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Abstract

Conventional methods for cluster-robust inference are inconsistent when clusters of

unignorably large size are present. We formalize this issue by deriving a necessary and

sufficient condition for consistency, a condition frequently violated in empirical studies.

Specifically, 77% of empirical research articles published in American Economic Review

and Econometrica during 2020–2021 do not satisfy this condition. To address this

limitation, we propose two alternative approaches: (i) score subsampling and (ii) size-

adjusted reweighting. Both methods ensure uniform size control across broad classes of

data-generating processes where conventional methods fail. The first approach (i) has

the advantage of ensuring robustness while retaining the original estimator. The second

approach (ii) modifies the estimator but is readily implementable by practitioners using

statistical software such as Stata and remains uniformly valid even when the cluster

size distribution follows Zipf’s law. Extensive simulation studies support our findings,

demonstrating the reliability and effectiveness of the proposed approaches.
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1 Introduction

Cluster-robust (CR) standard errors are designed to account for within-cluster correlations.

Such correlations often arise by construction, for example, within an industry (Hersch, 1998)

or within a state (Bertrand, Duflo, and Mullainathan, 2004). Today, even when a model does

not inherently induce cluster dependence, the application of CR methods using observable

group identifiers has become a common practice.

The foundational theory (White, 1984; Liang and Zeger, 1986; Arellano, 1987) for CR

inference methods assumes small cluster sizes Ng (uniformly bounded above by N ă 8)

with a large number of clusters, G Ñ 8, where Ng denotes the number of entities in the

g-th cluster for g P t1, 2, . . . , Gu. Procedures based on this theory are implemented through

the ‘cluster()’ and ‘vce(cluster)’ options in Stata, and they are utilized in nearly all, if

not all, empirical studies that report CR standard errors.

It has been recognized that large cluster sizes Ng can result in inflated CR standard

errors (e.g., Cameron and Miller, 2015, p. 324). Recent theoretical advancements (Djogbe-

nou, MacKinnon, and Nielsen, 2019; Hansen and Lee, 2019; Hansen, 2022b; Bugni, Canay,

Shaikh, and Tabord-Meehan, 2024) accommodate larger cluster sizes Ng, eliminating the

requirement that Ng ď N and thereby broadening the applicability of the ‘cluster()’

and ‘vce(cluster)’ options, among others. With this said, they still impose the restric-

tion maxgN
2
g {N Ñ 0 of vanishing maximum cluster size relative to the whole sample size

N “
řG

g“1Ng as G Ñ 8.

A natural question is whether the relaxed condition maxgN
2
g {N Ñ 0 accommodates a

wide range of data sets. To answer this, we analyze 31 published articles.1 All of these

articles employ the aforementioned Stata options for CR standard errors, thereby implicitly

assuming maxgN
2
g {N Ñ 0. Table 1 summarizes the number of articles with maxgN

2
g {N

falling into each bin on a logarithmic scale. Notably, 55 percent (respectively, 39, 29, and

16 percent) of the articles use data sets where maxgN
2
g {N ě 1 (respectively, ě 10, ě 100,

1We studied all articles published in American Economic Review and Econometrica between 2020 and
2021. Among them, we extracted a list of papers reporting estimation and inference results based on
regressions, IV regressions, and their variants. Furthermore, we focus on articles using publicly available
data sets for replication. See Section 3 for further details of this study.
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The Distribution of maxgN
2
g {N in Empirical Economic Research: 2020–2021

maxgN
2
g {N

0.1– 1– 10– 100– ě1000
ă0.1 1 10 100 1000

American Economic Review 4 8 4 1 3 1
Econometrica 2 0 1 2 1 4

Total 6 8 5 3 4 5
(19%) (26%) (15%) (10%) (13%) (16%)

Table 1: Number of articles with maxgN
2
g {N falling in each of the bins r0, 0.1q, r0.1, 1q,

r1, 10q, r10, 100q, r100, 1000q and r1000,8q in the logarithmic scale. The articles are drawn
from those papers published in American Economic Review and Econometrica during the
period of 2020-2021. We focus on those papers that report CR standard errors for regression
and IV regression estimates with publicly available data sets for replication. For each paper
running more than one regression, we take the largest maxgN

2
g {N among the regressions.

and ě 1000). In other words, the condition maxgN
2
g {N Ñ 0, required for the validity of

conventional CR inference, may not hold for a nontrivial portion of these published articles.

The condition maxgN
2
g {N Ñ 0 is sufficient but not necessary for asymptotic normality,

implying that the adequacy of normality-based confidence intervals and tests cannot be eval-

uated solely by assessing the plausibility of this condition. To address this, we establish a

necessary and sufficient condition for the validity of conventional cluster-robust (CR) infer-

ence—see Theorem 1. Specifically, the limiting distribution is normal if and only if the score

of the largest cluster is ignorable. When clusters are unignorably large, regression estimates

exhibit non-normal limiting distributions, as illustrated in Figure 1.2 Using this character-

ization, formal statistical tests based on Sasaki and Wang (2023) reject the null hypothesis

of normality in 24 of the 31 papers (77 percent) reported in Table 1 – see Table 3.

