition of f , we are integrating over (Ω∗ιn)i,

where (Ω∗ιn)i gives the number of times that observation i was picked by the bootstrap.
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On the set {(Ω∗ιn)i = 0}, changing xi will have no effect. We can therefore bound

f(x)− f(y) ≤
n∑

i=1

{
1︸︷︷︸

maximal change

×P ((Ω∗ιn)i > 0) + 0︸︷︷︸
no change

×P ((Ω∗ιn)i = 0)
}
1xi ̸=yi .

The event Ei,T = {(Ω∗ιn)i = 0} can also be written as

Ei,T = {the ith row of the matrix Ω∗ contains only zeros}.

Again, we can use the fact that all possible configurations of the matrix Ω∗ are equally

likely and turn the computation of the probability of Ei,T into a counting exercise:

PEi,T =
# configurations with Ei,T
# valid configurations

=
(n− 1)T

nT
=

(
n− 1

n

)T

.

Noting that −1/n > −1 for n ≥ 2, we can use inequality (A53) and conclude

0 ≥ log

(
n− 1

n

)T

= logPEi,T = T log

(
1− 1

n

)
≥ −T 2/n

2− 1/n
. (A54)

The inequality ex ≥ 1 + x implies

PEc
i,T = 1− PEi,T = 1− elogPEi,T ≤ 1− 1− logPEi,T = − logPEi,T .

Therefore, we can take

f(x)− f(y) ≤
n∑

i=1

ci1xi ̸=yi

with

ci = − logPEi,T .
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The sandwich (A54) implies,

c2i ≤ 4(T/n)2

This yields the bound

n∑
i=1

c2i ≤ n4(T/n)2 = 4T 2/n.

Now, Lemma A6 (Talagrand’s inequality) implies,

P
(∣∣E [g(Y ∗

T ) | Yn]− E [g(Y ∗
T )]
∣∣ > s

)
= P

(∣∣f(Yn)− E [f(Yn)]
∣∣) ≤ 2e−

s2n
8T2 ,

proving inequality (A51).

Lemma A4 (Expansion of long-run return). Assume σy > 0,

E
[
|yt|4

]
<∞

and that yt admits a density with respect to Lebesgue measure. Let

γy = E
[
(yt − µy)

3]/σ3
y

and

Q̃YT
(τ) = Tµy +

√
TσyΦ

−1 (τ) +
1

6
σyγy

((
Φ−1(τ)

)2 − 1
)
.

Then, for ϵ > 0,

sup
ϵ≤τ≤1−ϵ

∣∣Q̃YT
(τ)−QYT

(τ)
∣∣ = O

(
T−1/2

)
.
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Proof of Lemma A4. Let

ST =
1√
T

T∑
t=1

(
yt − µy

σy

)
.

Lemma A7 implies the Edgeworth expansion

P (ST ≤ x) = Φ (x)− T−1/21

6
γ
(
x2 − 1

)
+O

(
T−1

)
,

where the big O terms is uniform in x. This Edgeworth expansion implies a Cornish-Fisher

expansion for the quantile function of ST . The argument is explained in Hall (1992, pages

68-70) and omitted here. Let QST
(τ) denote the τ -quantile of ST . The Cornish-Fisher

expansion is given by

QST
(τ) = Φ−1 (τ) + T−1/21

6
γ
((

Φ−1(τ)
)2 − 1

)
+O

(
T−1

)
and holds uniformly on ϵ ≤ τ ≤ 1− ϵ. Now, noting that

YT = µy +
√
TσyST

is strictly increasing in ST , the monotone property of quantiles implies

QYT
= µy +

√
TσyQST

and hence the conclusion.

Lemma A5 (Expansion of bootstrapped log return). Suppose that the distribution of yt

admits a density with respect to Lebesgue measure and that

E
[
|yt|8

]
<∞.
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Then,

sup
ϵ≤τ≤1−ϵ

∣∣∣Q̂boot
YT

(τ)−QYT
(τ)− T (µ̂y − µy)−

√
T (σ̂y − σy) Φ

−1(τ)
∣∣∣

=Op

(
n−1/2 + T−1/2

)
.

Proof of Lemma A5. Let Pn denote the empirical measure on Yn, i.e., the measure that

assigns probability 1/n to each of the mass points y1, . . . , yn. Pn has the distribution

function

Pn(t) =
1

n

n∑
i=1

1{yi ≤ t}.

Let QYT |Yn denote the quantile function associated with the measure P ∗
n conditional on the

estimation sample Yn. For ρ̄ > 0 and c1 > 0, let Pn,T (c, ρ̄) denote the class of probability

measures P such that

EP

[
|y|4
]
≤ ρ̄

and P satisfies the weak Cramér condition with parameter (1, c1, 1), i.e.,

sup
|t|≥1

|ϕP (t)| ≤ 1− c1
t2
,

where ϕP is the characteristic function of P . There is c1 such that

Pr (Pn /∈ Pn(c1, ρ̄)) ≤ n−1. (A55)

To proof this claim, combine Proposition 3.2 (setting b = 1 and R = 1) and Proposition 3.3

in Song (2020) to conclude the existence of c1 > 0 such that

Pr (Pn does not satisfy weak Cramér with (2, c1, 1)) ≤ exp

(
−c

2
1n

2

)
.

Let ρ̄ = (1/2)max{E [|yt|4] ,E [|yt|8]}. By Markov’s inequality and independence of the
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(yt)1≤t≤n,

Pr

(∣∣∣∣∣ 1n
n∑

t=1

(
|yt|4 − E

[
|yt|4

])∣∣∣∣∣ > (1/2)ρ̄

)
≤
∑n

t=1 E [|yt|8]
(1/2)ρ̄n2

≤ n−1

and therefore

Pr
(
EP ∗

n

[
|y|4
]
> ρ̄
)
= Pr

(
1

n

n∑
t=1

|yn|4 > ρ̄

)
≤ n−1.

This proves inequality (A55). We work conditionally on the estimation sample Yn and

suppose that P ∗
n ∈ P∗

n(c1, ρ̄). Let

µ̂y =EPn [y] =
1

n

n∑
t=1

yt,

σ̂2
y = varPn(y) =EPn

[
(y − µ̂y)

2] = 1

n

n∑
t=1

(yt − µ̂y)
2

and let (y∗1, . . . , y
∗
T ) denote a sample of size T from P ∗

n . Define

S∗
T =

1√
T

T∑
t=1

y∗t − µ̂y

σ̂y

By Lemma A7, S∗
T admits an Edgeworth expansion if P ∗

n ∈ P∗
n(c1, ρ̄). In that case

Pr (S∗
T ≤ x | Yn) = Φ(x)− T−1/21

6

EP ∗
n
[(y − µ̂y)

3]

σ̂3
y

(x2 − 1) +O
(
T−1

)
,

where the constant in the big O term depends on P∗
n but does not depend on x or the data

Yn . Arguing as in in the proof of Lemma A4, this implies a conditional Cornish-Fisher

expansion for the quantile function of S∗
T denoted by QS∗

T |Yn . In particular,

QS∗
T |Yn(τ) = Φ−1(τ) + T−1/21

6

EP ∗
n
[(y − µ̂y)

3]

σ̂3
y

((
Φ−1(τ)

)2 − 1
)
+O

(
T−1

)
,

where the remainder term is uniform in ϵ ≤ τ ≤ 1− ϵ and Pn ∈ P∗
n and hence also uniform
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in the data Yn. Note that

γ̂y =
EP ∗

n

[
(y − µ̂y)

3]
σ̂3
y

.

The previous display implies

QY ∗
T |Yn(τ) = T µ̂y +

√
T σ̂yΦ

−1(τ) +
1

6
σ̂yγ̂y

((
Φ−1(τ)

)2 − 1
)
+O

(
T−1/2

)
.

Therefore,

QY ∗
T |Yn(τ)−QYT

(τ)− T (µ̂y − µy)−
√
T (σ̂y − σy)Φ

−1(τ)

=
1

6
(σ̂yγ̂y − σyγy)

((
Φ−1(τ)

)2 − 1
)
+O

(
T−1/2

)
.

