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F. Benvenuti† R. Renò‡
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Abstract
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measurement noise. In particular, strongly negative values of the test statistic pro-
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1 Introduction

Over the past few decades, the analysis of financial data collected at a high-frequency

level has become increasingly important in the econometric and statistical literature. In

this framework, it is usually assumed that the data generating process for log-prices can be

modeled as an Itō semimartingale in continuous time, see e.g. Jacod and Protter (2012) and

Aı̈t-Sahalia and Jacod (2015). This widely used process, fundamental to most modern asset

pricing models, decomposes returns into three components (drift, volatility, and jumps) and

mostly assumes locally bounded coefficients. In particular, the assumption that drift and

volatility coefficients are bounded appears to be broadly consistent with the efficient market

hypothesis and with empirical observations of financial time series, where short-term price

fluctuations are primarily driven by the volatility component.

However, assuming bounded coefficients is not always realistic. For instance, flash

crashes are a relevant example of market inefficiency which has been recently investigated

by the high-frequency econometric literature, as a result of an increased attention by fi-

nancial institutions and investors to them (see, e.g., Easley, de Prado, and O’Hara, 2011;

Madhavan, 2012; Andersen and Bondarenko, 2014; Kirilenko, Kyle, Samadi, and Tuzun,

2017; Menkveld and Yueshen, 2019; Bank of England, 2019). In the literature, similar

instances of market inefficiency are temporary violations of the no-arbitrage principle (An-

dersen, Todorov, and Zhou, 2024), gradual jumps (Christensen, Oomen, and Podolskij,

2014), and extreme return persistence (Andersen, Li, Todorov, and Zhou, 2023). These

phenomena can be modeled by relaxing the unboundedness coefficients assumption. In

particular, volatility may also explode without drift explosion, thus without compromising

market efficiency. Turmoil events in financial markets have thus inspired numerous recent
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contributions in financial econometrics, leading to the development of new test statistics

aiming at detecting unboundedness (or, more informally, explosions) in the coefficients, see

Christensen, Oomen, and Renò (2022); Andersen, Li, Todorov, and Zhou (2023); Kolokolov

(2023); Christensen and Kolokolov (2024); Andersen, Todorov, and Zhou (2024); Shi and

Phillips (2024); Zhao, Hong, and Linton (2025); Boswijk, Yu, and Zu (2025); Flora and

Renò (2025). Importantly, the literature still lacks a dedicated test for volatility explo-

sions, as existing contributions focus on detecting explosive behavior in the drift or jump

components.

We contribute to this literature by introducing a new test for drift and volatility explo-

sion. The test is based on localized autocovariance (LAC) of the return process. Using the

autocovariance to detect drift is intuitive, as shown in the recent contributions of Laurent,

Renò, and Shi (2024) and Kolokolov, Renò, and Zoi (2024). The autocovariance is also a

classical measure of market inefficiency/illiquidity, see e.g. Roll (1984); Lo and MacKinlay

(1988); Poterba and Summers (1988), and, more recently, Li and Yang (2025). The key

novelty of our approach lies in testing based on the localization of the self-normalized auto-

covariance of averaged prices around a given time point. We formally show that, when the

price process follows an Itō semimartingale with unbounded coefficients, the localized au-

tocovariance can identify the region to which the drift and volatility explosion rates belong,

and, in particular, isolate episodes driven by volatility explosions. Despite the presence of

jumps, the test statistic does not need to introduce truncation (Mancini, 2009) and can

be implemented on tick-by-tick noisy data after suitable pre-averaging of observed prices.

When the new LAC test becomes large and negative, it indicates the presence of volatility

explosions. When it is large and positive, it may signal either a drift or a volatility ex-

plosion. This ambiguity can be resolved by jointly using the LAC test and the recent test
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of Christensen, Oomen, and Renò (2022) (henceforth, the COR test), which allows us to

disentangle drift from volatility explosions in all cases.

We apply the new test to both synthetic and real data. Simulation experiments on

realistic high-frequency synthetic data confirm that our methodology effectively detects

both drift and volatility explosions in small samples. As an additional robustness check,

we conduct our numerical study for a data-generating process that is more complex than

that assumed by our theory. In our empirical application, we use the LAC test to demon-

strate that the market-wide circuit breakers activated in March 2020 failed to calm the

turmoil triggered by the COVID-19 pandemic, at least immediately after the break. In

fact, we document a strong volatility explosion upon market reopening in all examined

cases, underscoring the importance of a targeted test for volatility explosions.

The remainder of this paper is organized as follows. Section 2 derives the main theo-

retical results. Section 3 extends the results to noisy tick-by-tick prices. In Section 4, we

conduct a simulation study to evaluate the practical performance of our test. Section 5

applies the test to assess the effectiveness of market-wide circuit breakers. Finally, Section

6 concludes. The Supplementary Material contains the mathematical proofs.

2 Methodology

2.1 The model

We work on the standard complete filtered probability space (Ω,F ,F,P), where the filtra-

tion is F = {Ft}t≥0. We assume that the logarithmic price follows an Itō semimartingale,

which we express in the form of the Grigelionis decomposition (see Jacod and Protter,

2012, Theorem 2.1.2, or Aı̈t-Sahalia and Jacod, 2015, Section 1.4.3), with some suitable
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restrictions on the coefficients and with explicit formulation of potential explosions in the

drift and in the volatility.

Assumption 1 The one-dimensional log-price process X is driven by the following dy-

namic:

Xt = X0 +

∫ t

0

µu(1− u)−αdu+

∫ t

0

σu(1− u)−βdWu + (δ1{|δ|≤1}) ⋆ (p− q)t + (δ1{|δ|>1}) ⋆ p)t,

(1)

for each t ∈ [0, 1], where α and β are real numbers, Wt is a Brownian motion, pt is

a Poisson random measure with Lévy mesure λ, q(dt, dx) = λ(dx)dt is the compensator

of pt, δ is a predictable jump size, and X0 is F0-measurable. Moreover, we assume the

following:

(i) The explosion rates satisfy 0 ≤ α < 1, 0 ≤ β < 1
2
;

(ii) The process µt is locally bounded and predictable, and satisfies µ2
t > 0 a.s. for all t ∈

[0, 1]. Moreover, with C > 0, |u−s| small enough and Γ > 2α+min(1−2β, 1/2)−2,

E
[
|µs − µu|2

∣∣∣∣Fu∧s

]
≤ C|u− s|Γ. (2)

(iii) The process σt is driven by the following dynamics:

σt = σ0 +

∫ t

0

ξudu+

∫ t

0

ηudW
′
u + (δσ1{|δσ |≤1}) ⋆ (p

σ − qσ)t + (δσ1{|δσ |>1}) ⋆ p
σ)t,

(3)

where W ′
t is a Brownian motion (possibly correlated with Wt), p

σ
t is a Poisson ran-

dom measure with Lévy mesure λσ, qσ(dt, dx) = λσ(dx)dt is the compensator of the

volatility jumps, δσ is a predictable jump size, ξt is locally bounded, ηt is càdlàg, and

σ0 is F0-measurable.
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(iv) The jumps of X satisfy min(|δ(ω, t, z)|, 1) ≤ Γ(z) where Γ(z) satisfies∫
Γ(z)rλ(dz) < ∞ for a given 0 ≤ r < 2.

(v) The jumps of σ satisfy min(|δσ(ω, t, z)|, 1) ≤ Γ
σ
(z) where Γ

σ
(z) satisfies∫

Γ
σ
(z)2λ(dz) < ∞.

Model 1 is a straightforward modification of the standard model employed in financial

econometrics for the efficient price. The specific assumptions (i) − (v) on the coefficients

of the Itō semimartingale are mild and their role will be discussed in the specific parts of

the proofs in which these assumptions are needed.

The continuous part of X is written as in Laurent, Renò, and Shi (2024). When α = β =

0, the model is the classical case of a Itō semimartingale with locally bounded coefficients,

see Jacod and Protter (2012) for an extensive treatment. The modification allows for drift

explosion (at rate α) and for volatility explosion (at rate β). We place both explosions

in t = 1. Allowing for joint drift and volatility explosion is motivated by the empirical

observation that drift explosions are typically accompanied by volatility explosions, which

limits the violation of absence of arbitrage occurring when α − β > 1/2, see Remark

2.6 in Laurent, Renò, and Shi (2024). Our results can be generalized for explosions to

occur at a random time between 0 and 1 (see Remark 3.1 in Laurent, Renò, and Shi,

2024). In particular, volatility explosions enrich existing models in the statistical literature

by introducing an additional mechanism through which volatility can change abruptly,

thereby extending recent approaches based on volatility jumps (see Bibinger, Jirak, and

Vetter, 2017).

The discontinuous part is also standard. In particular, assumption (iv) implies that the

Blumenthal-Geetor index of price jumps is smaller than r, which we assume to be smaller
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than 2. This requirement, as discussed below, will dispense our testing methodology with

truncation, even when r is arbitrarily close to 2. The treatment of market microstructure

noise is more delicate and postponed to Section 3.

2.2 The Localized Auto-Covariance (LAC) test

We introduce a bandwidth sequence hn → 0 and a kernel function K : R → R+. The

kernel function obeys standard conditions (see, e.g., Bandi, 2002; Kristensen, 2010). The

last condition requires rapidly vanishing tails for the kernel function and it is the most

important for guaranteeing the limit results below.

Assumption 2 The following conditions hold:

1. K is bounded and differentiable, with bounded first derivative K ′(x);

2. The kernel function satisfies:∫ ∞

−∞
K(x)dx = 1;K2 :=

∫ ∞

−∞
K2(x)dx < ∞;∫ ∞

−∞
|x|κ|K(x)|dx < ∞ and

∫ ∞

−∞
|x|κ|K2(x)|dx < ∞ for κ > −1;

xK(x) → 0 and xK ′(x) → 0 for x → ±∞.