Non-normal limiting distributions invalidate conventional critical values, such as “1.96,”

as well as bootstrap critical values. For example, using 1.96 results in sizes of 0.053, 0.087,

and 0.250 (instead of the desired 0.050) when the nuisance parameter α equals 1.75, 1.50,

and 1.25, respectively, as shown in Figure 1. The empirical bootstrap fails in these cases of

infinite variance, and the widely used wild cluster bootstrap and pairs cluster bootstrap are

also inconsistent. Later, we formally establish these negative results as Proposition 1.

To address this issue, we propose two reliable methods for clustered data: (i) subsampling-

2Details on these non-normal distributions are provided in Section 3.
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Figure 1: Illustration of non-normal limiting distributions in the presence of unignorably
large clusters. Details about the different shapes indexed by α and p are found in Section 3.

0. 1. 2.
Conventional Subsampling SACR

OLS in Estimand e e ˆ
Estimand And

Estimate Change

Allows for Heavy-Tailed ˆ e e

Cluster-Size Distributions
Two+ Moments
Are Required

Compatible with Zipf’s Law ˆ ˆ e

Cluster-Size Distributions
Two+ Moments
Are Required

One+ Moments
Are Required

Table 2: Advantages and disadvantages of alternative approaches to cluster-robust inference.
While the existing literature provides the 0. Conventional approach, we propose the 1.
Subsampling and 2. SACR approaches in this paper.

based inference and (ii) size-adjusted cluster-robust (SACR) estimation. The former (i) has

the advantage of retaining the original OLS estimate while the latter (ii) is both easy to

implement and well-suited for cluster size distributions that follow Zipf’s law. Both methods

provide valid critical values adaptively across all limiting distributions depicted in Figure 1.

The advantages and disadvantages of the alternative methods are summarized in Table 2.

We demonstrate that the proposed inference procedures adapt seamlessly to both normal

and non-normal limiting distributions. This adaptability is established through uniform size

control across a wide range of models, including data-generating processes with ignorable and

notably large clusters. To ensure this uniform validity, we introduce a novel convergence-in-

distribution result for row-wise i.i.d. triangular arrays with heavy tails and converging tail
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exponents. This represents the first theoretical result on the uniformity of subsampling for

models with potentially infinite variance. Simulation studies further confirm the reliability

of our methods.

Related Literature: The literature of cluster robust inference has a long history dating

back to White (1984), Liang and Zeger (1986), and Arellano (1987). For a thorough review

of the literature, we refer the readers to Cameron and Miller (2015) and MacKinnon, Nielsen,

and Webb (2023). The sampling frameworks in which cluster sizes are treated as a random

variable have been recently investigated by Bugni et al. (2024), Cavaliere, Mikosch, Rah-

bek, and Vilandt (2024), and Bai, Liu, Shaikh, and Tabord-Meehan (2022). We consider a

model-based perspective with an increasing number of clusters and unrestricted intra-cluster

dependence, as the vast majority of the papers did in this literature. An alternative frame-

work is a fixed number of clusters with growing cluster sizes and manage to derive asymptotic

normality under some extra assumptions on weak intra-cluster cluster dependence following

Canay, Santos, and Shaikh (2021), as well as design-based asymptotics3 under some stronger

treatment assignment rules, such as randomized experiments, considered by Abadie, Athey,

Imbens, and Wooldridge (2023).

In an insightful recent work, Kojevnikov and Song (2023) establish an impossibility result

for consistent estimation of asymptotic variance when the sample contains only a single large

cluster under a triangular array setup. They also provide a necessary and sufficient condition

on the cluster structure for the asymptotic variance to be consistently estimable. Our findings

complement their impossibility result by showing the failure of normal approximation for t-

statistics in the presence of unignorably large clusters. Our proposed procedure overcomes

this limitation as it does not rely on consistent variance estimation. We demonstrate that

the variance estimator, when normalized by an unknown rate, converges in distribution,

and we formally derive its limiting stable distribution in such scenarios. Moreover, the

implementation of the proposed score subsampling inference procedure does not require

knowledge of this unknown rate, owing to the self-normalizing nature of the test statistics.

3See Reichardt and Gollob (1999) for an in-depth philosophical discussion on the model-based versus
design-based perspectives.
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Our key distributional approximation results for the self-normalized sums are due to

Logan, Mallows, Rice, and Shepp (1973), LePage, Woodroofe, and Zinn (1981), and Giné,

Götze, and Mason (1997). For theoretical details of the underlying foundations of probability

and statistics for heavy-tailed distributions, we refer the reader to Resnick (1987, 2007). Our

uniformity result relies on the general uniformity theory for subsampling studied in Romano

and Shaikh (2012). For the failure of empirical bootstrap for means of random variables with

infinite variances, see, e.g., Athreya (1987), Arcones and Giné (1989), and Knight (1989).

Our inference procedure relies on the theory of resampling method developed in Politis and

Romano (1994) and Romano and Wolf (1999). Also, see Politis, Romano, and Wolf (1999)

for a comprehensive treatment.