(A56)

By Markov’s inequality, for p = 1, 2, 3 and every ξ > 0,

Pr

(
|EPn [(y − µ̂y)

p]− E [(y − µy)
p]| > ξ

(E [|y − µy|2p])1/2√
n

)
≤ ξ2.

Standard arguments and the inequality |
√
a− 1| ≤ |a− 1| imply

σ̂y/σy − 1 =Op

(
n−1/2

)
and

γ̂y − γy =Op

(
n−1/2

)
.

Therefore,

sup
ϵ≤τ≤1−ϵ

∣∣∣∣16 (σ̂yγ̂y − σyγy)
((

Φ−1(τ)
)2 − 1

) ∣∣∣∣ = Op

(
n−1/2

)
,

yielding the conclusion.

Lemma A6 (Talagrand’s inequality). Let X1, . . . , Xn be independent random variables

and suppose

f(x)− f(y) ≤
n∑

i=1

ci(x)1xi ̸=yi
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for all x, y ∈ Rn. Then f(X1, . . . , Xn) is ∥
∑n

i=1 c
2
i ∥∞-subgaussian. In particular,

P (|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)]| > s) ≤ 2e
− s2

2∥
∑n

i=1
c2
i
∥∞

for all s > 0.

Proof of Lemma A6. This statement of Talagrand’s inequality and a proof can be found

in van Handel (2016).

Lemma A7 (Edgeworth expansion under weak Cramér condition). Let y denote a random

variable with distribution P ∈ PT and characteristic function ϕP and mean zero and

variance one under all P ∈ P. Suppose that there is ρ̄ <∞ and s ≥ 3 such that

sup
T≥1

sup
P∈PT

EP [|y|s] ≤ ρ̄.

In addition, suppose that y satisfies the uniform weak Cramér condition with parameter

(b, c, R) such that R ≥ 1/(15ρ̄), 0 < b < 2/max{s− 3, 1} and c > 0, i.e., suppose that for

these parameter values and |t| ≥ R

sup
P∈PT

|ϕP | ≤ 1− c

|t|b
.

Let (y1, . . . , yT ) denote a vector of independent draws from y and

ST =
1√
T

T∑
t=1

yt.

Then for all T ≥ 1,

sup
P∈PT

sup
x∈R

|P (ST ≤ x)− Φ(x)−BP,s,T (x)| = O
(
T−(s−2)/2

)
,

where Φ is the distribution function of a standard normal random variable and BP,s,T (x) is

a polynomial in x of degree 3(s− 3) with coefficients that depend on T and the cumulants
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of y under P up to order s− 1. In particular,

BP,T,4(x) = −T−1/2EP [y3]

6

(
x2 − 1

)
.

Proof of Lemma A7. Apply Theorem 2.1 in Song (2020) to i.i.d. draws from the random

variable y setting f(y) = 1{y ≤ x} for x ∈ R, setting n = T . Note that for Qn,P in

Theorem 2.1 in Song (2020),

P (ST ≤ x) =

∫
f dQn,s,P .

The right-hand side of the approximation bound in Theorem 2.1 in Song (2020) contains

the terms Ms(f) and ω̄f

(
n−(s−2)/2; Φ

)
. For our choice of f , Ms(f) ≤ 1 and

ω̄f

(
n−(s−2)/2; Φ

)
= O

(
n−(s−2)/2

)
.

This bounds the approximation error by a constant times n−(s−2)/2. The constant does

not depend on x or P . The approximation term in Theorem 2.1 in Song (2020) can be

written as

∫
f dQ̃T,s,P = Φ(x) +BP,s,T (x) + EP,s,T (x),

where

EP,s,T (x) = n−(s−2)/2rP,s(x)ϕ(x),

ϕ is the standard normal density and rP,s is a polynomial of degree 3(s−2) with coefficients

that depend on the cumulants of y of up to order s (see Hall, 1992, pages 44-45). Under

the assumptions of the lemma, these cumulants are bounded by a constant that depends

only on ρ̄. We have

lim
|x|→∞

rP,s(x)ϕ(x) = 0.
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Therefore, rP,s(x)ϕ(x) is bounded uniformly over x ∈ R and P ∈ PT . This allows us to

subsume EP,s,T in the O(T−(s−2)/2) term.

Lemma A8 (Song, 2020). Let (y1, . . . , yn) denote a sample of independent random

variables from a distribution P ∈ Pn. Suppose that there are constants cL < cU and

measurable maps fP , P ∈ Pn, such that

inf
n≥1

inf
P∈Pn

inf
y∈[cL,cU ]

fP > 0

and

P (y ∈ [cL, cU ] ∩ A) =
∫
[cL,cU ]∩A

fP (y) dy

for every P ∈ Pn and every Borel set A. Let

P ∗
n =

1

n

n∑
i=1

δyi

denote the empirical measure induced by (y1, . . . , yn). Let Cn(b, c, R) denote the event

Cn(b, c, R) = {P ∗
n satisfies the weak Cramér condition with parameter (b, c1, R)}.

To every b > 0 and R > 0 there exist c1, c2 > 0 such that

sup
P∈Pn

PCn(b, c1, R) ≤ exp (−c2n) .

Proof of Lemma A8. This is straightforward corollary to Proposition 3.2 and Proposition

3.3 in Song (2020).
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Table A4: Countrywise estimates using the MLE, with T = 10 years

This table shows the point estimates and 90 percent confidence intervals (in parentheses) for the 10-year

distributions of country-specific gross returns, for each country with a full history in the DMS data set.

The estimates are based on data for the entire sample period from 1900 to 2020, using the MLE. The

top row in each panel indicates what percentile of the distribution that is being considered (e.g., 10%

indicates the 10th percentile).

Percentiles

5% 10% 25% 50% 75% 90% 95%

Australia 0.80 0.97 1.34 1.93 2.77 3.84 4.67

(0.58-1.10) (0.71-1.32) (1.01-1.77) (1.49-2.49) (2.19-3.51) (3.06-4.82) (3.73-5.84)

Austria 0.24 0.34 0.59 1.09 2.02 3.51 4.89

(0.14-0.41) (0.20-0.56) (0.37-0.93) (0.71-1.68) (1.32-3.07) (2.29-5.38) (3.15-7.59)

Belgium 0.40 0.52 0.80 1.30 2.12 3.27 4.25

(0.27-0.59) (0.35-0.76) (0.56-1.15) (0.93-1.83) (1.52-2.95) (2.34-4.57) (3.03-5.96)

Canada 0.75 0.91 1.24 1.74 2.46 3.35 4.03

(0.57-1.00) (0.69-1.19) (0.96-1.59) (1.37-2.22) (1.95-3.10) (2.66-4.21) (3.20-5.07)

Denmark 0.67 0.82 1.18 1.75 2.60 3.71 4.59

(0.49-0.91) (0.61-1.11) (0.89-1.56) (1.33-2.31) (1.95-3.45) (2.74-5.02) (3.34-6.30)

Finland 0.42 0.58 0.97 1.72 3.04 5.10 6.94

(0.26-0.69) (0.36-0.92) (0.63-1.49) (1.15-2.56) (2.06-4.50) (3.42-7.59) (4.61-10.44)

France 0.45 0.57 0.87 1.39 2.22 3.37 4.33

(0.31-0.64) (0.40-0.82) (0.62-1.22) (1.00-1.93) (1.61-3.06) (2.44-4.66) (3.12-6.01)

Germany 0.25 0.36 0.68 1.39 2.82 5.32 7.79

(0.09-0.68) (0.15-0.87) (0.35-1.35) (0.85-2.28) (1.89-4.20) (3.42-8.29) (4.64-13.09)

Ireland 0.47 0.61 0.94 1.53 2.49 3.86 5.02

(0.29-0.76) (0.39-0.95) (0.64-1.39) (1.09-2.16) (1.82-3.41) (2.84-5.26) (3.66-6.89)

Italy 0.29 0.39 0.68 1.23 2.24 3.85 5.32

(0.16-0.51) (0.23-0.67) (0.42-1.09) (0.81-1.88) (1.52-3.31) (2.61-5.67) (3.58-7.91)

Japan 0.29 0.42 0.77 1.52 2.96 5.42 7.79

(0.13-0.68) (0.20-0.89) (0.42-1.41) (0.95-2.43) (2.01-4.37) (3.69-7.98) (5.12-11.83)