3. For B,C > 0 and every positive sequence sn → ∞,
∫ −sn
−∞ K(x)dx ≤ Cs−B

n and∫∞
sn

K(x)dx ≤ Cs−B
n .

The next assumption is about observation times, which we allow to be uneven (but

dense enough around any point in time).

Assumption 3 We assume to observe a realization of the data generating process (1) on

the discrete unevenly spaced time grid {0 = t0 < t1 < t2 · · · < tn = 1}, and, writing
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∆n,i = ti − ti−1 and ∆n = 1/n, c1∆n ≤ ∆n,i ≤ c2∆n uniformly on i and n for two suitable

constants c1 > 0 and c2 > 0. Moreover, given H(t) = limn→∞ Hn(t) where Hn(t) =

1
∆n

∑
ti≤t(∆n,i)

2, we assume that H(t) exists and is Lebesgue-almost surely differentiable on

(0, 1) with derivative H ′ such that, for a suitable constant c,
∣∣∣H ′(ti)− ∆n,i

∆n

∣∣∣ ≤ c∆n,i, for

any ti in which H is differentiable.

We denote returns on the time grid by ∆n
i X = Xti − Xti−1

. The standardized Local

Auto-Covariance (LAC) at lag 1 and time s ∈]0, 1] is defined as:

LACn
s :=

1

hn

n∑
i=1

K

(
ti−1 − s

hn

)
∆n

i X
∆n

i−1X√
∆n,i−1

. (4)

We standardize only one return in Eq. (4) by
√

∆n,i−1 because, as made clear in the

proofs, this delivers a second moment for LAC which has order 1/hn under the null.

In order to build the test statistic, we standardize LACn
s with a spot variance estimator

(see, e.g., Zu and Boswijk, 2014 and Chen, Mykland, and Zhang, 2020):

σ̂2
n

s :=
1

hn

n∑
i=1

K

(
ti−1 − s

hn

)
(∆n

i X)2. (5)

It is well known that σ̂2
n

s is a consistent estimator, after an appropriate rescaling, of the

variance of the numerator when α = β = 0. We finally define our test statistic as:

T LAC

n,s :=

√
hn

K2

LACn
s

σ̂2
n

s

, (6)

where K2 is defined in point 2 of Assumption 2.

By construction, we expect T LAC
n,s to be normally distributed when s < 1. In s = 1,

its behavior depends on α and β. The following Theorem states the asymptotic limit of

the test T LAC
n,1 in s = 1. The asymptotic theory splits the (α, β) parameter space into four

distinct areas, represented in Figure 1. The enumeration in the Theorem corresponds to

that in Figure 1.
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Figure 1: (α, β)-plane
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Note. The different regions in the (α, β) plane which characterize the different zones of Theorem 2.1.

Theorem 2.1 Let Assumptions 1-2-3 hold, and n → ∞, hnn → ∞, and hnn
c → c′ for

some 1
2
< c < 1 and 0 < c′ < +∞. Also, let r < 2

2−c
. The limiting distribution of T LAC

n,1

defined in Eq. (6) is the following:

(1) When β < 1/4 and α− β < 1/2:

T LAC

n,1
d−→ N(0, 1).

(2) When β > 1/4 and α− β < 1/2:

|T LAC

n,1 | P−→ ∞.

(3) When α > 3/4 and α− β > 1/2:

T LAC

n,1
P−→ ∞.
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(4) When 1/2 < α < 3/4 and α− β > 1/2, if c > 3/2−2α
1/2−2β

:

T LAC

n,1
P−→ ∞;

if c ⩽ 3/2−2α
1/2−2β

:

T LAC

n,1
d−→ N(0, 1).

Proof. See Supplementary Material. □

Asymptotic theory identifies four zones in the (α, β) plane (see Figure 1).

• In zone (1), which contains the no-explosion point α = β = 0, the test converges to a

standard normal. In this zone, neither α nor β are big enough to make T LAC
n,1 explode.

• In zone (2), volatility explosion dominates drift explosion and T LAC
n,1 diverges with a

positive or negative sign. At a first glance, this may sound counterintuitive, since

as volatility explodes the denominator of T LAC
n,1 (which is a spot volatility estimator)

diverges. However, in this zone, where the rate of divergence is driven by the mar-

tingale component of the price process (1), the numerator diverges at a faster rate.

The test thus explodes with the random sign of the numerator, which generates the

oscillating behavior of the statistics in volatility explosion zones (hence the name

“seismometer”), see empirical results in Section 5.

• In zone (3) the explosion of the drift dominates the variance, resulting in an asymp-

totic explosion of the test with a positive sign.

• In zone (4), the explosion of the drift is stronger than in zone (1), but not as strong

as in zone (3); at the same time, the volatility explosion is weak. This gives rise to

two distinct asymptotic behaviors of the test, depending on the rate at which the
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bandwidth hn tends to zero. If hn decreases slowly enough, the test statistic follows

the distribution described in zone (1); otherwise, the test statistic diverges.

Remark 2.1 The occurrence T LAC
n,1 −→ −∞ can be generated only by a volatility explosion.

Instead, T LAC
n,1 −→ +∞ can be generated either by a volatility explosion or a drift explosion.

Remark 2.2 The condition c > 1/2 implies hnn
1/2 → 0. This is necessary to prevent the

volatility of volatility ηt from appearing in the asymptotic variance of LACn
1 (see e.g. the

discussion in Jacod and Rosenbaum, 2013).

Remark 2.3 The rate of convergence of hn to zero depends on the value of r, which de-

termines the ”vibrancy” of the jump process, as fixed by Assumption 1, point (iv). If r ≤ 4
3

(e.g. for a compound Poisson process), the condition r < 2
2−c

is satisfied for any value of

c in the interval (1/2, 1). For more vibrant jumps with r > 4
3
, we need a more restrictive

c > 1
2
, that is hn must converge to zero sufficiently fast to prevent jumps from contributing

to the asymptotic variance of LACn
1 . For the spot variance estimator, this result is estab-

lished in Theorem 13.3.3 in Jacod and Protter (2012). In our case, the proof of Theorem

2.1 generalizes this result to spot autocovariance.

Remark 2.4 An important theoretical property of the LAC test is that it does not require

truncation (Mancini, 2009) even when jumps are assumed to be present in the data gen-

erating process. This is due to the fact that we localize around t = 1 at a sufficiently fast

rate (the condition hnn
c → c′ with c > 1/2). Dispensing with truncation is theoretically

important: truncation would indeed reduce the power of the test under the alternative of

drift explosion, since large returns due to drift explosion would be truncated too (see e.g.

Andersen, Li, Todorov, and Zhou, 2023 and their theoretical analysis of truncated returns).
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It is also important practically, since there is no consensus in the financial econometric

literature on how to choose the truncation level in small samples. As discussed in Remark

2.3, dispensing with truncation requires jumps in price not to be too ”vibrant”. This require-

ment is however practically harmless, since r can be arbitrarily close to 2 as the parameter

c gets closer to 1 (consequently, a smaller bandwidth hn is required). The irrelevance of

jumps for self-normalized statistics also holds for the COR test (Mancini, 2023).

Remark 2.5 The zone splitting in our Figure 1 provides a more refined partitioning for the

behavior of the test statistic across different regions, compared to the zone partitioning used

for the estimator in Figure 1 of Laurent, Renò, and Shi (2024). This is a consequence of

the localization and the standardization by the spot variance estimator in the construction of

T LAC
n,1 . The most important difference with respect to their result is in our zone (2), where our

proposed test statistic explodes, as we discuss below, while the non-localized autocovariance

(the realized drift estimator) satisfies a standard central limit theorem.

2.3 A joint test of drift and volatility explosion

The COR test is defined as:

T COR

n,s :=

√
hn

K2

1

hn

n∑
i=1

K

(
ti−1 − s

hn

)
∆n

i X√
σ̂2

n

s

. (7)

The limiting theory of T COR
n,1 splits the parameter space into two areas only, since the test

diverges when α − β > 1/2 (that is in regions (3) + (4) of Figure 1), and converges to

a standard normal distribution when α − β < 1/2 (that is in region (1) + (2) of Figure

1). The sign of T COR
n,1 when this test diverges is informative about the direction of the drift

burst (negative or positive).

11



TCOR TLAC (α, β) region type of explosion

N (0, 1) N (0, 1) (1) no explosion
N (0, 1) +∞ (2) volatility explosion
N (0, 1) −∞ (2) volatility explosion
±∞ N (0, 1) (4) drift explosion
±∞ +∞ (3) + (4) drift explosion
±∞ −∞ impossible -

Table 1: Localization of the region in the (α, β) space based on the asymptotic theory of the
COR and the LAC test. See Figure 1 for the definition of the various regions.

Thus, the joint behavior of T COR
n,1 and T LAC

n,1 provides information about the nature of the

explosion when T LAC
n,1 → +∞. Table 1 summarizes all the six possibilities implied by the

asymptotic theory (two possible outcomes from T COR
n,1 , that is standard normal and ±∞,

and three possible outcomes from T LAC
n,1 , that is standard normal, +∞ and −∞). Using this

table, we can identify the region where the point (α, β) lies using the asymptotic behavior

of the two statistics. In particular, the case T LAC
n,1 → −∞ is possible only in zone (2).

Figure 2 provides an illustration of volatility explosion detections, the main novelty of

the testing procedure. We compute the LAC test every second on 12 March 2020, a day

initiated by a market wide circuit breaker (more details about data and implementation in

Section 5). A volatility explosion is detected by the LAC test before and after the circuit

breaker, and in the middle of the day. Indeed, only volatility explosions can generate

strongly negative values of the LAC test.

We end this section by providing the joint distibution of T COR
n,1 and T LAC

n,1 under the

hypothesis of no explosion (or limited explosion) of the drift and the volatility, showing

that the two tests are asymptotically uncorrelated under the null. Below I2 denotes the

identity matrix of dimension 2.
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Figure 2: LAC and COR test computed every second on March 12, 2020.