Finally, it is worth connecting our paper to the literature on economic geography and

urban economics, where researchers often define clusters based on geographical regions such

as states, counties, and cities. A well-established result in this literature is that city sizes

follow Zipf’s law (e.g., Gabaix, 1999), which implies a unit Pareto exponent. This character-

istic, in turn, leads to the nonexistence of the first moment and hence non-normal limiting

distributions of the least squares estimator. These statistical properties pose significant

challenges for conventional inference methods. Beyond the empirical evidence we present

below, this literature provides a theoretical economic foundation for the issues explored in

this paper. Since our SACR method remains uniformly valid in this setting, we recommend

its application in studies involving city-level clustering.

Organization Section 2 sets up the model and inference problem. Section 3 presents the

fragility of the conventional methods based on formal theory and empirical examples. Section

4 introduces the subsampling method, and Section 5 introduces the SACR approach.

2 The Model

While the idea extends to a general class of econometric models, we consider the linear model

Ygi “ X 1
giθ ` Ugi ErUg|Xgs “ 0
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for ease of exposition as well as its popular use in practice, where Xg “ pXg1, . . . , XgNgq1,

Ug “ pUg1, . . . , UgNgq1, g P t1, . . . , Gu indexes clusters, and Ng denotes the size of the g-th

cluster. Define the OLS estimator and its cluster-robust (CR) variance estimator by

pθ “

˜

G
ÿ

g“1

Ng
ÿ

i“1

XgiX
1
gi

¸´1
G

ÿ

g“1

Ng
ÿ

i“1

XgiYgi “

˜

G
ÿ

g“1

X 1
gXg

¸´1 G
ÿ

g“1

pX 1
gXgθ ` Sgq and (2.1)

pV CR
“ aG

˜

G
ÿ

g“1

X 1
gXg

¸´1 ˜

G
ÿ

g“1

pSg
pS 1
g

¸ ˜

G
ÿ

g“1

X 1
gXg

¸´1

, (2.2)

respectively, for some finite sample adjustment factor aG such that aG Ñ 1 as G Ñ 8, where

Sg “
řNg

i“1XgiUgi, pSg “
řNg

i“1Xgi
pUgi, and pUgi “ Ygi ´ X 1

gi
pθ. For simplicity of writing, we set

aG “ 1 throughout as it does not affect our asymptotic arguments.

Consider a linear transformation δ “ r1θ, such that r P R
dimpθq and }r} “ 1, as the

parameter of interest. Let the corresponding estimator and its CR standard error be denoted

by

pδ “r1
pθ and

pσ2
“r1

˜

G
ÿ

g“1

X 1
gXg

¸´1 ˜

G
ÿ

g“1

pSg
pS 1
g

¸ ˜

G
ÿ

g“1

X 1
gXg

¸´1

r,

respectively. We are interested in conducting inference for δ using the t-statistic

ppδ ´ δq

pσ
“

r1ppθ ´ θq
c

r1

´

řG
g“1X

1
gXg

¯´1 ´

řG
g“1

pSg
pS 1
g

¯ ´

řG
g“1X

1
gXg

¯´1

r

(2.3)

based on the CR standard error.

To state our assumption, we introduce a few definitions. A random variable η is said to

be stable if it has a domain of attraction in that there exists a sequence of i.i.d. random

variables ξ1, ξ2, . . . and sequences of positive numbers AG and real numbers DG such that

řG
g“1 ξg ´ DG

AG

d
Ñ η as G Ñ 8.
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A function Lp¨q is said to be slowly varying at 8 if limtÑ8 Lpytq{Lptq “ 1 for all y ą 0.

If η is stable, then AG takes the form of G1{αLpGq for some α P p0, 2s and some slowly

varying function Lp¨q at 8 (cf. Proposition 2.2.13 in Embrechts, Klüppelberg, and Mikosch

1997). If α P p1, 2s, then DG can be chosen to be G ¨ Erξgs. The number α is called the

index of stability, and η is said to be α-stable. In such a case, ξg is said to belong to the

domain of attraction of an α-stable distribution. Although this concept may look esoteric to

some readers, it essentially states that a sum of i.i.d. random variables, after being suitably

centered and normalized, converges in distribution to a limiting random variable, and it,

in particular, encompasses the standard cases where central limit theorems (CLTs) hold.

In other words, econometricians and economists adopting the standard inference (e.g., the

conventional critical value of 1.96) implicitly make this (and even stronger) assumption.

Assumption 1. pX 1
gXg, SgqGg“1 are i.i.d., ErNgs “ c P p0,8q, and the design matrix satisfies

1

G

G
ÿ

g“1

X 1
gXg “ Q ` opp1q

for a finite positive definite matrix Q. For v “ r1Q´1 and for all u1, u2 P Rdimpθq with unit

length, v1Sg and u1
1X

1
gXgu2 belong to the domain of attraction of stable laws with an index

of stability α P p1, 2s.

This assumption is less restrictive than requiring the central limit theorem to hold and

even includes scenarios where the central limit theorem does not apply. We provide some

discussions about Assumption 1. First, this high-level assumption accommodates a broad

class of both standard and non-standard cases considered in econometrics. A low-level suffi-

cient condition is that there exists non-trivial within-cluster dependence and that Ng follows

a power law. In particular, the power law property has been established and documented for

various types of clusters, such as cities and firms. See Gabaix (2009, 2016) for comprehensive

reviews. We illustrate the limitations of existing methods under these conditions in Section

3.1.