Netherlands 0.59 0.74 1.08 1.64 2.50 3.64 4.56

(0.42-0.84) (0.53-1.04) (0.80-1.47) (1.23-2.20) (1.87-3.34) (2.70-4.90) (3.35-6.20)

New Zealand 0.74 0.91 1.28 1.87 2.74 3.86 4.74

(0.51-1.07) (0.65-1.28) (0.95-1.72) (1.43-2.45) (2.12-3.54) (2.95-5.05) (3.56-6.30)

Norway 0.47 0.61 0.94 1.53 2.49 3.86 5.03

(0.31-0.70) (0.42-0.88) (0.66-1.34) (1.09-2.15) (1.75-3.55) (2.65-5.64) (3.37-7.50)

Portugal 0.29 0.42 0.75 1.44 2.76 4.96 7.05

(0.16-0.54) (0.24-0.74) (0.45-1.24) (0.91-2.27) (1.78-4.29) (3.14-7.85) (4.35-11.40)

SouthAfrica 0.71 0.89 1.30 1.98 3.01 4.39 5.51

(0.50-1.00) (0.64-1.24) (0.96-1.77) (1.47-2.66) (2.24-4.04) (3.23-5.97) (4.00-7.58)

Spain 0.49 0.62 0.91 1.41 2.17 3.20 4.03

(0.35-0.69) (0.45-0.86) (0.67-1.24) (1.04-1.90) (1.60-2.93) (2.34-4.37) (2.93-5.56)

Sweden 0.63 0.80 1.17 1.80 2.77 4.07 5.13

(0.44-0.91) (0.56-1.13) (0.85-1.62) (1.33-2.43) (2.08-3.68) (3.07-5.39) (3.87-6.80)

Switzerland 0.60 0.75 1.06 1.57 2.32 3.31 4.08

(0.44-0.83) (0.55-1.01) (0.80-1.41) (1.19-2.07) (1.77-3.04) (2.52-4.34) (3.10-5.38)

UK 0.64 0.79 1.13 1.69 2.52 3.61 4.48

(0.44-0.93) (0.56-1.12) (0.83-1.55) (1.28-2.24) (1.93-3.29) (2.75-4.74) (3.38-5.94)

US 0.69 0.86 1.25 1.90 2.87 4.16 5.20

(0.48-0.99) (0.61-1.22) (0.91-1.72) (1.42-2.53) (2.19-3.76) (3.21-5.40) (4.03-6.72)
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Table A5: Countrywise estimates using the MLE, with T = 30 years

This table shows the point estimates and 90 percent confidence intervals (in parentheses) for the 30-year

distributions of country-specific gross returns, for each country with a full history in the DMS data set.

The estimates are based on data for the entire sample period from 1900 to 2020, using the MLE. The

top row in each panel indicates what percentile of the distribution that is being considered (e.g., 10%

indicates the 10th percentile).

Percentiles

5% 10% 25% 50% 75% 90% 95%

Australia 1.55 2.17 3.82 7.16 13.42 23.61 33.12

(0.65-3.71) (0.93-5.07) (1.71-8.54) (3.34-15.35) (6.48-27.78) (11.69-47.71) (16.57-66.17)

Austria 0.10 0.17 0.45 1.29 3.76 9.81 17.41

(0.02-0.40) (0.04-0.69) (0.12-1.70) (0.35-4.72) (1.06-13.34) (2.78-34.59) (4.92-61.66)

Belgium 0.28 0.45 0.95 2.21 5.12 10.90 17.14

(0.09-0.85) (0.15-1.31) (0.34-2.71) (0.80-6.13) (1.88-13.96) (4.03-29.53) (6.33-46.41)

Canada 1.24 1.71 2.91 5.28 9.58 16.37 22.55

(0.56-2.72) (0.79-3.68) (1.38-6.14) (2.57-10.88) (4.73-19.40) (8.17-32.78) (11.31-44.98)

Denmark 1.01 1.46 2.70 5.35 10.61 19.65 28.42

(0.42-2.41) (0.62-3.42) (1.17-6.23) (2.33-12.29) (4.58-24.56) (8.33-46.36) (11.86-68.15)

Finland 0.45 0.77 1.87 5.06 13.64 33.31 56.85

(0.12-1.71) (0.21-2.81) (0.54-6.52) (1.52-16.87) (4.19-44.39) (10.30-107.72) (17.52-184.42)

France 0.38 0.58 1.20 2.69 6.03 12.46 19.25

(0.13-1.06) (0.21-1.61) (0.44-3.25) (1.01-7.17) (2.29-15.89) (4.75-32.73) (7.33-50.57)

Germany 0.13 0.26 0.79 2.67 9.11 27.45 53.12

(0.01-1.36) (0.03-2.15) (0.13-4.71) (0.60-11.85) (2.55-32.53) (8.32-90.58) (15.84-178.08)

Ireland 0.46 0.73 1.55 3.60 8.36 17.87 28.14

(0.13-1.59) (0.22-2.37) (0.51-4.66) (1.29-10.02) (3.18-21.97) (7.02-45.44) (11.16-70.90)

Italy 0.15 0.26 0.66 1.87 5.28 13.45 23.55

(0.03-0.67) (0.06-1.10) (0.17-2.54) (0.53-6.60) (1.59-17.52) (4.19-43.18) (7.40-74.90)

Japan 0.20 0.38 1.09 3.48 11.12 31.67 59.23

(0.03-1.50) (0.06-2.43) (0.21-5.54) (0.85-14.27) (3.20-38.63) (9.98-100.53) (19.04-184.24)

Netherlands 0.76 1.13 2.16 4.45 9.18 17.61 26.00

(0.29-1.98) (0.44-2.86) (0.88-5.32) (1.85-10.72) (3.85-21.88) (7.37-42.07) (10.81-62.52)

New Zealand 1.32 1.88 3.40 6.57 12.71 22.99 32.78

(0.51-3.39) (0.76-4.64) (1.46-7.93) (2.95-14.63) (5.85-27.58) (10.61-49.79) (15.01-71.58)

Norway 0.46 0.72 1.54 3.59 8.35 17.84 28.12

(0.15-1.36) (0.25-2.09) (0.55-4.34) (1.29-10.00) (2.96-23.52) (6.16-51.70) (9.47-83.45)

Portugal 0.19 0.35 0.97 2.99 9.23 25.47 46.75

(0.04-0.94) (0.08-1.62) (0.23-4.09) (0.76-11.75) (2.44-34.91) (6.76-95.88) (12.28-177.98)

South Africa 1.32 1.95 3.75 7.75 16.02 30.82 45.59

(0.51-3.38) (0.77-4.91) (1.52-9.20) (3.21-18.72) (6.65-38.61) (12.68-74.92) (18.56-111.98)

Spain 0.45 0.67 1.31 2.78 5.87 11.52 17.24

(0.17-1.16) (0.26-1.71) (0.52-3.29) (1.12-6.89) (2.37-14.55) (4.62-28.72) (6.87-43.29)

Sweden 0.95 1.42 2.77 5.83 12.27 23.98 35.81

(0.35-2.59) (0.53-3.77) (1.08-7.09) (2.36-14.39) (5.11-29.44) (10.17-56.50) (15.31-83.75)

Switzerland 0.74 1.07 1.96 3.87 7.63 14.06 20.26

(0.31-1.78) (0.45-2.53) (0.85-4.56) (1.70-8.82) (3.38-17.21) (6.25-31.59) (9.01-45.56)

UK 0.89 1.30 2.41 4.83 9.64 17.98 26.11

(0.33-2.38) (0.50-3.33) (0.99-5.87) (2.08-11.19) (4.29-21.69) (8.08-40.01) (11.72-58.17)

US 1.18 1.74 3.32 6.81 13.95 26.60 39.14

(0.44-3.17) (0.67-4.53) (1.33-8.28) (2.85-16.27) (6.05-32.13) (11.86-59.65) (17.69-86.62)
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Table A6: Countrywise estimates using the skewness-corrected MLE, with T = 10 years

This table shows the point estimates and 90 percent confidence intervals (in parentheses) for the 10-year

distributions of country-specific gross returns, for each country with a full history in the DMS data set. The

estimates are based on data for the entire sample period from 1900 to 2020, using the skewness-corrected

MLE. The top row in each panel indicates what percentile of the distribution that is being considered

(e.g., 10% indicates the 10th percentile).