Corollary 2.1 Under the same assumptions of Theorem 2.1, when β < 1/4 and α − β <

1/2: T LAC
n,1

T COR
n,1

 d−→ N
(
0, I2

)
, (8)

Proof. See Supplementary Material. □

3 Extension to noisy prices

In this section we assume that the observed price process is a contaminated version of the

true price X:

Yti = Xti + ϵti , (9)
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where ϵ is the noise, an iid zero-mean process, independent from X, with finite variance ω

and finite fourth moment. Our theoretical analysis deals with iid noise for simplicity, but

our results easily extend to the case of q-dependent noise (for a finite q).

To implement the test on noisy prices, we carry out three steps:

1 . Block partitioning: Split the price series into non-overlapping blocks of length Ln.

2 . Noise-reduction averaging: Within each block, further divide the data into sub-blocks

of length kn and average the price in each sub-block to attenuate microstructure noise.

3 . Autocovariance calculation: Compute the autocovariance of averaged prices over the

original blocks of length Ln, making sure that each block is non-overlapping.

Figure 3 illustrates how we aggregate the data to compute the noise-robust test. Specifically,

we proceed as follows. We choose a first window of data kn, and for each i ∈ {kn − 1, n−

kn + 1} we define the average backward and forward-looking prices, respectively, as Y
−
i,n

and Y
+

i,n:

Y
−
i,n := k−1

n

kn−1∑
j=0

Yti−j
, Y

+

i,n := k−1
n

kn−1∑
j=0

Yti+j
.

Now we define our pre-averaged version of T LAC
n,s :

T LAC
n,s :=

√
hn

K2

LAC
n

s

(σ̃n
s )

2
, (10)

where

LAC
n

s =
1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − s

hn

)(
Y

−
(i+1)Ln,n − Y

+

iLn,n

) (Y −
iLn,n − Y

+

(i−1)Ln,n

)
√
tiLn − t(i−1)Ln

, (11)

and

(σ̃n
s )

2 =
1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − s

hn

)(
Y

−
(i+1)Ln,n − Y

+

iLn,n

)2
. (12)
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Figure 3: Illustration of our pre-averaging scheme to implement the test on tick-by-tick data.
The data are divided in blocks with Ln data point. The illustration shows the first four blocks.
Then, we use kn data points to average prices, as illustrated. The autocovariance is then

computed (localizing with a uniform kernel) as (Y
−
Ln,n − Y

+

0,n)(Y
−
2Ln,n − Y

+

Ln,n) + (Y
−
3Ln,n −

Y
+

2Ln,n)(Y
−
4Ln,n − Y

+

3Ln,n) + . . .

We prove that (σ̃n
s )

2 is the appropriate standardization for the variance of the dominating

term of (11) in Theorem 3.1 below. This approach allows to replicate the structure of our

earlier results without noise. Thus the noise-robust version of the LAC test in Eq. (10)

detects bursts in drift and volatility even in the presence of noise contamination in the data.

In the theoretical treatment in this section, we also assume that jumps are absent. Jumps

and microstructure noise are considered jointly in the simulation experiments in Section 4,

where we further allow the noise to be heteroskedastic and dependent.

Theorem 3.1 Let Assumptions 1-2-3 hold with no jumps, and n → ∞, kn → ∞, Ln →

∞, hn(n/Ln) → ∞, hn(n/Ln)
1/2 → 0 such that kn/n → 0, Ln/n → 0, Ln/

√
n → ∞

Ln/kn → ∞, knLn

n
→ ∞, hnkn → ∞, and kn

hnn
→ 0. Then T LAC

n,1 follows the asymptotic

distribution of T LAC
n,1 reported in Theorem 2.1.

Proof. See Supplementary Material. □

Remark 3.1 Theorem 3.1 holds for knLn

n
→ ∞, hnkn → ∞ and kn

hnn
→ 0; these conditions

are more general than imposing a pre-averaging rate of kn ≍ n1/2, which is the standard
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choice in literature. Indeed, for every choice of

kn ≍ na, Ln ≍ nb, hn ≍ n−γ,

where 1/2 < b < 1, 0 < a < b, γ > 0 and a + b > 1, together with 1−b
2

< γ < min{1 −

b, a, 1 − a}, the conditions of Theorem 3.1 are satisfied. For instance, we could choose

kn ≍ n0.6, Ln ≍ n0.9, hn ≍ n−0.07. In fact, since we are interested in testing (and

not in estimating integrated variance), we do not need to balance the stochastic orders of

the pre-averaged price and noise components (see, e.g., Jacod, Li, Mykland, Podolskij, and

Vetter, 2009).

Remark 3.2 If in Theorem 3.1 we furthermore assume hn(n/Ln) → ∞ and hn(n/Ln)
c →

c′ for some 1
2
< c < 1 and 0 < c′ < +∞, the bandwidth conditions are still satisfied with

γ = c(1− b) in place of the weaker requirement 1−b
2

< γ, with γ defined in Remark 3.1.

4 Simulations

We conduct a Monte Carlo study in which we apply our test to simulated financial prices.

The Section has two main purposes: (i) check whether the asymptotic results established in

the previous sections allow to approximate the behaviour of the test statistics in small sam-

ples; (ii) check robustness to the joint presence of jumps and dependent and heteroskedastic

market microstructure noise. To benchmark the behaviour of the LAC test we use the COR

test, with the latter being designed to test for drift explosions only.

To simulate realistic financial returns we simulate log-prices over a high-frequency grid

over 6.5 hours of trading (one trading day in the U.S.) using a jump-diffusion model with
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stochastic volatility and stochastic drift:

dXt = a(1− α)(1− t)−α1{t>θ}dt+ µtdt+ γt
√

VtdW1,t + dJ1,t, (13)

dµt = −κµtdt+ ξ
√
2κdWµ,t, (14)

Vt = eℓt + b(1− 2β)

∫ t

θ

(1− s)−2βds · 1{t>θ} (15)

dℓt = (αV − βV log ℓt)dt+ ηdW2,t + dJ2,t, (16)

where W1,t and W2,t are correlated Brownian motions (with correlation parameter ρ), J1,t

and J2,t are correlated jump processes, Wµ,t is independent of W1,t and W2,t, and γt is

an adjustment for the intraday effect. The parameterization in Eq. (14) implies that the

unconditional distribution of the drift process µt is N (θ, ξ2), and its persistence is driven

by the parameter κ. Parameters are for daily unites (one day = 1). We set κ = 0.1

and ξ = 10 as in Kolokolov, Renò, and Zoi (2024). We set the other parameters of the

model as in Table IV of Andersen, Benzoni, and Lund (2002), corresponding to the column

SV1J, ρ ̸= 0. The intraday effect takes the following form:

γt =
1

1033
(0.1271t2 − 0.1260t+ 0.1239), (17)

as estimated by Caporin, Kolokolov, and Renò (2017) on S&P500 index data.

For the drift and volatility explosion, we start them at θ = 0.99 (that is, 3.9 minutes

before the end of the day) and we use a = 0.025 and b = 60
√
eαV /βV . These choices are

calibrated to have a cumulated excess drift (from explosion only) of ≈ 0.5% when α = 0.5,

and ≈ 4% when α = 0.95; and a cumulative excess daily volatility of ≈ 10% when β = 0.3

and ≈ 40% when β = 0.45. These high values are not uncommon in financial markets.

We consider settings without jumps, with a single jump in price only and with a single

price/volatility co-jump. Jumps occur at a random time in the interval [θ, 1], that is near
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to the explosion point. Jumps in the log-price are N (0, (1%)2). Jumps in the log-volatility

are exponentially distributed with mean eαV /βV , which is the exponential of the long-run

mean of the logarithmic volatility ℓt.

We finally add market microstructure noise. The log-price we use in simulation is Yt =

Xt + εt, with εt distributed normally with zero mean and standard deviation 1
2
γε
√

Vt/n,

where n = 2, 340, 000 is the number of sampled prices in a day (corresponding to ten

prices per second on average). Simulated market microstructure noise then departs from

the iid assumption in the theory allowing for heteroskedasticity, intraday effects and serial

dependence. When γε = 1, the magnitude of the noise is consistent with the findings in

Christensen, Oomen, and Podolskij (2014).

We simulate 1, 000 different paths for high-frequency prices, with n observation times

sampled randomly (and unevenly) in the time interval [0, 1] using a uniform distribution.

We consider combinations of α = (0, 0.25, 0.5, 0.75, 0.95) and β = (0, 0.15, 0.3, 0.45). We

compute the LAC and COR tests at t = 1. We choose hn = 60 seconds as a bandwidth for

the numerator and hn = 300 for the denominator to better exploit persistence in volatility

when estimating the denominator (as in Christensen, Oomen, and Renò, 2022), in line

with the empirical application. Regarding robustness to market microstructure noise, we

use Ln = 100 and kn = 50 for the LAC test, and kn = 50 for the COR test.

We first analyze the behavior under the null (α = β = 0) for three different levels of

market microstructure noise: γε = 0 (no noise), 1 (realistic noise) and 10 (large noise). The

distribution of the LAC test (original version, and the version robust to market microstruc-

ture noise) and the COR test are displayed in Figure 4. In the no-noise case, the three

tests are all close to a Gaussian distribution. In the realistic case, as expected, the original

LAC test is strongly negatively biased because of the simulated negative autocovariance of
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Figure 4: Distribution of the COR and the LAC tests (robust for noise and not) under the null
α = β = 0 for different levels of market microstucture noise: γε = 0 (no noise), γε = 1 (realistic
noise), γε = 10 (large noise).

noise differences. The robust LAC test in Eq. (10) is instead close to the standard normal,

with the COR test behaving similarly. The robust LAC is unaffected by large noise, while

the COR test is severely undersized in this setting.1 Overall, this experiment shows that

the robust LAC test is quite reliable under the null, even in the presence of very large noise

with complex realistic features.