Second, the case of α “ 2 encompasses the conventional assumption under which r1ppθ´θq

enjoys the standard convergence rate of
?
G through CLTs. In this case, the limiting α-stable
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distribution must be normal (cf. Geluk and de Haan, 2000, Theorem 2). Furthermore, it

also covers some non-standard cases with a normal limiting distribution but without a finite

variance, e.g., a Pareto random variable with the shape parameter (Pareto exponent) of 2.

Third, on the other hand, the case of α ă 2 entails the power law (de la Peña, Lai, and

Shao, 2009, Theorem 2.24), i.e.,

P p|v1Sg| ą tq “ t´αL1ptq and P p|u1X
1
gXgu2| ą tq “ t´αL2ptq (2.4)

for some slowly varying functions, L1p¨q and L2p¨q, where L2p¨q may depend on u1 and u2.

In this case of α ă 2, the index α of stability coincides with the Pareto exponent4 β in the

sense that α “ mintβ, 2u. Thus, the case of α ă 2 implies infinite variance of the score.

See Theorem 5 in Appendix A.1 for more precise details. In this case, unignorably large

clusters are literally unignorable because the sample sum of the (scaled) scores becomes

asymptotically proportional to the (scaled) score of the largest cluster - see Remark 5 in

Appendix A.2 for more discussions. Hence, the asymptotic distribution cannot be normal.

As discussed in the introduction, the literature on urban economics and economic geogra-

phy has established theoretical results indicating that the sizes cities follow Zipf’s law (e.g.,

Gabaix, 1999). In particular, this implies α “ 1 ă 2 when data are non-trivially clustered

by cities, leading to a non-normal limit distribution.

Finally, the i.i.d. requirement in Assumption 1 is standard in this literature, (cf. Bugni

et al. 2024; Cavaliere et al. 2024; Bai et al. 2022). It is mild because 1) the conditional

distributions of Sg and X 1
gXg given Ng “ ng can be heterogeneous across ng; and 2) the

distributions of individuals within each cluster can be non-identical. In addition, Sg and Xg

can be arbitrarily correlated with the cluster size Ng so long as the exogeneity condition for

the regression is respected.

To simplify the writings, we focus on the case where v1Sg and u
1
1X

1
gXgu2 share the common

index α of stability. This simple setting is rationalized if the tail shape of their distributions

are driven by the tail shape of the distribution of cluster sizes Ng - see Section 3.1 for an

illustrating example. With this said, we emphasize that this setting is not essential and can

4Specifically, the Pareto distribution has CDF F ptq “ 1 ´ t´β for t ě 1.
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be relaxed only at the cost of more cumbersome writing.

3 Fragility of the Conventional CR Methods

In this section, we argue that the conventional methods of CR inference work if and only

if α “ 2. In other words, they are doomed to fail if α ă 2. We start with some heuristic

discussions in Section 3.1 and provide formal theories in Section 3.2. We also discuss how

often researchers encounter cases with α ă 2 in empirical economic studies.

3.1 Some Heuristic Discussions

The intuition behind the fragility of the conventional CR method is straightforward. When

α ă 2, Ng does not have a finite variance. If the intra-cluster dependence is non-trivial, the

infinite variance of Ng is inherited by the score Sg, causing the CLT for the OLS (and other)

estimators to fail. We believe that α ă 2 is plausible in numerous studies and showcase some

recent studies published in Econometrica and American Economic Review in Section 3.2.

To illustrate this argument, let us consider the sample average

pθ “
1

N

G
ÿ

g“1

Ng
ÿ

i“1

Ygi,

which is the special case of the OLS (2.1) with Xgi “ 1. The true parameter value becomes

the mean θ “ ErYgis. Without loss of generality, normalize the location to θ “ 0. Further-

more, let us consider the extreme case with perfect intra-cluster dependence, i.e., Ygi ” Yg

for all i P t1, ..., Ngu for each g. Assume Ng is independent from Yg for simplicity. These

simplifying assumptions are just for clear exposition but not essential.

In this case, we have
?
Npθ “

G´1{2
řG

g“1NgYg
b

1
G

řG
g“1Ng

.

The denominator still converges to
a

E rNgs provided α ą 1. For the numerator,

VarrG´1{2
řG

g“1NgYgs is equal to VarrNgs ¨ VarrYgs, which is infinite given α ă 2. In fact,
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Theorem 1 of Geluk and de Haan (2000) implies that, if the distribution of NgYg is α-stable,

then the limiting distribution

x ÞÑ lim
GÑ8

P

˜

1

aG

G
ÿ

g“1

NgYg ´ bG ą x

¸

for some sequences of constants aG » G1{α Ñ 8 and bG P R has the characteristic function

ψα psq “ exp

#

´

˜

|s|α ` is p1 ´ αq tanpαπ{2q
|s|α´1

´ 1

α ´ 1

¸+

.

Thus, the CLT for pθ fails, and the asymptotic distribution will be non-normal. We provide

more discussions about this example in Appendix A.5.