Percentiles

5% 10% 25% 50% 75% 90% 95%

Australia 0.77 0.95 1.36 1.97 2.80 3.78 4.49

(0.55-1.06) (0.70-1.30) (1.03-1.80) (1.53-2.54) (2.22-3.55) (3.01-4.74) (3.58-5.62)

Austria 0.23 0.33 0.60 1.11 2.04 3.46 4.71

(0.14-0.40) (0.20-0.55) (0.38-0.95) (0.72-1.72) (1.34-3.11) (2.26-5.30) (3.03-7.30)

Belgium 0.39 0.51 0.81 1.32 2.13 3.25 4.16

(0.26-0.58) (0.35-0.75) (0.57-1.15) (0.94-1.85) (1.53-2.97) (2.33-4.53) (2.96-5.83)

Canada 0.74 0.90 1.24 1.76 2.47 3.32 3.94

(0.56-0.98) (0.69-1.18) (0.96-1.60) (1.39-2.24) (1.96-3.12) (2.64-4.17) (3.13-4.96)

Denmark 0.67 0.82 1.18 1.75 2.60 3.71 4.59

(0.49-0.91) (0.61-1.12) (0.89-1.56) (1.32-2.31) (1.95-3.45) (2.74-5.02) (3.34-6.31)

Finland 0.41 0.57 0.98 1.75 3.08 5.03 6.70

(0.25-0.67) (0.36-0.91) (0.64-1.50) (1.17-2.62) (2.08-4.55) (3.38-7.49) (4.46-10.09)

France 0.44 0.57 0.88 1.40 2.23 3.35 4.27

(0.31-0.63) (0.40-0.81) (0.63-1.23) (1.01-1.94) (1.61-3.07) (2.43-4.63) (3.08-5.92)

Germany 0.19 0.33 0.75 1.63 3.07 4.80 5.92

(0.07-0.51) (0.14-0.79) (0.38-1.48) (0.99-2.68) (2.06-4.59) (3.09-7.47) (3.53-9.94)

Ireland 0.44 0.59 0.96 1.60 2.55 3.76 4.68

(0.27-0.71) (0.38-0.92) (0.65-1.42) (1.14-2.25) (1.87-3.49) (2.76-5.12) (3.41-6.42)

Italy 0.26 0.38 0.69 1.29 2.30 3.74 4.93

(0.15-0.47) (0.22-0.65) (0.43-1.11) (0.85-1.96) (1.56-3.40) (2.54-5.51) (3.31-7.32)

Japan 0.24 0.39 0.83 1.70 3.16 5.03 6.37

(0.11-0.55) (0.19-0.82) (0.45-1.51) (1.06-2.73) (2.14-4.66) (3.42-7.40) (4.19-9.68)

Netherlands 0.58 0.74 1.09 1.66 2.51 3.62 4.48

(0.41-0.83) (0.53-1.03) (0.80-1.48) (1.24-2.23) (1.88-3.36) (2.68-4.87) (3.29-6.10)

New Zealand 0.71 0.90 1.30 1.91 2.77 3.81 4.56

(0.49-1.03) (0.64-1.26) (0.96-1.74) (1.47-2.50) (2.14-3.59) (2.91-4.98) (3.43-6.07)

Norway 0.47 0.61 0.94 1.53 2.49 3.87 5.03

(0.31-0.70) (0.42-0.89) (0.66-1.34) (1.09-2.15) (1.75-3.55) (2.65-5.65) (3.37-7.51)

Portugal 0.28 0.41 0.77 1.49 2.81 4.86 6.65

(0.15-0.51) (0.23-0.72) (0.46-1.27) (0.94-2.35) (1.81-4.37) (3.07-7.68) (4.11-10.77)

South Africa 0.70 0.89 1.30 1.99 3.02 4.37 5.45

(0.50-0.99) (0.64-1.23) (0.96-1.77) (1.48-2.67) (2.25-4.06) (3.22-5.95) (3.96-7.50)

Spain 0.49 0.62 0.91 1.41 2.17 3.19 4.01

(0.35-0.68) (0.45-0.85) (0.67-1.25) (1.04-1.91) (1.60-2.94) (2.33-4.36) (2.91-5.52)

Sweden 0.61 0.79 1.18 1.84 2.80 4.02 4.96

(0.42-0.88) (0.55-1.11) (0.86-1.64) (1.36-2.48) (2.10-3.72) (3.04-5.33) (3.75-6.58)

Switzerland 0.59 0.74 1.07 1.58 2.33 3.29 4.02

(0.43-0.81) (0.55-1.00) (0.80-1.42) (1.20-2.08) (1.78-3.06) (2.51-4.31) (3.05-5.30)

UK 0.61 0.78 1.15 1.73 2.55 3.56 4.30

(0.42-0.89) (0.55-1.10) (0.84-1.57) (1.31-2.29) (1.95-3.33) (2.71-4.67) (3.25-5.70)

US 0.66 0.85 1.27 1.94 2.91 4.10 5.00

(0.46-0.95) (0.60-1.20) (0.93-1.74) (1.45-2.59) (2.22-3.81) (3.16-5.31) (3.87-6.45)
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Table A7: Countrywise estimates using the skewness-corrected MLE, with T = 30 years

This table shows the point estimates and 90 percent confidence intervals (in parentheses) for the 30-year

distributions of country-specific gross returns, for each country with a full history in the DMS data set. The

estimates are based on data for the entire sample period from 1900 to 2020, using the skewness-corrected

MLE. The top row in each panel indicates what percentile of the distribution that is being considered

(e.g., 10% indicates the 10th percentile).

Percentiles

5% 10% 25% 50% 75% 90% 95%

Australia 1.49 2.14 3.87 7.33 13.59 23.26 31.83

(0.62-3.57) (0.92-4.99) (1.73-8.65) (3.42-15.71) (6.56-28.13) (11.51-47.00) (15.93-63.60)

Austria 0.09 0.17 0.45 1.32 3.80 9.67 16.76

(0.02-0.39) (0.04-0.68) (0.12-1.72) (0.36-4.83) (1.07-13.51) (2.74-34.10) (4.73-59.36)

Belgium 0.28 0.44 0.96 2.24 5.15 10.81 16.77

(0.09-0.84) (0.15-1.30) (0.34-2.73) (0.81-6.21) (1.89-14.06) (3.99-29.28) (6.19-45.39)

Canada 1.21 1.69 2.93 5.35 9.64 16.24 22.10

(0.55-2.66) (0.78-3.65) (1.39-6.18) (2.60-11.02) (4.76-19.52) (8.11-32.53) (11.08-44.07)

Denmark 1.01 1.46 2.70 5.35 10.61 19.66 28.44

(0.42-2.41) (0.62-3.43) (1.17-6.23) (2.33-12.28) (4.58-24.56) (8.33-46.37) (11.86-68.19)

Finland 0.43 0.76 1.90 5.16 13.79 32.88 54.92

(0.11-1.65) (0.21-2.77) (0.54-6.59) (1.55-17.21) (4.24-44.88) (10.17-106.33) (16.93-178.16)

France 0.37 0.58 1.21 2.71 6.06 12.40 18.98

(0.13-1.04) (0.21-1.60) (0.44-3.27) (1.02-7.23) (2.30-15.97) (4.72-32.55) (7.22-49.84)

Germany 0.10 0.24 0.86 3.14 9.95 24.75 40.36

(0.01-1.03) (0.03-1.93) (0.14-5.14) (0.71-13.92) (2.79-35.51) (7.50-81.68) (12.04-135.32)

Ireland 0.43 0.71 1.58 3.75 8.56 17.40 26.21

(0.12-1.48) (0.22-2.31) (0.53-4.77) (1.35-10.45) (3.26-22.47) (6.84-44.25) (10.40-66.06)

Italy 0.14 0.25 0.68 1.95 5.41 13.07 21.81

(0.03-0.62) (0.06-1.06) (0.18-2.61) (0.55-6.90) (1.63-17.96) (4.07-41.95) (6.86-69.37)