The distributions of the two tests, for the various combinations of α and β and in

the absence of jumps, are represented in Figure 5. Results are fully consistent with the

asymptotic theory illustrated in Section 2.2. When there are no bursts (α = β = 0), the

distribution of both tests is close to a standard normal. As α increases, the COR test

diverges positively, with faster divergence for smaller β. Also the LAC test diverges, with

faster divergence for smaller β as well. Compared to the COR test, the LAC test appears

to be more powerful for large drift explosions and less powerful for moderate explosions.

As β increases, the distribution of the LAC test becomes increasingly fatter, potentially

originating both negative and positive values (the seismometer-like behavior), as implied

1For the COR test, it is advised to use a much smaller kn, see Christensen, Oomen, and Renò (2022).
In our experiments, we keep kn = 50 for comparison with the LAC test.
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Figure 5: Distribution of the COR and the LAC tests (robust for noise) for different levels of
the explosion rates α and β. In these simulations, there are no jumps.

by the theory.

Table 2 reports the percentage of rejections at 5% significance level for the LAC and

the COR test. The table also shows the case for simulated trajectories with jumps in price

only and price/volatility co-jumps respectively. In this setting, when α = β = 0 and in the

case in Panel A (the same used in applications below) the LAC test is slightly oversized

in the absence of jumps, and slightly undersized in the presence of jumps. This is due to

the variance of the spot volatility estimator at the denominator. Indeed, the presence of

jumps near explosion points induces a small positive bias in the spot volatility estimator (a

finite-sample artifact according to theory) which, in turn, mechanically reduces the LAC

test statistic. Increasing α, we can see that in our simulated setting LAC is powerful

for drift explosions as α increases above the predicted value of 3/4, and less powerful for

volatility explosion (when α = 0 and β > 0). Increasing β, we see that LAC is also powerful
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for volatility explosions, the novelty with respect to the COR test. The impact of jumps

amounts to a slight reduction of power. This is in line with the theoretical argument that

localized autocovariances are automatically robust to jumps.

In Panel B of Table 2 we explore the case in which we use the same bandwidth for the

numerator and the denominator. If we do so, the LAC test is more correctly sized, but

power decreases. Panel B thus illustrates the tradeoff on the selection of the ratio between

the two bandwidths. Given the results, we will use the setting in Panel A on empirical

applications.

Overall, the results of these simulated experiments suggest that the LAC behaviour in

small samples reflects reliably the asymptotic predictions. This holds for models richer than

those employed in the theory, which include the joint presence of jumps and heteroskedastic

and dependent noise.

5 Do circuit breakers calm financial markets?

Financial markets experienced unprecedented volatility in 2020 due to the onset of the

COVID-19 pandemic. In particular, Market Wide Circuit Breakers were activated 4 times

in 2020 (9, 12, 16 and 18 of March), stopping the entire market in the US for 15 minutes

(for institutional details, see e.g. Li and Yao, 2021). This event happened only once

before March 2020 and never after 2020 (to date). Circuit breakers are mechanisms to

halt trading during extreme market movements, aim to prevent panic selling and restore

investor confidence. An open research question is whether they are able to provide the

”calming” effect they are designed for, see e.g. Brugler, Linton, Noss, and Pedace, 2018;

Sifat and Mohamad, 2020. Empirical evidence on their efficacy is indeed mixed, see e.g.
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Panel A: hn=60 seconds (numerator), 300 seconds (denominator)

LAC test

Case 1: no jumps Case 2: Jumps in price only Case 3: price/volatility co-jumps
α α α

β 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95
0.450 69.4 71.2 70.0 73.9 79.2 63.2 63.6 64.5 70.6 74.3 63.4 61.2 64.9 69.9 74.2
0.300 60.8 64.3 60.3 73.3 80.5 53.2 51.5 47.1 62.7 71.6 48.6 46.7 47.2 60.4 71.7
0.150 31.5 29.0 31.5 96.4 99.7 15.5 16.4 15.5 82.9 92.8 14.8 13.4 17.1 80.4 90.8
0.000 6.9 6.1 16.7 100.0 100.0 3.4 3.6 6.0 85.5 92.9 3.8 4.5 8.5 83.6 94.0

COR test

Case 1: no jumps Case 2: Jumps in price only Case 3: price/volatility co-jumps
α α α

β 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95
0.450 14.3 14.8 25.9 85.3 87.9 12.6 14.1 22.4 80.3 77.7 12.8 12.8 22.5 78.1 81.5
0.300 10.0 11.3 29.7 98.6 99.0 8.4 9.7 24.5 91.8 93.0 8.3 8.6 25.9 91.2 90.7
0.150 3.4 9.6 77.7 100.0 100.0 3.2 7.6 54.8 96.4 95.6 3.5 5.5 49.7 95.7 95.0
0.000 2.0 9.2 96.1 100.0 100.0 1.3 4.4 67.7 95.8 95.1 1.4 4.2 60.7 95.6 96.1

Panel B: hn=60 seconds (numerator), 60 seconds (denominator)

LAC test

Case 1: no jumps Case 2: Jumps in price only Case 3: price/volatility co-jumps
α α α

β 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95
0.450 23.6 25.8 24.3 29.8 32.8 21.1 22.2 24.0 26.9 28.9 20.2 21.7 22.7 27.9 29.7
0.300 19.0 18.0 17.5 26.9 33.7 14.1 15.1 17.8 23.3 32.4 14.6 14.6 15.4 24.7 32.3
0.150 8.7 9.2 9.7 80.5 80.2 8.5 7.1 9.0 73.7 74.1 7.3 4.9 9.1 66.0 70.6
0.000 5.3 5.9 9.5 98.0 95.5 4.5 4.7 6.1 88.6 89.4 4.2 5.1 7.8 83.6 82.7

COR test

Case 1: no jumps Case 2: Jumps in price only Case 3: price/volatility co-jumps
α α α

β 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95 0.00 0.25 0.50 0.75 0.95
0.450 1.3 1.2 3.3 44.7 43.3 0.9 1.1 4.5 44.3 43.2 1.2 1.5 4.1 47.4 40.8
0.300 0.9 1.5 7.5 85.9 78.6 0.8 1.8 8.1 82.9 76.3 1.8 0.8 7.7 80.7 77.0
0.150 1.2 3.7 61.6 100.0 100.0 1.5 4.1 54.1 97.6 97.2 0.7 3.8 48.2 96.9 97.6
0.000 1.3 5.7 93.5 100.0 100.0 1.5 7.0 85.8 97.2 97.1 1.6 4.3 74.8 97.3 97.2

Table 2: Percentage of rejections at 5% under several values of the explosion parameters α
and β, for three different models (no jumps, jumps in price only, price/volatility co-jumps).
In Panel A we report results with different bandwidths for numerator and denominator (the
case we implement on real data). In Panel B, we use the same bandwidth for numerator and
denominator.

Brugler, Linton, Noss, and Pedace (2018) (who advocate partial success) and Hautsch and

Horvath (2019) (who advocate partial failure). In this Section, we use the LAC test to

assess the efficacy of circuit breakers.

We employ two datasets: SPY (an Exchange Traded Fund replicating the S&P 500

index) and VXX (an Exchange Trading Note replicating a portfolio of VIX indices at
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different maturity). Data are from the TAQ database and include all trades recorded in

2020. Before applying the test, data are cleaned using standard procedures.

We first compute the robust LAC test every second around the circuit breakers using

hn = 1 minute for the denominator, Ln = 100 (the distance between two preaveraged

prices, in tick time), kn = 50 (the number of observations used to preaverage). We also

compute the COR test with the same bandwidths. To compute the test in a given time

point, we require to have Neff > 10, where Neff is the number of ”effective” observations

defined as

Neff =
1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − s

hn

)
.

Results are displayed in Figure 8. We discuss separately what happens before the circuit

breaker and after it. For the first two days (9 and 12 march), the LAC test is significant

(especially for SPY, which is more liquid) up to 5 minutes before the circuit breaker is

triggered. On March 16th, the circuit breaker is triggered immediately after the market

opening and we do not have enough transaction data for reliable test measurement (Neff

is never greater than 10). On March 18 there is no evidence of explosions right before

the circuit breaker is triggered. The LAC values are mostly negative, signaling a volatility

explosion. This can be confirmed by the values of the COR test (shown in Figure 7) who

tend to be inside the confidence bands, consistently with a volatility explosion (see Table

1). We note that the LAC test is significant right after the opening of the markets on

9 and 12 march, so that its high-values may be due to the spike in volatility observed

at the beginning of the day (volatility intraday effect). Summarizing, according to our

seismometer, there is mild evidence of market turbulence just before the circuit breakers

are triggered (the actual trigger is based on the closing price of preceding day).

The picture is completely different at the end of the breaks. In all the eight considered
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Figure 6: The LAC test computed every second before and after the market-wide circuit
breakers in 2020. We consider two assets, SPY and VXX.

instances (four market wide circuit breakers, two assets), the LAC test is very significantly

oscillating between negative and positive values at market re-opening, signalling a clear

volatility explosion for both assets. Again, the COR test is not large with the exception of

VXX on March 12, where the data display an uprise consistent with a drift explosion in

VXX. In general, there is strong evidence of market turbulence after the circuit breaking
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Figure 7: The COR test computed every second before and after the market-wide circuit
breakers in 2020. We consider two assets, SPY and VXX.

ends. While our results needs caution the in interpretation due to the extremely small num-

bers of events analyzed, our results lean toward trading interruptions serving as transient

volatility amplifiers, confirming the results of Hautsch and Horvath (2019).