In summary, the stable index α determines the convergence rate and further the asymp-

totic distribution. First, the tail heaviness of Ng translates to that of Sg when intra-cluster

correlation is non-trivial. This results in the t-ratio of the convenctional CR method being

asymptotically normal if and only if α “ 2 - See Theorem 1 and Proposition 1 below.

Second, when α P p1, 2q, the convergence rate is slower than
?
G and the asymptotic

distribution is non-normal. However, no method based on the quantile of the asymptotic

distribution of the t-ratio of the OLS estimator can uniformly control size over α P r1, 2s as

the t-ratio fails to converge in distribution to a limit at α “ 1.

Third, an even more extreme case is when α ă 1. In such scenarios, the population

problem of the OLS may not be well-defined as Er}X 1
gXg}s and Er}Sg}s fail to exist, leading

to an identification failure for the OLS estimator. This echoes the conclusion in Kojevnikov

and Song (2023), who show the impossibility of consistent variance estimation under the

presence of a single unignorably large cluster. This scenario corresponds to an arbitrarily

small α, reflecting extremely heavy tail of Ng.

Remark 1 (Bias from Trimming Large Clusters). In practice, researchers may trim large

clusters by randomly selecting k observations from clusters where Ng ą k. While this ap-

proach may mitigate issues arising from non-normal limiting distributions caused by the

heavy-tailed nature of Ng, it can introduce bias, thereby compromising the validity of infer-
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ence. To illustrate this, consider the following:

0 “ E

«

Ng
ÿ

i“1

Ygi

ff

“ E rkYg1tNg ď kus ` E rpNg ´ kqYg1tNg ą kus “: θpkq ` λpkq.

Here, θpkq represents what the trimmed estimator identifies, while λpkq denotes a poten-

tial bias term. This bias, λpkq, can be nonzero if the distribution of Yg depends on Ng. For

readability, we decide to suppress details of this bias, which are available upon request.

3.2 Formal Theory

The following theorem formalizes and generalizes the discussions in the previous subsection.

Theorem 1 (Necessary and sufficient condition). Suppose that Assumption 1 is satisfied for

an α P p1, 2s, then the t-statistic (2.3) is asymptotically normal if and only if α “ 2.

A proof is found in Appendix B.3. This theorem implies that the conventional inference

based on the common variance estimators, such as CR1, CR2, CR3, and jackknife, together

with the normal critical values (e.g., «1.96 for the 97.5-th percentile) fails if α ă 2.

We can now discuss Figure 1 shown in the introductory section. Specifically, the left,

middle, and right panels of Figure 1 illustrate the limiting distributions of the t-statistic

under p “ 0.25, 0.50, and 0.75, respectively, where p is the limit ratio of the tail probabilities

defined as

p “ lim
tÑ8

P pv1Sg ą tq

P p|v1Sg| ą tq
, (3.1)

for v is defined in Assumption 1. In each of these three panels, three non-normal limiting

distributions corresponding to α “ 1.25, 1.50, and 1.75 are depicted with distinct line styles,

along with the normal reference case (α “ 2.00). The main takeaway is that the conventional

CR inference, which relies on the normal approximation, becomes increasingly size-distorted

as α decreases and p, a parameter representing the limit of the tail probability ratio, deviates

from 0.5.
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There is certainly another class of conventional approaches, namely the cluster boot-

straps. The are two main bootstrap-based CR inference methods in the literature, namely,

the pairs cluster bootstrap and the wild cluster bootstrap (Cameron, Gelbach, and Miller,

2008). It is well established that the empirical bootstrap is inconsistent when the variance of

the score is infinite (cf. Athreya, 1987; Knight, 1989). In light of the power law characteriza-

tion (2.4), therefore, the pairs cluster bootstrap, which is essentially the empirical bootstrap

performed with individual cluster-wise sums treated as the independent units, is inconsistent

under Assumption 1 with α ă 2. Furthermore, we show in Theorem 6 in Appendix A.3 that

the wild cluster bootstrap is also inconsistent under Assumption 1 with α ă 2. The following

proposition summarizes these results.

Proposition 1 (Failure of the Cluster Bootstraps). Suppose Assumption 1 holds with α ă 2,

then the pairs cluster bootstrap and the wild bootstrap methods are both inconsistent.

Provided that the case of α ă 2 fails all these conventional methods of CR inference,

our natural question now is how common it is to encounter α ă 2 in empirical studies

in economics. We analyzed all the articles published in two leading journals (American

Economic Review and Econometrica) between 2020 and 2021. Among them, we extracted

a list of those papers that report estimation and inference results based on regressions, IV

regressions, and their variants. Furthermore, we focus on those articles that use publicly

available data sets for replication.