Japan 0.17 0.35 1.16 3.91 11.86 29.37 48.49

(0.02-1.23) (0.06-2.25) (0.23-5.90) (0.95-16.05) (3.41-41.19) (9.25-93.23) (15.59-150.82)

Netherlands 0.75 1.12 2.17 4.50 9.23 17.49 25.56

(0.29-1.95) (0.44-2.84) (0.88-5.35) (1.87-10.83) (3.87-22.00) (7.32-41.80) (10.63-61.47)

New Zealand 1.27 1.85 3.44 6.72 12.86 22.67 31.58

(0.49-3.27) (0.75-4.58) (1.48-8.03) (3.02-14.95) (5.92-27.91) (10.46-49.10) (14.46-68.96)

Norway 0.46 0.72 1.54 3.59 8.35 17.85 28.13

(0.15-1.36) (0.25-2.09) (0.55-4.34) (1.29-10.00) (2.96-23.52) (6.16-51.71) (9.48-83.48)

Portugal 0.18 0.34 0.99 3.09 9.40 24.92 44.14

(0.04-0.89) (0.07-1.58) (0.23-4.16) (0.79-12.16) (2.49-35.56) (6.62-93.83) (11.59-168.03)

South Africa 1.30 1.94 3.76 7.79 16.07 30.70 45.13

(0.51-3.35) (0.77-4.89) (1.53-9.23) (3.22-18.83) (6.67-38.73) (12.63-74.64) (18.37-110.87)

Spain 0.44 0.67 1.31 2.79 5.88 11.49 17.13

(0.17-1.15) (0.26-1.70) (0.52-3.30) (1.12-6.92) (2.37-14.58) (4.61-28.65) (6.82-43.01)

Sweden 0.92 1.40 2.80 5.94 12.40 23.67 34.62

(0.34-2.50) (0.53-3.72) (1.09-7.16) (2.41-14.68) (5.17-29.76) (10.05-55.79) (14.80-80.98)

Switzerland 0.73 1.06 1.97 3.90 7.67 13.98 19.96

(0.30-1.75) (0.45-2.51) (0.85-4.58) (1.71-8.90) (3.40-17.29) (6.22-31.41) (8.88-44.89)

UK 0.86 1.28 2.45 4.94 9.77 17.71 25.08

(0.32-2.29) (0.50-3.28) (1.01-5.95) (2.13-11.45) (4.34-21.97) (7.96-39.41) (11.26-55.87)

US 1.14 1.72 3.37 6.97 14.13 26.20 37.58

(0.43-3.04) (0.66-4.46) (1.35-8.39) (2.92-16.66) (6.13-32.55) (11.68-58.74) (16.98-83.17)
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Table A8: Countrywise estimates using the FF bootstrap estimator, with T = 10 years

This table shows the point estimates and 90 percent confidence intervals (in parentheses) for the 10-year

distributions of country-specific gross returns, for each country with a full history in the DMS data set.

The estimates are based on data for the entire sample period from 1900 to 2020, using the FF bootstrap

estimator. The top row in each panel indicates what percentile of the distribution that is being considered

(e.g., 10% indicates the 10th percentile).

Percentiles

5% 10% 25% 50% 75% 90% 95%

Australia 0.76 0.95 1.36 1.98 2.81 3.79 4.49

(0.55-1.06) (0.70-1.30) (1.03-1.80) (1.54-2.55) (2.22-3.56) (3.02-4.75) (3.59-5.63)

Austria 0.23 0.34 0.61 1.12 2.03 3.45 4.76

(0.14-0.40) (0.20-0.56) (0.38-0.96) (0.73-1.73) (1.34-3.09) (2.25-5.29) (3.07-7.39)

Belgium 0.39 0.52 0.82 1.34 2.16 3.28 4.21

(0.27-0.59) (0.36-0.76) (0.57-1.17) (0.95-1.88) (1.55-3.01) (2.35-4.58) (3.00-5.90)

Canada 0.73 0.9 1.24 1.76 2.48 3.33 3.95

(0.55-0.97) (0.68-1.18) (0.96-1.60) (1.39-2.24) (1.96-3.12) (2.65-4.19) (3.14-4.97)

Denmark 0.66 0.82 1.17 1.72 2.52 3.61 4.51

(0.48-0.90) (0.61-1.11) (0.88-1.55) (1.30-2.27) (1.90-3.36) (2.67-4.89) (3.29-6.20)

Finland 0.41 0.57 0.98 1.74 3.03 4.95 6.65

(0.25-0.66) (0.36-0.91) (0.64-1.51) (1.17-2.60) (2.05-4.48) (3.32-7.36) (4.42-10.01)

France 0.44 0.57 0.88 1.41 2.25 3.38 4.32

(0.31-0.63) (0.40-0.81) (0.63-1.23) (1.02-1.96) (1.63-3.10) (2.45-4.67) (3.12-5.99)

Germany 0.17 0.4 0.84 1.53 2.69 4.51 6.19

(0.06-0.47) (0.16-0.96) (0.43-1.67) (0.93-2.52) (1.81-4.02) (2.90-7.02) (3.69-10.40)

Ireland 0.43 0.6 0.98 1.59 2.5 3.72 4.69

(0.27-0.70) (0.38-0.93) (0.66-1.44) (1.13-2.24) (1.83-3.42) (2.73-5.06) (3.42-6.44)

Italy 0.27 0.39 0.71 1.29 2.27 3.7 4.95

(0.15-0.47) (0.23-0.67) (0.44-1.14) (0.85-1.97) (1.53-3.35) (2.51-5.45) (3.33-7.36)

Japan 0.24 0.41 0.88 1.67 2.95 4.8 6.4

(0.10-0.55) (0.20-0.87) (0.48-1.60) (1.05-2.68) (2.00-4.35) (3.26-7.06) (4.21-9.73)

Netherlands 0.58 0.74 1.09 1.66 2.5 3.6 4.5

(0.41-0.82) (0.53-1.03) (0.80-1.49) (1.24-2.23) (1.87-3.34) (2.67-4.85) (3.31-6.12)

New Zealand 0.71 0.9 1.32 1.91 2.69 3.72 4.56

(0.49-1.02) (0.64-1.27) (0.98-1.78) (1.46-2.49) (2.08-3.48) (2.84-4.86) (3.43-6.06)

Norway 0.46 0.61 0.96 1.54 2.46 3.82 5.07

(0.31-0.69) (0.42-0.90) (0.67-1.36) (1.09-2.17) (1.73-3.49) (2.62-5.58) (3.40-7.57)

Portugal 0.28 0.42 0.78 1.47 2.71 4.73 6.68

(0.15-0.51) (0.24-0.74) (0.47-1.30) (0.93-2.32) (1.74-4.21) (2.99-7.48) (4.13-10.80)

South Africa 0.71 0.9 1.32 1.99 3.01 4.37 5.48

(0.50-1.00) (0.65-1.25) (0.97-1.79) (1.48-2.67) (2.24-4.04) (3.21-5.94) (3.98-7.55)

Spain 0.49 0.62 0.93 1.43 2.19 3.22 4.06

(0.35-0.69) (0.45-0.86) (0.68-1.26) (1.05-1.93) (1.62-2.97) (2.36-4.40) (2.95-5.59)

Sweden 0.6 0.78 1.17 1.82 2.78 4 4.94

(0.42-0.87) (0.55-1.10) (0.85-1.62) (1.35-2.47) (2.09-3.70) (3.02-5.30) (3.73-6.55)

Switzerland 0.59 0.74 1.06 1.58 2.33 3.29 4.03

(0.43-0.81) (0.55-1.00) (0.80-1.42) (1.20-2.08) (1.78-3.06) (2.51-4.32) (3.06-5.32)

UK 0.62 0.8 1.18 1.75 2.55 3.55 4.35

(0.43-0.90) (0.56-1.13) (0.87-1.61) (1.32-2.32) (1.95-3.32) (2.71-4.66) (3.28-5.77)

US 0.66 0.84 1.25 1.92 2.89 4.07 4.95

(0.46-0.94) (0.59-1.18) (0.91-1.72) (1.44-2.57) (2.20-3.78) (3.14-5.28) (3.84-6.40)
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Table A9: Countrywise estimates using the FF bootstrap estimator, with T = 30 years

This table shows the point estimates and 90 percent confidence intervals (in parentheses) for the 30-year

distributions of country-specific gross returns, for each country with a full history in the DMS data set.