Finally, we display the behavior of the test on 20 March 2020. This was one of the most

volatile days in the sample, with a maximum drawdown of −7.12%, thus exceeding the
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Figure 8: LAC and COR test computed every second on March 20, 2020.

circuit breaker triggering threshold if this drop was computed from the closing price of the

day before. In this case, neither the LAC test nor the COR test display departure from

normal market behavior. These results indicate that the LAC test responds primarily to

abrupt changes in volatility, modeled through explosive volatility coefficients, rather than

to elevated volatility levels alone.

6 Conclusions

We introduce a new test to determine whether financial high-frequency prices exhibit a drift

or a volatility burst: the Local Auto-Covariance (LAC) test. We show that its asymptotic

behavior allows for a more granular partitioning of the explosion rate parameter region than

the COR test proposed in Christensen, Oomen, and Renò (2022), which is based on local

averaging and devised to detect drift explosions. In particular, the LAC test can detect

26



volatility explosions even when they are not accompanied by drift explosions. Volatility

explosions are shown to occur after market-wide circuit breakers, raising questions about

the effectiveness of these mechanisms. We conclude that the proposed LAC test is a valuable

statistical tool for market surveillance and the assessment of market regulation.

This paper represents a first step toward the determination of the explosion rates of the

drift and volatility processes. This aspect of Itō semimartingale processes, commonly used

to model asset prices, remains largely unexplored in the statistical literature. However, as

demonstrated by our empirical example, it may play a crucial role in enhancing market

stability. In this paper, we show how to delineate the regions in which explosion rates lie.

Future extensions should aim at establishing more refined statistical inference methods for

these parameters using alternative techniques.
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Flora, M., and R. Renò, 2025, “V-shapes,” Journal of Banking and Finance, Forthcoming.

Hautsch, N., and A. Horvath, 2019, “How effective are trading pauses?,” Journal of Financial

Economics, 131(2), 378–403.

28



Jacod, J., Y. Li, P. Mykland, M. Podolskij, and M. Vetter, 2009, “Microstructure noise in the

continuous case: the pre-averaging approach,” Stochastic Processes and their Applications,

119(7), 2249–2276.

Jacod, J., and P. Protter, 2012, Discretization of Processes. Springer-Verlag.

Jacod, J., and M. Rosenbaum, 2013, “Quarticity and other functionals of volatility: efficient

estimation,” Annals of Statistics, 41, 1462–1484.

Kirilenko, A., A. S. Kyle, M. Samadi, and T. Tuzun, 2017, “The Flash Crash: High frequency

trading in an electronic market,” Journal of Finance, 3, 967–998.

Kolokolov, A., 2023, “Cryptocrashes,” Journal of Business and Economic Statistics, Forthcoming.
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Supplementary Material

Without loss of generality, we assume that the kernel function is such that K(z) = 0 for z > 0;

proofs can be generalized to the two-sided case. For simplicity, we indicate K
(
ti−1−1

hn

)
as Ki,

omitting dependence on n. We use the notation xn ≍ y if c−1yn ⩽ xn ⩽ cyn for a finite positive

constant c > 1. Finite constants used in bounds are denoted by C,C ′ and they can vary from

line to line. For simplicity we assume
∆n,i

∆n
−→ C uniformly in i, which can be readily generalized

using
∆n,i

∆n
−→ H ′(ti) uniformly in i, as in Assumption 3. When Xn = Yn + op(Yn), we write

Xn
p∼ Yn.

Lemma S-1 Define

Dτ,n :=
1

hn

n∑
i=2

Ki

(∫ ti

ti−1

µvdv

∫ ti−1

ti−2

µv√
∆n,i−1

dv

)
. (S-1)

Under Assumptions 1-2, the following estimate holds:

Dτ,n −
√
∆nµ

2
1 = Op

(
∆1/2

n +
√
∆nh

min{Γ/2,B}
n

)
. (S-2)

Proof. Consider the decomposition Dτ,n = D1
τ,n +D2

τ,n +D3
τ,n, where

D1
τ,n :=

1

hn

n∑
i=2

Ki

(∫ ti

ti−1

µvdv

∫ ti−1

ti−2

µv√
∆n,i−1

dv

)
− 1√

∆nhn

n∑
i=2

Ki

(∫ ti

ti−1

µvdv

)2

;

D2
τ,n :=

1√
∆nhn

n∑
i=2

Ki

(∫ ti

ti−1

µvdv

)2

−
√

∆n

∫ t

0

1

hn
K

(
v − τ

hn

)
µ2
vdv;

D3
τ,n :=

√
∆n

∫ t

0

1

hn
K

(
v − τ

hn

)
µ2
vdv −

√
∆nµ

2
1.

For the first term, write ξn,i = ∆n,i/∆n. By assumptions, c1 ≤ ξn,i ≤ c2. We have:

D1
τ,n =

1

hn

n∑
i=2

Ki

∫ ti

ti−1

µvdv

∫ ti−1

ti−2

µv

(
1√

∆n,i−1

− 1√
∆n

)
dv

=
1

hn
√
∆n

n∑
i=2

Ki

∫ ti

ti−1

µvdv

∫ ti−1

ti−2

µv

(√
ξn,i − 1

)
dv

S-1



Now, using the stochastic continuity of µt in Eq. (2) and the fact that

1

hn

n∑
i=2

Ki∆n,i → 1,

we obtain D1
τ,n = Op(

√
∆n). Using similar computations as in Lemma 1 and Lemma 2 of

Christensen, Oomen, and Renò (2022), the kernel properties and Assumption 1, we obtain

D2
τ,n = Op(

1
n3/2hn

) and D3
τ,n = Op(

√
∆nh

min{Γ/2,B}
n ), with B defined as in Assumption 2. Then it

is enough to sum the orders to conclude. □

Proof. [Proof of Theorem 2.1] We write

Xt = X ′
t +X ′′

t

where X ′
t =

∫ t
0 µu(1 − u)−αdu +

∫ t
0 σu(1 − u)−βdWu and X ′′

t is the jump part. We first show

that, without loss of generality, we can set X ′′
t = 0. This is a consequence of Theorem 13.3.3,

part (b) in Jacod and Protter (2012), henceforth JP12, which is warranted by the condition

hnn
c → c′ ∈ (0,+∞) (since kn in Theorem 13.3.3 of JP12 is nhn in our case, and this assumption

implies Eq. (13.3.14) and in turn Eq. (13.3.13) with β = 0 in JP12). Application of Theorem

13.3.3 in JP12 requires conditions (iii), (iv) and (v) in Assumption 1. Theorem 13.3.3 in JP12 is

for the localized variance estimator (the denominator of LAC) with a uniform kernel, but it can

be generalized to the numerator as in Remark 13.3.6 in JP12 (using the globally even function

F (x, y) = xy instead of the function F (x, y) = |xy| considered there), to a kernel satisfying

Assumption 2 and to observation times as in Assumption 3 following the proof of Lemma 3 in

Christensen, Oomen, and Renò (2022). The condition r < 2
2−c is Eq. (13.3.15) in JP12 as derived

from Lemma 13.2.6 in JP12. We can use the same Lemma in our case, applying it to the function

F (x, y) = xy instead of the function F (x) = x2 (used for spot variance estimation in Theorem

13.3.3 in JP12). The only change would be the value of s′ = 1 (instead of s′ = 2), but s′ does not

appear in the first rate of Eq. (13.2.21) in JP12 so the restrictions on r are the exact same. The

term s′ appears in the the second rate of Eq. (13.2.21) in JP12, but the negligibility of this term

S-2



with respect to the leading order n
1−c
2 (which is exactly

√
kn in the notation of Theorem 13.3.3

in JP12) is automatically satisfied by a suitable truncation rate ω̄, which in our case is sufficient

to neglect this term since we do not truncate.

We then set X ′′
t = 0. We then divide the proof in steps for clarity.

1. First, we study the case where α = β = 0. Let us consider the following decomposition of

the test statistic: √
hn
K2

LACn
1 −

√
∆nµ

2
1

σ̂2
n

1

+

√
hn
K2

√
∆nµ

2
1

σ̂2
n

1

. (S-3)

The second term is Op(
√
∆nhn), since:√

hn
K2

√
∆nµ

2
1

σ̂2
n

1

≤ C
√
∆nhn

due to the boundedness of the processes µ, σ and the assumptions on kernel. Now we

concentrate on the first term. Note that:

1

hn

n∑
i=2

Ki

(
∆n

i X
∆n

i−1X√
∆n,i−1

)
= Dτ,n + Vτ,n + Cτ,n,

where Dτ,n is defined in Lemma S-1, and

Vτ,n :=
1

hn

n∑
i=2

Ki

(∫ ti

ti−1

σsdWs

∫ ti−1

ti−2
σsdWs√

∆n,i−1

)
;

Cτ,n :=
1

hn

n∑
i=2

Ki

[(∫ ti

ti−1

µsds

∫ ti−1

ti−2
σsdWs√

∆n,i−1

)
+

(∫ ti

ti−1

σsdWs

∫ ti−1

ti−2
µsds√

∆n,i−1

)]
.

By Lemma S-1:

√
hn(LAC

n
1 (1)−

√
∆nµ

2
1) =

√
hn(Cτ,n + Vτ,n) +Op

(
∆1/2

n h1/2n +
√

∆nh
min{Γ,B}+ 1

2
n

)
︸ ︷︷ ︸

op(1)

.

For the term
√
hnCτ,n, we have:

√
hnCτ,n =

1√
hn

n∑
i=2

Ki

[(∫ ti

ti−1

µsds

∫ ti−1

ti−2
σsdWs√

∆n,i−1

)
+

(∫ ti

ti−1

σsdWs

∫ ti−1

ti−2
µsds√

∆n,i−1

)]
,

which, up to a negligible part due to the stochastic continuity of the process µ in Eq. (2),
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together with hnn
1/2 → 0, and neglecting end effects, can be rearranged as

∑n−1
i=2 vi,n, with:

vi,n = µti−1σti−1

1√
hn

Ki
1√

∆n,i−1

(∫ ti

ti−1

dWs

)(∫ ti−1

ti−2

ds+

∫ ti+1

ti

ds

)
.