For these articles, we test the null hypothesisH0 : α “ 2 against the alternative hypothesis

H1 : α ă 2 for the score. Such a test can be conducted via the likelihood ratio test (Sasaki and

Wang, 2023) of the surrogate null hypothesis H0 : β ě 2 against the alternative H1 : β ă 2

in light of (2.4), where β denotes the tail exponent of the score.5

Table 3 summarizes the list of all the papers we studied. The first two columns list the

journals and years of publication. The following column “All #” indicates the total number of

eligible articles according to the above selection criteria. The column group under “Cluster”

5The test of the null hypothesis H0 : β ě 2 against the alternative hypothesis H1 : β ă 2 is implemented
with the Stata command “testout y x1 x2 ..., cluster(cid)” for the least-squares estimation and
“testout y x1 x2 ..., iv(z) cluster(cid)” for the instrumental variables estimation, both based on
Sasaki and Wang (2023).
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Year of All Cluster
Journal Publication # # Test α ă 2
American Economic Review 2020 15 10 7/10 (70%)
American Economic Review 2021 15 11 9/11 (82%)

Subtotal 30 21 16/21 (76%)

Econometrica 2020 12 7 7/8 (88%)
Econometrica 2021 3 2 1/2 (50%)

Subtotal 15 10 8/10 (80%)

Total 45 31 24/31 (77%)

Table 3: The column “All – #” indicates the total number of eligible articles that use re-
gressions or IV regressions with publicly available data for replication. The column “Cluster
– #” indicates the number of the eligible articles that use CR inference. The column “Clus-
ter – Test α ă 2” indicates the rate of rejecting the null hypothesis α “ 2 among those
articles that use CR inference. The tests of the null hypothesis α “ 2 against the alter-
native hypothesis α ă 2 is implemented with the Stata command “testout y x1 x2 ...,

cluster(cid)” for regressions and “testout y x1 x2 ..., iv(z) cluster(cid)” for IV
regressions based on Sasaki and Wang (2023).

collects articles in which CR inference is used for at least one regression result. Under this

column group, the column “#” shows the numbers of articles, and the column “Test α ă 2”

shows the fractions of those articles for which the test rejects the null hypothesis for at least

one regression specification. The final row displays the summary of each column.

During 2020–2021, American Economic Review published 30 articles meeting our se-

lection criteria. Out of them, 21 articles report CR standard errors. We reject the null

hypothesis for 16 of these 21 articles. In other words, the inference results may be mislead-

ing for 76% of those articles that employ the conventional CR method of inference.

During 2020–2021, Econometrica published 14 articles meeting our selection criteria. Out

of them, 10 articles report CR standard errors. We reject the null hypothesis for 8 of these

9 articles. In other words, the inference results may be misleading for 80% of those articles

that employ the conventional CR method of inference.

Combining two journals, we suspect potentially misleading inference results for as many

as 77% of those 31 articles that employ the conventional CR method. Hence, problematic
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practice is prevalent even in these highly influential journals.6

All the above issues with the conventional CR methods motivate our proposed methods.

The first method retains the OLS estimator, but uses subsampling to accommodate the

non-normal limiting distribution - see Section 4. The second method, size-adjusted cluster

robust (SACR) estimation, reweights the score Sg with weight N´1
g , which suprresses the

effects of the arbitrarily non-ignorable clusters and hence restores the CLT - see Section 5.

4 Score Subsampling as the First Reliable Solution

In light of the issue with the conventional methods of CR inference presented in the previous

section, we now propose a novel method of score subsampling to approximate the limiting

distribution of ppδ ´ δq{pσ.

We first present the proposed method without theoretical details in Section 4.1. Its

theoretical support follows in Section 4.2. Section 4.3 presents simulation studies.

4.1 The Method

Our objective is to conduct statistical inference for δ using the self-normalized t-statistic

(2.3). Let the CDF J˚
G of the sampling distribution of the t-statistic be given by

J˚
Gptq “ P

´

ppδ ´ δq{pσ ď t
¯

.

We will show that it converges to the CDF J˚ of a limiting distribution under suitable

conditions. Consider a sequence of subsample sizes b “ bG that grows with b{G “ op1q as

G Ñ 8. Let BG “
`

G
b

˘

denote the total possible number of subsamples of b clusters. For

a given b and j P t1, ..., BGu, let Bj Ă t1, .., Gu be one of the BG subsamples of the cluster

indices with |Bj| “ b, and define the score-subsampled estimators

pδb,j “r1
pθb,j “

ˆ

G

b

˙

r1

˜

G
ÿ

g“1

X 1
gXg

¸´1
ÿ

gPBj

X 1
gYg and

6Spreadsheets of all the test results with specific papers and specific equations are available upon request.

15



pσ2
b,j “

ˆ

G

b

˙2

r1

˜

G
ÿ

g“1

X 1
gXg

¸´1
¨

˝

ÿ

gPBj

pSg,j
pS 1
g,j

˛

‚

˜

G
ÿ

g“1

X 1
gXg

¸´1

r,

where pSg,j “ X 1
gpYg ´ Xg

pθb,jq. Observe that the inverse factor p
řG

g“1X
1
gXgq´1 is calculated

based on the full sample while the linear component and its variance are computed based

on the subsample Bj. We discuss practical motivations for this feature in Remark 3 below.

Define the empirical CDF L˚
G,b of ppδb,j ´ pδq{pσb,j based on all possible BG-subsamples by

L˚
G,bptq “

1

BG

BG
ÿ

j“1

1
´

ppδb,j ´ pδq{pσb,j ď t
¯

.