The estimates are based on data for the entire sample period from 1900 to 2020, using the FF bootstrap

estimator. The top row in each panel indicates what percentile of the distribution that is being considered

(e.g., 10% indicates the 10th percentile).

Percentiles

5% 10% 25% 50% 75% 90% 95%

Australia 1.49 2.15 3.89 7.37 13.71 23.55 32.32

(0.62-3.58) (0.92-5.01) (1.74-8.69) (3.44-15.81) (6.62-28.38) (11.66-47.59) (16.18-64.59)

Austria 0.09 0.17 0.46 1.36 3.88 9.89 17.29

(0.02-0.39) (0.04-0.70) (0.12-1.77) (0.37-4.95) (1.09-13.79) (2.80-34.88) (4.88-61.22)

Belgium 0.29 0.46 1.00 2.33 5.37 11.29 17.51

(0.10-0.87) (0.16-1.35) (0.35-2.85) (0.84-6.48) (1.97-14.66) (4.17-30.58) (6.47-47.41)

Canada 1.20 1.68 2.93 5.35 9.68 16.35 22.27

(0.55-2.64) (0.78-3.63) (1.39-6.16) (2.60-11.01) (4.78-19.59) (8.16-32.75) (11.17-44.43)

Denmark 0.96 1.39 2.57 5.07 10.00 18.53 26.91

(0.40-2.30) (0.59-3.28) (1.11-5.95) (2.21-11.64) (4.32-23.16) (7.85-43.70) (11.22-64.51)

Finland 0.42 0.74 1.85 5.04 13.45 32.10 54.01

(0.11-1.61) (0.20-2.71) (0.53-6.45) (1.51-16.83) (4.13-43.79) (9.93-103.81) (16.65-175.21)

France 0.37 0.58 1.22 2.76 6.19 12.71 19.46

(0.13-1.05) (0.21-1.61) (0.45-3.31) (1.04-7.36) (2.35-16.31) (4.84-33.38) (7.41-51.13)

Germany 0.10 0.24 0.92 3.13 9.18 23.22 40.22

(0.01-1.04) (0.03-1.99) (0.15-5.49) (0.71-13.86) (2.57-32.76) (7.04-76.62) (12.00-134.85)

Ireland 0.43 0.71 1.59 3.73 8.44 17.25 26.32

(0.12-1.47) (0.22-2.31) (0.53-4.78) (1.34-10.38) (3.21-22.17) (6.78-43.87) (10.44-66.33)

Italy 0.14 0.26 0.69 1.98 5.45 13.17 22.21

(0.03-0.62) (0.06-1.08) (0.18-2.66) (0.56-6.99) (1.64-18.08) (4.10-42.25) (6.98-70.64)

Japan 0.17 0.36 1.17 3.88 11.39 28.23 47.70

(0.02-1.21) (0.06-2.27) (0.23-5.97) (0.95-15.91) (3.28-39.54) (8.89-89.62) (15.34-148.38)

Netherlands 0.74 1.11 2.17 4.49 9.18 17.46 25.64

(0.29-1.92) (0.44-2.83) (0.88-5.33) (1.86-10.80) (3.85-21.90) (7.31-41.71) (10.66-61.65)

New Zealand 1.25 1.84 3.42 6.62 12.52 22.17 31.20

(0.49-3.21) (0.74-4.54) (1.47-7.98) (2.97-14.73) (5.77-27.17) (10.23-48.01) (14.29-68.14)

Norway 0.46 0.73 1.57 3.62 8.37 17.88 28.53

(0.15-1.35) (0.25-2.11) (0.56-4.42) (1.30-10.08) (2.97-23.58) (6.17-51.80) (9.61-84.68)

Portugal 0.18 0.34 0.98 3.02 9.05 24.15 43.35

(0.04-0.86) (0.07-1.56) (0.23-4.12) (0.77-11.86) (2.39-34.24) (6.41-90.90) (11.39-165.03)

South Africa 1.31 1.96 3.79 7.85 16.12 30.84 45.65

(0.51-3.36) (0.78-4.93) (1.54-9.31) (3.25-18.97) (6.69-38.84) (12.69-74.99) (18.58-112.14)

Spain 0.46 0.69 1.36 2.89 6.09 11.91 17.72

(0.18-1.19) (0.27-1.76) (0.54-3.42) (1.16-7.17) (2.46-15.10) (4.77-29.69) (7.06-44.50)

Sweden 0.89 1.37 2.74 5.82 12.20 23.36 34.25

(0.33-2.44) (0.51-3.64) (1.07-7.02) (2.36-14.38) (5.08-29.28) (9.91-55.04) (14.64-80.11)

Switzerland 0.72 1.05 1.97 3.90 7.67 14.01 20.03

(0.30-1.74) (0.44-2.50) (0.85-4.57) (1.71-8.88) (3.40-17.30) (6.24-31.49) (8.91-45.03)

UK 0.89 1.34 2.57 5.13 10.07 18.27 26.04

(0.33-2.37) (0.52-3.43) (1.06-6.24) (2.21-11.90) (4.48-22.65) (8.21-40.65) (11.69-58.01)

US 1.10 1.66 3.26 6.78 13.79 25.61 36.65

(0.41-2.93) (0.64-4.32) (1.31-8.11) (2.84-16.19) (5.99-31.77) (11.42-57.42) (16.56-81.10)
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Table A10: Empirical estimates of global long-run returns, unbalanced panel with 32 countries

The table shows the pooled point estimates and 90 percent confidence intervals (in parentheses) for

the long-run distributions of the global gross returns based on the complete unbalanced panel of 32

countries in the DMS data set. Panels A and B show results for 10-year and 30-year compounding

horizons, respectively. The top row in each panel indicates what percentile of the distribution that is

being considered (e.g., 10% indicates the 10th percentile). Results are presented using data for the entire

sample period (Full sample) and for a subsample starting in 1960 (Post-1960), as indicated in the row

headers. For each sample and horizon, results for the MLE, the skewness-corrected MLE (ML-skew), and

the FF bootstrap estimator are presented.

Panel A: T = 10

Percentiles

5% 10% 25% 50% 75% 90% 95%

I. ML

Full sample 0.43 0.58 0.95 1.65 2.87 4.71 6.33

(0.32-0.58) (0.44-0.77) (0.74-1.24) (1.30-2.10) (2.30-3.58) (3.80-5.84) (5.12-7.84)

Post-1960 0.43 0.59 1.01 1.82 3.30 5.62 7.73

(0.26-0.71) (0.37-0.96) (0.65-1.57) (1.22-2.73) (2.27-4.80) (3.93-8.04) (5.44-11.00)

II. ML-skew

Full sample 0.41 0.57 0.97 1.72 2.93 4.60 5.95

(0.30-0.55) (0.43-0.75) (0.75-1.26) (1.35-2.18) (2.34-3.66) (3.71-5.70) (4.81-7.36)

Post-1960 0.41 0.58 1.02 1.86 3.34 5.54 7.45

(0.25-0.69) (0.36-0.94) (0.66-1.59) (1.25-2.79) (2.30-4.86) (3.88-7.92) (5.24-10.59)

III. FF bootstrap

Full sample 0.42 0.59 1.00 1.70 2.84 4.51 6.01

(0.31-0.56) (0.45-0.78) (0.77-1.29) (1.34-2.16) (2.27-3.54) (3.64-5.59) (4.86-7.44)

Post-1960 0.42 0.59 1.04 1.87 3.28 5.45 7.45

(0.25-0.69) (0.37-0.96) (0.67-1.62) (1.25-2.79) (2.25-4.77) (3.81-7.79) (5.24-10.59)

Panel B: T = 30

Percentiles

5% 10% 25% 50% 75% 90% 95%

I. ML

Full sample 0.44 0.74 1.75 4.53 11.75 27.72 46.33

(0.20-0.99) (0.34-1.62) (0.83-3.68) (2.22-9.24) (5.93-23.29) (14.27-53.85) (24.07-89.17)