Now, we apply Theorem 2.2.14 of Jacod and Protter (2012). Note that
∑n−1

i=2 E[vi,n|Fti−1 ] =

0, and

n−1∑
i=2

E[v2i |Fti−1 ] =
n−1∑
i=2

(µti−1σti−1)
2 ∆n,i

∆n,i−1

1

hn
K2

i (∆n,i−1 +∆n,i+1)
2 = Op (∆n) (S-4)

since µ, σ are bounded and
∑n−1

i=2
∆n,i

hn
K2

i → 1. We conclude that

Cτ,n = Op

(√
∆n√
hn

)

which implies that Cτ,n is dominated by Vτ,n. Indeed, proceeding in the same way,

√
hnVτ,n =

n∑
i=2

ṽi + op(1),

with

ṽi =
σ2
ti−1√
hn

Ki

[∫ ti−1

ti−2
dWs√

∆n,i−1

∫ ti

ti−1

dWs

]
.

Therefore, in order to apply again Theorem 2.2.14 of Jacod and Protter (2012), note that∑n
i=2 E[ṽi|Fti−1 ] = 0, and by Itō’s lemma:

n∑
i=2

E[ṽ2i |Fti−1 ] =

n∑
i=2

σ4
ti−1

1

hn
K2

i


(∫ ti−1

ti−2
dWs

)2
∆n,i−1

E

(∫ ti

ti−1

dWs

)2 ∣∣Fti−1




=

n∑
i=2

1

hn
K2

i

∆n,i

∆n,i−1
σ4
ti−1

(∫ ti−1

ti−2

dWs

)2
 .

Taking again the conditional expectation it follows that:

√
hnVτ,n → N (0,K2σ

4
1). (S-5)
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Therefore (S-3) reduces to:√
hn
K2

Vτ,n

σ̂2
n

1

+Op

(
∆1/2

n

√
hn +∆1/2

n h
min{Γ,B}+ 1

2
n

)
+Op(

√
∆n).

The second and third term are op(1), and the first term converges stably in law to a standard

normal distribution by (S-5) and the consistency of σ̂2
n

1 when α = β = 0.

2. Now we consider 0 < α < 1 and 0 < β < 1/2. For simplicity, from now on we omit

the subscript 1. We begin by decomposing the numerator of Eq. (6) into the same three

components:

Dn =
1

hn

n∑
i=2

Ki

(∫ ti

ti−1

µs(1− s)−αds

∫ ti−1

ti−2

µs√
∆n,i−1

(1− s)−αds

)
;

Cn =
1

hn

n∑
i=2

Ki

[(∫ ti

ti−1

µs(1− s)−αds

∫ ti−1

ti−2

σs√
∆n,i−1

(1− s)−βdWs

)

+

(∫ ti

ti−1

σs(1− s)−βdWs

∫ ti−1

ti−2

µs√
∆n,i−1

(1− s)−αds

)]
;

Vn =
1

hn

n∑
i=2

Ki

(∫ ti

ti−1

σs(1− s)−βdWs

∫ ti−1

ti−2

σs√
∆n,i−1

(1− s)−βdWs

)
.

For the first term we have:

Dn
p∼ 1

hn

n∑
i=2

Kiµ
2
i−1

(∫ ti

ti−1

(1− s)−αds

∫ ti−1

ti−2

1√
∆n,i−1

(1− s)−αds

)

=
1

hn

n∑
i=2

Kiµ
2
i−1

1

(1− α)2
√
∆n,i−1

((1− ti)
1−α − (1− ti−1)

1−α)((1− ti−1)
1−α − (1− ti−2)

1−α)

=
1

hn

n∑
i=2

Kiµ
2
i−1

1√
∆n,i−1

(1− ξi)
−α(1− ξi−1)

−α∆n,i∆n,i−1,

where in the first line we used the stochastic continuity of µt and in the third line we used

the mean value theorem for suitable numbers ti−1 < ξi < ti. Now, since ξi < 1 for all i, we

can Taylor expand:

(1− ξi)
−α = (1− ξi−1 − (ξi − ξi−1))

−α ≈ (1− ξi−1)
−α + α(ξi − ξi−1)(1− ξi−1)

−α−1. (S-6)
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Consequently, we write Dn = D1,n +D2,n, where

D1,n =
1

hn

n∑
i=2

Kiµ
2
i−1

1√
∆n,i−1

(1− ξi−1)
−2α∆n,i∆n,i−1

D2,n =
1

hn

n∑
i=2

Kiµ
2
i−1

1√
∆n,i−1

α(ξi − ξi−1)(1− ξi−1)
−2α−1∆n,i∆n,i−1

For the term D1,n, we first notice that, by assumption on sampling times and the bound-

edness of µt,

D1,n
p∼ ∆

1/2
n

hn

n∑
i=2

Ki(1− ξi−1)
−2α∆n,i−1.

When α < 1/2, we just use Riemann integration and after a change of variable (as for the

term An in the proof of Theorem 2 of Christensen, Oomen, and Renò, 2022), we have

D1,n
p∼ n−1/2h−2α

n mK(−2α),

where mK(−2α) =
∫ 0
−∞K(x)(−x)−2α. For the case α > 1/2, we first notice that, using the

assumptions on sampling times, and since ti−1 < ξi < ti,

D1,n−1 ≤
1

hn

n−1∑
i=2

Kiµ
2
i−1

1√
∆n,i−1

(1− ti)
−2α∆n,i∆n,i−1 ≤ C ′∆

3/2
n

hn

n∑
i=2

Ki(1− ti−1)
−2α

D1,n ≥ 1

hn

n∑
i=2

Kiµ
2
i−1

1√
∆n,i−1

(1− ti−1)
−2α∆n,i∆n,i−1 ≥ C

∆
3/2
n

hn

n∑
i=2

Ki(1− ti−1)
−2α

Now we split the previous summation into two parts. Denote by Cn the set of indexes i such

that Ki ≥ c′n > 0 for a positive sequence c′n: the existence of such a sequence is guaranteed

by the assumptions on the kernel. We have:

D1,n ⩾
Cc′n∆

3/2
n

hn

∑
j∈Cn

(1− tj−1)
−2α +

C∆
3/2
n

hn

∑
j∈Cc

n

Kj(1− tj−1)
−2α

⩾
Cc′n∆

3/2
n

hn

∑
j∈Cn

(1− tj−1)
−2α

⩾C
∆

3/2−2α
n

hn

∑
j∈Cn

(
1− j − 1

n

)−2α

,
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where the second inequality derives from the positivity of the terms j ∈ Cc
n, and the third

from the assumption on times. Now, as c′n → 0, the series is convergent when α > 1/2, and

repeating the same reasoning for the upper bound, we conclude that D1,n ≍ ∆
3/2−2α
n
hn

.

Similarly, when α = 1/2, the properties of the harmonic series imply D1,n ≍ ∆
1/2
n

hn
log(n).

For the second term we have, in the same way, D2,n ≍ ∆
3/2−2α
n

hn
for 0 < α < 1. This is

dominated by D1,n when 0 < α < 1/2.

We now deal with the covariance term. In order to apply Theorem 2.2.14 of Jacod and

Protter (2012), we employ the notation Cn =
∑n

i=2 ni,2 with:

ni,2 :=
1

hn
Ki

[(∫ ti

ti−1

µs(1− s)−αds

∫ ti−1

ti−2

1√
∆n,i−1

σs(1− s)−βdWs

)

+

(∫ ti

ti−1

σs(1− s)−βdWs

∫ ti−1

ti−2

1√
∆n,i−1

µs(1− s)−αds

)]
.

The last term can be rearranged as:

ni,2
p∼ 1

hn
√
∆n

Kiµti−1σti−1

(∫ ti

ti−1

(1− s)−βdWs

)(∫ ti−1

ti−2

(1− s)−αds+

∫ ti+1

ti

(1− s)−αds

)
,

so that we have
∑n−1

i=2 E[ni,2|Fti−1 ] = op(1), and

n−1∑
i=2

E[n2
i,2|Fti−1 ]

p∼ 1

h2n∆n

n−1∑
i=2

K2
i µ

2
ti−1

σ2
ti−1

∆n,i−1(1− ti−1)
−2β

(
∆n,i−2(1− ti−2)

−α +∆n,i(1− ti)
−α
)2

.

Now we use similar expansions as in (S-6) for the terms (1 − ti)
−α and (1 − ti−2)

−α, and

we obtain, when α+ β < 1
2 ,

n−1∑
i=2

E[n2
i,2|Fti−1 ]

p∼ C∆n

h2α+2β+1
n

∫ 0

−∞
K(z)|z|−2α−2β dz +

C∆4
n

h2n

n−1∑
i=2

K2
i (1− ti−1)

−2β−2α−2,

which is Op

(
∆n

h2α+2β+1
n

)
, therefore Cn is of order ∆

1/2
n

h
α+β+1/2
n

. On the other hand, when α+β >
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1
2 , and neglecting the op(1) term,

n−1∑
i=2

E[n2
i,2|Fti−1 ] ⩽ C∆3

n

1

h2n

n∑
i=1

(1− ti)
−2β−2α;

n−1∑
i=2

E[n2
i,2|Fti−1 ] ⩾ c∆3

n

1

h2n

n−1∑
i=2

(1− ti−2)
−2β−2α,

so that, applying the same steps used for the term D1,n, we conclude that Cn ≍ ∆1−α−β
n
hn

and, when α+ β = 1
2 , Cn ≍ ∆

1/2
n
hn

√
log(n).