It will be shown that J˚ can be approximated by L˚
G,b uniformly as the number G of clusters

grows under suitable conditions. In practice, however, L˚
G,b is computationally infeasible

when G and b are both large. Thus, we randomly draw M such subsamples of b clusters

with replacement, and define

pLG,bptq “
1

M

M
ÿ

j“1

1
´

ppδb,j ´ pδq{pσb,j ď t
¯

.

As M grows with the number G of clusters, this pLG,b can be used in place of L˚
G,b.

For any a P p0, 1q, define the critical value

pcG,bp1 ´ aq “ inf
!

t P R : pLG,bptq ě 1 ´ a
)

.

Since J˚p¨q has no point mass as we shall show, it follows that

P
´

ppδ ´ δq{pσ ď pcG,bp1 ´ aq

¯

Ñ 1 ´ a

as G Ñ 8. Therefore, this critical value leads to theoretically valid tests. In addition, a

confidence region can be obtained by test-inversion.

Practical Implication: For the t-statistic, one can continue to use the conventional CR

“standard error” pσ.7 However, instead of using the conventional critical values, Φ´1p0.025q «

7Note that the “standard error” pσ does not converge in probability when α ă 2.
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´1.96 and Φ´1p0.975q « 1.96, one should use pcG,bp0.025q and pcG,bp0.975q obtained by the score

subsampling to construct a 95% confidence interval for example.

Remark 2 (Practicality of the method). The convergence rate of pδ´ δ is unknown, but the

inference is robust to the unknown rate due to the use of the self-normalized statistic. In

particular, this implies that our inference procedure does not require an estimation of the

unknown index of stability α. Furthermore, it is not necessary to estimate the unknown

slowly varying function either. These features are practical advantages of our proposed

method. ▲

Remark 3 (Finite sample non-invertibility of other cluster-based resampling methods).

In comparison with the (conventional) subsampling, the score subsampling has two major

advantages. First, as it does not require to recompute the inverse factor for each subsample,

the score subsampling is computationally more efficient than the subsampling. Second, in

finite samples, when regressors contain a cluster-specific binary treatment variable or other

dummies variables that are highly correlated within a cluster,
ř

gPBj
X 1

gXg can be often

singular especially for small b “ |Bj|, and thus the subsampled OLS may not behave well

for a non-negligible proportion of subsamples. This issue is also faced by other cluster-

based resampling methods, such as the jackknife and bootstrap. In practice, several ad hoc

‘fixes,’ such as the use of generalized inverse or dropping such realizations, are employed.

However, their theoretical implications remain unclear. Our cluster-robust score subsampling

procedure avoids such an issue in a theoretically supported manner. ▲

4.2 Theoretical Properties

Section 4.2.1 establishes the asymptotic validity of the subsampling method under a fixed

data generating process (DGP). Section 4.2.2 further extends it to the uniform validity over

a broad class of DGPs.

4.2.1 Asymptotic Size Control under a Fixed DGP

The following theorem formally justifies the subsampling method under a fixed DGP.
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Theorem 2 (Cluster robust inference by score subsampling). Suppose that Assumption 1 is

satisfied for α P p1, 2s. If b Ñ 8 and b{G “ op1q as G Ñ 8, then

sup
tPR

|L˚
G,bptq ´ J˚

ptq|
p

Ñ 0

and the limiting distribution J˚p¨q is continuous. In addition, if M Ñ 8, then

sup
tPR

|pLG,bptq ´ J˚
ptq|

p
Ñ 0,

and thus for any significance level a P p0, 1q

P
´

ppδ ´ δq{pσ ď pcG,bp1 ´ aq

¯

Ñ 1 ´ a.

The proof branches into two cases. First, we focus on the pathological case with α ă 2.

The statement for this case is presented as Lemma 1 in Appendix A.2, which is further

proved in Appendix B.1. Appendix B.2 proves the statement for the case with α “ 2, and

combines two cases to establish Theorem 2.

The limiting distribution, which is approximated by our proposed method of score sub-

sampling, is not pivotal. It varies with two parameters: one is the index α of stability, and

the other is p defined in (3.1), which measures the tail asymmetry of the distribution of v1Sg.

Choice of b: We close this section with discussions on the choice of b in practice. While the

theory requires b Ñ 8 and b{G “ op1q as G Ñ 8, a researcher needs to choose some value

of b in a finite sample. We suggest to adapt the minimum volatility method (Algorithm

9.3.3 in Politis et al., 1999, Section 9.3.2) to our framework. Appendix A.4 provides a

detailed algorithmic procedure that a practitioner can readily implement. We also employ

this method to choose b in the numerical studies presented below.

4.2.2 Uniform Asymptotic Size Control

We now discuss the uniformity properties of the proposed score subsampling method. With-

out the uniformity, for any given G (regardless of size), there could exist a DGP, PG, where

the rejection probability under the null hypothesis fails to approach the desired level. Thus,
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the uniformity ensures reliable inference in finite samples, especially when G is moderate.

To simplify the notations and assumptions, we focus on inference for the mean of a

scalar random variable in the current subsection. Consider a triangular array setup: for each

G P N, suppose that we have an i.i.d. sequence pSgqGg“1 “ pSg,GqGg“1, whose distribution is

now P “ PG. Recall that

pδ ´ δ “
1

G

G
ÿ

g“1

Sg and pσ2
“

1

G

G
ÿ

g“1

pS2
g ,

where pSg “ Sg ´ G´1
řG

g“1 Sg. The test statistic of interest is again the t-ratio ppδ ´ δq{pσ.