Post-1960 0.50 0.86 2.17 6.07 16.93 42.63 74.09

(0.13-1.97) (0.23-3.29) (0.61-7.77) (1.81-20.38) (5.32-53.86) (13.95-130.25) (24.74-221.89)

II. ML-skew

Full sample 0.42 0.72 1.78 4.70 11.99 27.07 43.52

(0.19-0.93) (0.33-1.58) (0.84-3.76) (2.30-9.58) (6.05-23.76) (13.93-52.60) (22.61-83.76)

Post-1960 0.48 0.85 2.20 6.20 17.13 42.03 71.33

(0.12-1.90) (0.22-3.24) (0.62-7.87) (1.85-20.83) (5.39-54.51) (13.75-128.41) (23.82-213.63)

III. FF bootstrap

Full sample 0.42 0.74 1.81 4.69 11.78 26.76 43.68

(0.19-0.94) (0.34-1.61) (0.86-3.82) (2.30-9.57) (5.94-23.34) (13.77-51.99) (22.69-84.08)

Post-1960 0.48 0.86 2.21 6.19 16.95 41.49 71.29

(0.12-1.88) (0.23-3.26) (0.62-7.92) (1.84-20.79) (5.33-53.92) (13.58-126.78) (23.80-213.52)
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Table A11: Empirical comparison of FF bootstrap and ACO block bootstrap estimates

The table shows the pooled point estimates and 90 percent confidence intervals (in parentheses) for the

long-run distributions of the global gross returns based on the panel of 21 countries with a full history in

the DMS data set. Panels A and B show results for 10-year and 30-year compounding horizons, respectively.

The top row in each panel indicates what percentile of the distribution that is being considered (e.g., 10%

indicates the 10th percentile). Results are presented using data for the entire sample period (Full sample)

and for a subsample starting in 1960 (Post-1960), as indicated in the row headers. For each sample and

horizon, results for the FF bootstrap estimator the ACO block bootstrap estimator are presented. The

block bootstrap estimator is implemented with a geometrically distributed random block size, with the

average block size set to 10 years. Confidence intervals around the block bootstrap estimates are formed

in an identical manner to those around the FF bootstrap (described in the main text).

Panel A: T = 10

Percentiles

5% 10% 25% 50% 75% 90% 95%

I. FF bootstrap

Full sample 0.46 0.63 1.00 1.62 2.56 3.84 4.93

(0.34-0.61) (0.48-0.83) (0.78-1.29) (1.29-2.04) (2.06-3.17) (3.13-4.72) (4.02-6.05)

Post-1960 0.49 0.66 1.06 1.74 2.83 4.36 5.66

(0.30-0.78) (0.42-1.03) (0.70-1.60) (1.20-2.54) (2.00-4.00) (3.14-6.05) (4.11-7.80)

II. ACO block bootstrap

Full sample 0.48 0.69 1.09 1.65 2.43 3.49 4.33

(0.36-0.64) (0.52-0.91) (0.84-1.40) (1.31-2.08) (1.96-3.01) (2.84-4.30) (3.52-5.32)

Post-1960 0.62 0.79 1.16 1.76 2.57 3.65 4.49

(0.39-0.98) (0.51-1.22) (0.78-1.72) (1.22-2.52) (1.84-3.58) (2.66-5.01) (3.29-6.11)

Panel B: T = 30

Percentiles

5% 10% 25% 50% 75% 90% 95%

I. FF bootstrap

Full sample 0.45 0.76 1.72 4.04 9.16 18.94 29.28

(0.21-0.99) (0.36-1.62) (0.83-3.54) (2.03-8.03) (4.74-17.70) (10.00-35.88) (15.61-54.93)

Post-1960 0.58 0.95 2.13 5.11 12.06 25.87 40.80

(0.16-2.09) (0.27-3.31) (0.65-6.99) (1.66-15.78) (4.13-35.22) (9.23-72.48) (14.87-111.95)

II. ACO block bootstrap

Full sample 0.57 0.95 1.99 4.15 8.17 14.94 21.63

(0.26-1.25) (0.44-2.04) (0.96-4.14) (2.07-8.33) (4.20-15.92) (7.83-28.50) (11.45-40.87)

Post-1960 0.93 1.39 2.64 5.13 9.78 17.66 25.48

(0.27-3.21) (0.42-4.65) (0.84-8.29) (1.73-15.18) (3.48-27.46) (6.55-47.63) (9.64-67.36)
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Figure A1: Simulation results for T = 120 with n = 720 observations.

The figure shows simulation results based on estimates with a sample size of n = 720 and a compounding

horizon of T = 120. Monthly period returns are generated according to the four different return models

described in the main text: i.i.d. log-normal (Panel A); i.i.d. log-normal-with-crashes (Panel B); stochastic

volatility, SV (Panel C); long-term reversals (Panel D). All four specifications are parameterized such

that monthly gross returns have a mean µ = 1.006 and a volatility σ = 0.06. Three different estimators

are considered: (i) the MLE, (ii) the skewness-corrected MLE (ML-skew), and (iii) the FF bootstrap

estimator. The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th

percentiles of the estimated quantiles of the long-run gross return distributions (calculated across the

10, 000 estimates obtained from the simulated samples), for each of the three estimation procedures. The

solid line shows the true (population) quantiles in each graph. The dotted line shows the median estimates

for the MLE and the edges of the shaded region corresponds to the 5th and 95th percentiles of the ML

estimates. The dashed lines show the median and the 5th and 95th percentiles of the skewness-corrected

ML estimates of each quantile. The dashed-and-dotted lines show the corresponding estimates for the

bootstrap estimator.
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Figure A2: Simulation results for T = 360 with n = 720 observations.

The figure shows simulation results based on estimates with a sample size of n = 720 and a compounding

horizon of T = 360. Monthly period returns are generated according to the four different return models

described in the main text: i.i.d. log-normal (Panel A); i.i.d. log-normal-with-crashes (Panel B); stochastic

volatility, SV (Panel C); long-term reversals (Panel D). All four specifications are parameterized such

that monthly gross returns have a mean µ = 1.006 and a volatility σ = 0.06. Three different estimators

are considered: (i) the MLE, (ii) the skewness-corrected MLE (ML-skew), and (iii) the FF bootstrap

estimator. The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th

percentiles of the estimated quantiles of the long-run gross return distributions (calculated across the

10, 000 estimates obtained from the simulated samples), for each of the three estimation procedures. The

solid line shows the true (population) quantiles in each graph. The dotted line shows the median estimates

for the MLE and the edges of the shaded region corresponds to the 5th and 95th percentiles of the ML

estimates. The dashed lines show the median and the 5th and 95th percentiles of the skewness-corrected

ML estimates of each quantile. The dashed-and-dotted lines show the corresponding estimates for the

bootstrap estimator.
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Figure A3: Simulation results with data sampled at different frequencies

The figure shows simulation results based on estimates with sample sizes corresponding to 120 years

of data and compounding horizons of 10 years (Panels A1 and A2) and 30 years (Panels B1 and B2).

Data are sampled either at a daily frequency (n = 30, 240 observations), a monthly frequency (n = 1, 440

observations), or an annual frequency (n = 120 observations). Two different return models are considered:

i.i.d. log-normal (Panels A1 and B1) and stochastic volatility, SV (Panels A2 and B2). All specifications

are parameterized such that the corresponding monthly gross returns have a mean µ = 1.006 and a

volatility σ = 0.06. The skewness-corrected MLE is used for estimation. The results are based on 10, 000

samples. Each panel shows the median and the 5th and 95th percentiles of the estimated quantiles of the

long-run gross return distributions (calculated across the 10, 000 estimates obtained from the simulated

samples), for each of the three sampling frequencies. The solid line shows the true (population) quantiles

in each graph. The dashed line shows the median estimates for the estimates based on monthly data

and the edges of the shaded region corresponds to the 5th and 95th percentiles of the monthly estimates.