Finally, for the variance term Vn =
∑n

i=2 ni,3, with:

ni,3 :=
1

hn
Ki

(∫ ti

ti−1

σs(1− s)−βdWs

∫ ti−1

ti−2

1√
∆n,i−1

σs(1− s)−βdWs

)
,

we have

n∑
i=2

E[ni,3|Fti−1 ] = 0,

and

n∑
i=2

E[n2
i,3|Fti−1 ] =

1

h2n

n∑
i=2

K2
i E
[(∫ ti

ti−1

σs(1− s)−βdWs

∫ ti−1

ti−2

1√
∆n,i−1

σs(1− s)−βdWs

)2

|Fti−1

]
.

(S-7)

Using similar computations as for the D1,n term, the last expression can be decomposed

into two parts, and the order of Vn is 1

h
2β+1/2
n

when β < 1
4 , since in this case the dominating

term of (S-7) is equivalent in probability to C

h4β+1
n

σ4
s

∫ 0
−∞K2(x)|x|−4β.

When β > 1
4 , the order of Vn is ∆

1/2−2β
n
hn

, and when β = 1
4 , the order is

√
log(n)

hn
.

3. Now we turn to the denominator. Under Assumption 3, following similar steps to those

in the proof of Theorem 2 in Christensen, Oomen, and Renò (2022), we obtain the order

of the denominator: the rate is ∆2−2α
n /hn + h−2β

n when α − β > 1/2, and it is h−2β
n when

α− β ⩽ 1/2.

4. Finally we combine the results of the different settings. Below, we enumerate the zones
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Figure 9: (α, β)-plane
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Note. The different regions in the (α, β) plane which characterize the different zones in the proof of Theorem 2.1.

accordingly to Figure 9, which is split in the relevant zones to analyze the rates (the splitting

with final results being that of Figure 1, where the zones of Figure 9 that yield the same

asymptotic results are merged).

(Zone 1) Here α + β < 1/2 and β < 1/4. The rates to compare for the three terms

Dn, Cn, Vn are, respectively,
√
∆n

h2α
n

,
√
∆n

h
α+β+1/2
n

and 1

h
2β+1/2
n

. Comparing the first and the second

term, the latter dominates:

1

h2αn
· hα+β+1/2

n = h−α+β+1/2
n → 0

since −α+ β + 1/2 > 0. Then we compare the third term with the second term:

1

h
2β+1/2
n

· h
α+β+1/2
n

∆
1/2
n

=
hα−β
n

∆
1/2
n

→ ∞.

If α− β < 0 this is immediate. If α− β > 0, then we write

(hnn)
α−β

∆
1/2−α+β
n

→ ∞,

since 1/2− α + β > 0. Therefore Vn dominates, and we get that the test is distributed as
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a normal distribution with mean 0 and standard deviation:√
hn
K2

√
1

h4β+1
n

σ4
1

∫ 0
−∞K2(x)|x|−4β

σ2
1h

−2β
n

∫ 0
−∞K2(x)|x|−2β

=

√
K−1

2

∫ 0
−∞K2(x)|x|−4β∫ 0

−∞K2(x)|x|−2β
. (S-8)

(Zone 2) Here α + β < 1/2 and β > 1/4. Compared to the previous zone, the only rate

that changes is Vn, which becomes ∆
1/2−2β
n
hn

and now it dominates the rate of Cn since:

∆
1/2−2β
n

hn
· h

α+β+1/2
n

∆
1/2
n

=
∆−2β

n

h
−α−β+1/2
n

→ ∞.

Therefore Vn dominates and T LAC
n,1 → ∞, since the test statistic is of order

√
hn

∆
1/2−2β
n

hn
h2βn =

∆
1/2−2β
n

h
1/2−2β
n

→ ∞

due to β > 1/4.

(Zone 3) Consider the case α + β < 1 jointly with α > 3/4 and β < 1/4, which readily

implies α + β > α − β > 1/2. In this case, the rates to compare at the numerator are:

∆
3/2−2α
n
hn

for Dn,
∆1−α−β

n
hn

for Cn, and
√

1

h4β+1
n

for Vn. Comparing the rates, it turns out that

Dn dominates, and similar computations as for the previous zone show that T LAC
n,1 → ∞.

(Zone 4) Additionally, if α−β > 1/2 and α+β > 1, which implies α > 1/2, the rate for Vn

is

√
∆1−4β

n
h2
n

if β > 1/4. Therefore Dn still dominates the numerator, and again T LAC
n,1 → ∞

for any possible rate of the denominator. For instance, when the denominator has rate

h−2β
n , the test statistic is of order

√
hn

∆
3/2−2α
n

hn
h2βn =

∆
3/2−2α
n

h
1/2−2β
n

=
∆

3/2−2α
n

h
1/2−2β
n

· n
1/2−2β

n1/2−2β
,

and the denominator converges to zero due to nhn → ∞, while the numerator converges to

infinity due to n−1−2β+2α → ∞.

(Zone 5) Here α + β > 1/2; β < 1/4; α − β < 1/2. The rates to compare for the three

terms are: ∆
3/2−2α
n
hn

for Dn,
∆1−α−β

n
hn

for Cn, and
√

1

h4β+1
n

for Vn if α > 1/2. If α < 1/2 the

rate becomes ∆
1/2
n

h2α
n

for Dn and the others are unchanged. In both cases Vn dominates over
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Cn and Dn, hence the test statistic is distributed as in zone 1 since β < 1/4.

(Zone 6) Here 3/4 > α > 1/2; β < 1/4; α− β > 1/2. The rates to compare for the three

terms are the same as for zone 3. The condition α − β > 1/2 implies that Dn dominates

Cn. Therefore we compare Dn and Vn:

∆
3/2−2α
n

hn
· h2β+1/2

n =
∆

3/2−2α
n

h
−2β+1/2
n

; (S-9)

the limit of the previous ratio is indeterminate, therefore either Dn or Vn dominate. To

study the behavior of T LAC
n,1 , we note that the denominator of T LAC

n,1 has a rate either of

∆2−2α
n /hn or h−2β

n .

If the former rate dominates in the denominator it implies that:

∆2−2α
n

h1−2β
n

=
∆

3/2−2α
n

h
1/2−2β
n

∆
1/2
n

h
1/2
n

→ ∞, (S-10)

and since ∆
1/2
n /h

1/2
n → 0, it is the first term ∆

3/2−2α
n

h
1/2−2β
n

which goes to infinity. This condition

implies that Dn dominates and the test explodes. If instead ∆2−2α
n

h1−2β
n

→ 0 and ∆
3/2−2α
n

h
1/2−2β
n

→ 0

then Vn dominates and the test is distributed as in zone 1. Finally, if ∆2−2α
n

h1−2β
n

→ 0 but

∆
3/2−2α
n

h
1/2−2β
n

→ ∞, Dn dominates and the test explodes again.

Note that the behaviour of the test, i.e. which term dominates asymptotically, depends on

the bandwidth choice. Indeed, for a bandwidth hn ∝ ∆c
n with c > 3/2−2α

1/2−2β , the ratio (S-9)

becomes:

∆
3/2−2α
n

h
1/2−2β
n

= ∆3/2−2α−c(1/2−2β)
n → ∞,

and T LAC
n,1 → ∞. Instead, for c < 3/2−2α

1/2−2β the previous ratio goes to 0 and the test is

distributed as in zone 1 due to the condition β < 1/4.

(Zone 7) Here 1/2 < α+ β < 1; β > 1/4. Both for α > 1/2 and α < 1/2 the dominating

term is Vn . In both cases similar computations as above show that the test explodes.
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(Zone 8) Here α − β < 1/2; β > 1/4; α + β > 1, and Vn dominates. As for the previous

zone, the test explodes.

□

Proof. [Proof of Corollary 2.1]

The consistency of

T LAC
n,1

TCOR
n,1

 follows from Theorem 1 of Christensen, Oomen, and Renò (2022)

and from Theorem 2.1.

The covariance between the tests can be found by applying again Theorem 2.2.14 of Jacod and

Protter (2012). The crucial part is the variance, since the other three conditions are immediate:

therefore we study
∑n

i=2 E[(M̃i)
2|Fti−1 ] with M̃i :=

K2
i

h2
n

√
∆n,i−1

(∆n
i X)2

(
∆n

i−1X
)
. Now, similarly

to Proof of Theorem 2.1:

n∑
i=2

E[(M̃i)
2|Fti−1 ] = h−4

n

n∑
i=2

K4
i


(∫ ti−1

ti−2
dWs

)2
∆n

i−1

E

(∫ ti

ti−1

dWs

)4 ∣∣Fti−1




= Ch−4
n

n∑
i=2

K4
i ∆

2
n

(∫ ti−1

ti−2
dWs

)2
∆n

i−1

= C∆nh
−3
n

∫
K4

sds.

Finally, we consider the standardization of the two test, applied to the previous term:

h2n

K2
2

(
σ̂2

n

1

)3 n∑
i=2

E[(M̃i)
2|Fti−1 ] = C∆nh

−1
n

∫
K4

sds → 0,

due to the boundedness of σ̂2
n

1 and K2, and to hnn → ∞.