The dashed-and-dotted lines show the median and the 5th and 95th percentiles of the estimates based on

annual data. The dotted lines show the corresponding estimates for the estimates based on daily data.
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Figure A4: Simulation results for “direct” estimation

The figure shows simulation results based on estimates with sample sizes corresponding to 120 years of

data and compounding horizons of 10 years (Panels A1 and A2) and 30 years (Panels B1 and B2). Data

are observed at a monthly frequency (n = 1, 440 observations). Estimates are either formed using the MLE

based on the monthly data, labeled ML in the legend. Or using “direct” estimation, based on the available

non-overlapping 10-year returns (12 return observation, Panels A1 and A2) or the available 30-year returns

(4 return observations, Panels B1 and B2). The “direct” estimates of the long-run distributions are also

formed using the normal MLE. Two different return models are considered: i.i.d. log-normal (Panels A1

and B1) and stochastic volatility, SV (Panels A2 and B2). All specifications are parameterized such that

the corresponding monthly gross returns have a mean µ = 1.006 and a volatility σ = 0.06. The results are

based on 10, 000 samples. Each panel shows the median and the 5th and 95th percentiles of the estimated

quantiles of the long-run gross return distributions (calculated across the 10, 000 estimates obtained

from the simulated samples), for each of the two estimation approaches. The solid line shows the true

(population) quantiles in each graph. The dotted line shows the median estimates for the ML estimates

based on monthly data and the edges of the shaded region corresponds to the 5th and 95th percentiles of

the monthly ML estimates. The dashed lines show the median and the 5th and 95th percentiles of the

estimates based on the direct approach.
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Figure A5: Simulation results with panel data

The figure shows simulation results based on panel-data estimates with a sample size of n = 1, 440 and

K = 20, and compounding horizons T = 120 (Panels A1 and A2) and T = 360 (Panels B1 and B2).

Monthly period returns are generated according to a one-factor model with betas uniformly distributed

between 0.7 and 1.3. Two different return models are considered: i.i.d. log-normal (Panels A1 and B1)

and i.i.d. log-normal-with-crashes (Panels A2 and B2). All specifications are parameterized such that

monthly gross returns have a mean µ = 1.006 and a volatility σ = 0.06. The common factor in returns

account for 40% of the total variance (λ = 0.4). Three different estimators are considered: (i) the pooled

MLE, (ii) the pooled skewness-corrected MLE (ML-skew), and (iii) the pooled FF bootstrap estimator.

The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th percentiles of

the estimated quantiles of the long-run gross return distributions (calculated across the 10, 000 estimates

obtained from the simulated samples), for each of the three estimation procedures. The solid line shows

the true (population) quantiles in each graph, defined as the distribution for an asset with β = 1. The

dotted line shows the median estimates for the MLE and the edges of the shaded region corresponds to

the 5th and 95th percentiles of the ML estimates. The dashed lines show the median and the 5th and 95th

percentiles of the skewness-corrected ML estimates of each quantile. The dashed-and-dotted lines show

the corresponding estimates for the bootstrap estimator.
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Figure A6: Simulation results for block bootstrap estimator with T = 120.

The figure shows simulation results based on estimates with a sample size of n = 1, 440 and a compounding

horizon of T = 120. Monthly period returns are generated according to five different return models

described in the main text and the Online Appendix: i.i.d. log-normal (Panel A); i.i.d. log-normal-with-

crashes (Panel B); stochastic volatility, SV (Panel C); long-term reversals with log returns following an

MA(60) process (Panel D); long-term reversals with log returns following an MA(120) process (Panel E).

All five specifications are parameterized such that monthly gross returns have a mean µ = 1.006 and a

volatility σ = 0.06. Three different estimators are considered: (i) the skewness-corrected MLE (ML-skew),

(ii) the block bootstrap estimator with a random block length with a mean of 120 months (Block BS (120

rnd)), and (iii) the block bootstrap estimator with a fixed block length of 60 months (Block BS (60 fix)).

The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th percentiles of

the estimated quantiles of the long-run gross return distributions (calculated across the 10, 000 estimates

obtained from the simulated samples), for each of the three estimation procedures. The solid line shows

the true (population) quantiles in each graph. The dashed line shows the median estimates for the the

skewness-corrected MLE and the edges of the shaded region corresponds to the 5th and 95th percentiles of

the the skewness-corrected ML estimates. The dashed-and-dotted lines show the median and the 5th and

95th percentiles of the block bootstrap estimates (using a random block length with mean 120) of each

quantile. The dotted lines show the corresponding estimates for the block bootstrap estimator with a

fixed block length of 60.
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Figure A6: Simulation results for block bootstrap estimator with T = 120 (continued).
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Figure A7: Simulation results for block bootstrap estimator with T = 360.

The figure shows simulation results based on estimates with a sample size of n = 1, 440 and a compounding

horizon of T = 360. Monthly period returns are generated according to five different return models

described in the main text and the Online Appendix: i.i.d. log-normal (Panel A); i.i.d. log-normal-with-

crashes (Panel B); stochastic volatility, SV (Panel C); long-term reversals with log returns following an

MA(60) process (Panel D); long-term reversals with log returns following an MA(120) process (Panel E).

All five specifications are parameterized such that monthly gross returns have a mean µ = 1.006 and a

volatility σ = 0.06. Three different estimators are considered: (i) the skewness-corrected MLE (ML-skew),

(ii) the block bootstrap estimator with a random block length with a mean of 120 months (Block BS (120

rnd)), and (iii) the block bootstrap estimator with a fixed block length of 60 months (Block BS (60 fix)).

The results are based on 10, 000 samples. Each panel shows the median and the 5th and 95th percentiles of

the estimated quantiles of the long-run gross return distributions (calculated across the 10, 000 estimates

obtained from the simulated samples), for each of the three estimation procedures. The solid line shows

the true (population) quantiles in each graph. The dashed line shows the median estimates for the the

skewness-corrected MLE and the edges of the shaded region corresponds to the 5th and 95th percentiles of

the the skewness-corrected ML estimates. The dashed-and-dotted lines show the median and the 5th and

95th percentiles of the block bootstrap estimates (using a random block length with mean 120) of each

quantile. The dotted lines show the corresponding estimates for the block bootstrap estimator with a

fixed block length of 60.
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Figure A7: Simulation results for block bootstrap estimator with T = 360 (continued).
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Figure A8: Data availability in the DMS data set

The figure shows data availability for each country in the full DMS data set. The start of each bar indicate

the starting year of data availability for a given country.
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Figure A9: Individual country returns versus global returns, T = 10 years

The figure shows estimates of the long-run distribution of global 10-year gross returns along with the

corresponding estimates for individual countries, as indicted in each panel header. The results are based

on data for the entire sample period. All estimates are based on the skewness-corrected MLE. The

estimates for the global distribution are formed from the pooled panel of 21 countries with a full history

in the DMS data set. The dashed line and the shaded area show point estimates and 90% confidence

bands, respectively, for the global return distributions. The solid line shows the point estimates for the

long-run return distribution based on returns data for the individual country indicated in each panel

header; the dotted lines show the corresponding 90% confidence bands. In addition, p-values are shown

for the test of the null hypothesis that a given percentile of the global return distribution is identical to

the corresponding percentile for the country-specific distribution. Specifically, p-values for the 5th, 50th

and 95th percentiles, labeled p-val(p5), p-val(p50), and p-val(p95), respectively, are displayed.
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Figure A10: Individual country returns versus global returns, T = 30 years

The figure shows estimates of the long-run distribution of global 30-year gross returns along with the

corresponding estimates for individual countries, as indicted in each panel header. The results are based

on data for the entire sample period. All estimates are based on the skewness-corrected MLE. The

estimates for the global distribution are formed from the pooled panel of 21 countries with a full history

in the DMS data set. The dashed line and the shaded area show point estimates and 90% confidence

bands, respectively, for the global return distributions. The solid line shows the point estimates for the

long-run return distribution based on returns data for the individual country indicated in each panel

header; the dotted lines show the corresponding 90% confidence bands. In addition, p-values are shown

for the test of the null hypothesis that a given percentile of the global return distribution is identical to

the corresponding percentile for the country-specific distribution. Specifically, p-values for the 5th, 50th

and 95th percentiles, labeled p-val(p5), p-val(p50), and p-val(p95), respectively, are displayed.
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