The proof readily extends to the case of β < 1/4 and α−β < 1/2, using the same computations

of the proof of Theorem 2.1 for zones 1 and 5, where the rates of the numerator and denominator

compensate, see (S-8), and the results of Theorem 2 of Christensen, Oomen, and Renò (2022). □

Proof. [Proof of Theorem 3.1]

Note that:

Y
+
i,n = Xti + k−1

n

kn−1∑
j=0

(
Xti+j −Xti

)
+ k−1

n

kn−1∑
j=0

ϵti+j , (S-11)
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and similarly

Y
−
i,n = Xti + k−1

n

kn−1∑
j=0

(
Xti−j −Xti

)
+ k−1

n

kn−1∑
j=0

ϵti−j . (S-12)

In view of this we readily get the following decomposition (for s = 1):

LAC
n
1 = LACLn

1 +

8∑
j=1

Rj
n,1 (S-13)

where LACLn
1 is defined as:

LACLn
1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Xt(i+1)Ln

−XtiLn

) (XtiLn
−Xt(i−1)Ln

)
√
tiLn − t(i−1)Ln

(S-14)

and

R1
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)
k−1
n

kn−1∑
j=0

ϵt(i+1)Ln−j
− ϵtiLn+j

 k−1
n

∑kn−1
j=0 ϵtiLn−j − ϵt(i−1)Ln+j√

tiLn − t(i−1)Ln

;

R2
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)k−1
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)
·

(
k−1
n

∑kn−1
j=0

(
XtiLn−j −XtiLn

)
−
(
Xt(i−1)Ln+j

−Xt(i−1)Ln

))
√

tiLn − t(i−1)Ln

;

R3
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)

·

k−1
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

) k−1
n

∑kn−1
j=0 ϵtiLn−j − ϵt(i−1)Ln+j√

tiLn − t(i−1)Ln

;

R4
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)

·

k−1
n

kn−1∑
j=0

ϵt(i+1)Ln−j
− ϵtiLn+j


(
k−1
n

∑kn−1
j=0

(
XtiLn−j −XtiLn

)
−
(
Xt(i−1)Ln+j

−Xt(i−1)Ln

))
√

tiLn − t(i−1)Ln

;

R5
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Xt(i+1)Ln

−XtiLn

) k−1
n

∑kn−1
j=0 ϵtiLn−j − ϵt(i−1)Ln+j√

tiLn − t(i−1)Ln

;

R6
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)
k−1
n

kn−1∑
j=0

ϵt(i+1)Ln−j
− ϵtiLn+j


(
XtiLn

−Xt(i−1)Ln

)
√
tiLn − t(i−1)Ln

;
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R7
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Xt(i+1)Ln

−XtiLn

) ∑kn−1
j=0

(
XtiLn−j −XtiLn

)
−
(
Xt(i−1)Ln+j

−Xt(i−1)Ln

)
kn
√

tiLn − t(i−1)Ln

;

R8
n,1 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

) ∑kn−1
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)
kn

(
XtiLn

−Xt(i−1)Ln

)
√

tiLn − t(i−1)Ln

.

Notice that given the assumptions on n,Ln, kn and hn, the proof of Theorem 2.1 immediately

extends to LACLn
1 for the product of the returns

(
Xt(i+1)Ln

−XtiLn

)(
XtiLn

−Xt(i−1)Ln

)
, with

the filtration Fi replaced by FiLn and σ̂2
n

1 replaced by:

(σ̃n
1 )

2 =
1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Y

−
(i+1)Ln,n − Y

+
iLn,n

)2
.

Therefore, to prove the statement it is enough to show that the dominating term of LAC
n
1 in

(S-13) is LACLn
1 ; and that the dominating term of (σ̃n

1 )
2 is:

(σ̃n,1
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Xt(i+1)Ln

−XtiLn

)2
.

We start to prove the theorem under the null hypothesis of no bursts.

In this case, LACLn
1 has order h

−1/2
n . Now prove that the order of the reminders are negligible

compared to the order of LACLn
1 . Starting from R1

n,1, due to Ln > kn and the assumptions on

the noise, E
[
R1

n,1

]
= 0. Moreover, there exists a C > 0 such that

E
[
(R1

n,1)
2
]

=
1

h2n

[n−kn+1
Ln

−1]∑
i=1

K2

(
tiLn − 1

hn

)
· E


k−1

n

kn−1∑
j=0

(
ϵt(i+1)Ln−j

− ϵtiLn+j

)
·
k−1
n

∑kn−1
j=0

(
ϵtiLn−j − ϵt(i−1)Ln+j

)
√
tiLn − t(i−1)Ln

2


=
1

h2nk
2
n

C

Ln∆n

[n−kn+1
Ln

−1]∑
i=1

K2

(
tiLn − 1

hn

)
.

Therefore, since ∣∣∣∣∣∣∣
1

hn

[n−kn+1
Ln

−1]∑
i=1

K2

(
tiLn − 1

hn

)
(t(i+1)Ln

− tiLn)

∣∣∣∣∣∣∣ ≤ C (S-15)
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we conclude that

R1
n,1 = Op

(
1

h
1/2
n knLn∆n

)
. (S-16)

To study the order of R2
n,1, we apply again Theorem 2.2.14 of Jacod and Protter (2012); call

r2n,1 :=
1

hn
K

(
tiLn − 1

hn

)k−1
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)
·

(
k−1
n

∑kn−1
j=0

(
XtiLn−j −XtiLn

)
−
(
Xt(i−1)Ln+j

−Xt(i−1)Ln

))
√
tiLn − t(i−1)Ln

,

then the order of R2
n,1 can be derived from the conditional variance:

[n−kn+1
Ln

−1]∑
i=1

E[r2n,1 | FiLn ] =

1

h2n

[n−kn+1
Ln

−1]∑
i=1

K2

(
tiLn − 1

hn

)
· E

k−1
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)

·
k−1
n

∑kn−1
j=0

(
XtiLn−j −XtiLn

)
−
(
Xt(i−1)Ln+j

−Xt(i−1)Ln

)
√
tiLn − t(i−1)Ln

2
∣∣∣∣∣∣∣ FiLn

 .

Due to the conditional independence of the two products in the previous summation, and using

|Xt(i+1)Ln−j
−Xt(i+1)Ln

| = Op(
√
kn∆n) we obtain:

[n−kn+1
Ln

−1]∑
i=1

E[r2n,1 | FiLn ] ≤
C

h2nLn∆n

[n−kn+1
Ln

−1]∑
i=1

K2

(
tiLn − 1

hn

)
k2n(kn∆n)

2 + k4n(kn∆n)
2

k4n
.

Now using again (S-15) we get:

R2
n,1 = Op

(
kn

h
1/2
n Ln

)
. (S-17)

Similar computations applied to the components of R3
n,1, together with the independence of

the price and noise processes, lead to:

R3
n,1 = Op

(
1

h
1/2
n Ln

√
∆n

)
.

The previous result holds replacing R3
n,s with R4

n,1 due to symmetry. A similar argument also
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gives:

R5
n,1 = Op

(
1√

hnknLn∆n

)
. (S-18)

and the same applies to R6
n,1. Finally, we have:

R7
n,1 = Op

( √
kn√

hnLn

)
, (S-19)

and similarly for R8
n,1.

It is immediate to verify that, given the conditions Lnkn∆n → ∞ and Ln/kn → ∞, the order

of the reminders is asymptotically negligible compared to the order of LACLn
1 .

Moving to the denominator, employing again (S-11) and (S-12), the order of (σ̃n
1 )

2 can be

studied from the order of following components:

(σ̃n,1
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Xt(i+1)Ln

−XtiLn

)2
;

(σ̃n,2
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)
k−2
n

kn−1∑
j=0

ϵt(i+1)Ln−j
− ϵtiLn+j

2

;

(σ̃n,3
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)
k−2
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)2

,

and by the cross-products

(σ̃n,4
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)(
Xt(i+1)Ln

−XtiLn

)
k−1
n

kn−1∑
j=0

ϵt(i+1)Ln−j
− ϵtiLn+j

 ;

(σ̃n,5
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)
k−2
n

kn−1∑
j=0

ϵt(i+1)Ln−j
− ϵtiLn+j


·

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

) ;

(σ̃n,6
1 )2 =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − 1

hn

)
k−1
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)
·
(
Xt(i+1)Ln

−XtiLn

)
.
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The order of (σ̃n,1
1 )2 is 1. Similar computations as for the numerator show that (σ̃n,2

1 )2 is

Op(
1

knLn∆n
) which is negligible due to knLn∆n → ∞. Similarly, (σ̃n,3

1 )2 is Op(
kn
Ln

), which is

also o(1). Moreover, the orders of the cross-terms are (σ̃n,4
1 )2 = Op(

1√
hnkn

), (σ̃n,5
1 )2 = Op(

1√
Lnhn

)

and (σ̃n,6
1 )2 = Op

(√
kn∆n
hn

)
. Due to the assumptions on the hn, kn and Ln the cross terms are

negligible and we conclude.

Now we consider the case 0 < α < 1 and 0 < β < 1/2, when the drift and/or the volatility

burst. In this case, referring to the zones of Figure 9:

LACLn
s ≍ 1

h
2β+ 1

2
n

, for zones 1, 5 and 6;

LACLn
s ≍

(
Ln∆n

) 1
2
−2β

hn
, for zones 2, 7 and 8;

LACLn
s ≍

(
Ln∆n

) 3
2
−2α

hn
, for zones 3, 4 and 6.

Since the rates above are dominating h
−1/2
n , which is the rate of LACLn

s under no bursts, it

follows that the reminder term R1
n,s is again negligible compared to LACLn

s . In order to study

the other reminders, note that using the notation:

X̃2
n,i =

k−1
n

kn−1∑
j=0

(
Xt(i+1)Ln−j

−Xt(i+1)Ln

)
−
(
XtiLn+j −XtiLn

)
we can write

R2
n,s =

1

hn

[n−kn+1
Ln

−1]∑
i=1

K

(
tiLn − s

hn

)
X̃2

n,i

X̃2
n,i−1√

tiLn − t(i−1)Ln

Compared to LACLn
s , the reminder above contains the product X̃2

n,iX̃
2
n,i−1 inside the summation,

instead of
(
Xt(i+1)Ln

−XtiLn

)(
XtiLn

−Xt(i−1)Ln

)
. The order of the former is (kn∆n)

2−2α +

(kn∆n)
1−β, which is dominated by the order of the latter, which is (Ln∆n)

2−2α + (Ln∆n)
1−β,

due to Ln/kn → ∞. Therefore LACLn
s dominates R2

n,s. A similar argument applies to the other

reminders, as well as to the denominator: the comparison in this cases is immediate, using the

previous results together with k−1
n

∑kn−1
j=0 ϵtiLn−j − ϵt(i−1)Ln+j

= Op(k
−1/2
n ). □
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