Henceforth, we will let EP r¨s denote the expectation with respect to the DGP, P , if we

are to emphasize such a dependence. For any ε P r0, 1q, define P1pεq as the set of all the

DGPs, P , such that EP rSgs “ 0, and there exist some p P r0, 1s and α P r1 ` ε, 2q such that

lim
tÑ8

P pSg ą tq

P p|Sg| ą tq
“ p, and (4.1)

P p|Sg| ą tq “ t´αLP ptq as t Ñ 8 (4.2)

for an LP p¨q slowly varying at 8 that can depend on P “ PG. In addition, define P2 as the

set of all DGPs satisfying EP rSgs “ 0 and the following uniform integrability condition

lim
λÑ8

sup
PPP2

EP

„

|Sg ´ EP rSgs|2

σ2pP q
1

"

|Sg ´ EP rSgs|

σpP q
ą λ

*ȷ

“ 0,

where σ2pP q “ EP rS2
g s is finite. Finally, define Ppεq “ P1pεq Y P2. The first set P1pεq

covers the DGPs with heavy tail distributions and with regularly varying tail probabilities

so that the variances of Sg are infinite. The second set P2 covers a rich subset of DGPs in

which the variances of Sg are always finite and contains, in particular, the set of DGPs with

2 ` ϵ moments for any ϵ ą 0. It rules out certain examples such as those in the classical

Bahadur-Savage example under which the t-test fails its size control for every sample size;

see Romano (2004) for more details.

First, we note that when α “ 1, the t-ratio does not converge in distribution in general,

except in very special situations. The following is a direct implication of Logan et al. (1973,

19



p. 790).

Proposition 2. When α “ 1 in (4.2), the t-ratio ppδ´ δq{pσ converges weakly to a nondegen-

erate limiting distribution only if Sg follows a (translation of) Cauchy distribution. Hence,

no confidence set constructed using quantiles of the asymptotic distribution of the t-ratio can

achieve uniform size control over Pp0q.

Nonetheless, we show a next best result holds true: our proposed cluster score sub-

sampling inference controls size uniformly over the set Ppεq if ε ą 0. Note that the score

subsampling coincides with (conventional) subsampling for sample means. Denote

LGpx, P q “
1

BG

BG
ÿ

j“1

1

#

pδb,j ´ δ

pσb,j
ď x

+

, pLGpxq “
1

BG

BG
ÿ

j“1

1

#

pδb,j ´ pδ

pσb,j
ď x

+

.

Further, let the a-th quantile of pLGp¨q be denoted by pL´1
G paq.

Theorem 3 (Uniformity of the cluster score subsampling). For any ε P p0, 1s, the confidence

sets constructed based on cluster score subsampling achieves asymptotically uniform size

control over Ppεq. Explicitly, for any nonnegative a1 and a2 such that 0 ď a1 ` a2 ă 1, we

have

lim
GÑ8

inf
PPP

P

˜

pL´1
G pa1q ď

pδ ´ δ

pσ
ď pL´1

G p1 ´ a2q

¸

“ 1 ´ a1 ´ a2.

A proof can be found in Appendix B.4. The proof utilizes the general results in Romano

and Shaikh (2012) under high-level conditions together with our Lemma 2 in Appendix B.4.

This new lemma establishes a novel convergence in distribution result for row-wise i.i.d.

triangular arrays. Specifically, we consider the sequence of indices αG Ñ α0 P r1 ` ε, 2s as

G Ñ 8, covering the cases with both normal (α0 “ 2) and non-normal (α0 ă 2) limiting

distributions. Recall that the t-test is not uniformly valid over the set of all DGPs with finite

second moments, while it controls size uniformly over the set of all DGPs with finite 2 ` ϵ

moments for any ϵ ą 0 (see e.g. Romano 2004). Our result withPpεq for all ε ą 0 is analogous

to this classic result, although it extends the scope of uniformity to a much larger class of

DGPs with potentially infinite second moments and non-normal limiting distributions.
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Finally, it is noteworthy that our uniform size control property exhibits resemblances

to certain instances in the existing literature. An example is the AR(1) model presented in

Example 1 of Andrews, Cheng, and Guggenberger (2020), where uniform size control persists

across DGPs leading to either normal or non-normal limiting distributions. In that example,

Andrews et al. (2020) demonstrate the continuity of their limiting distribution in a local

parameter h throughout its support, akin to the role served by our nuisance parameters

pα, pq in our asymptotic theory. Notably, while infinite variance poses no hindrance in

Andrews et al. (2020), its presence significantly complicates the analytical framework within

our study. To the best of our knowledge, Theorem 3 stands as the first theoretical result

addressing the uniformity property of subsampling for statistical models that may exhibit

potentially infinite variance.

4.3 Simulations

In this section, we present simulation studies to evaluate the finite sample performance of our

proposed score subsampling method of CR inference in comparison with the conventional

CR methods.

The data-generating design is defined as follows. We consider the cluster treatment model

with individual covariates

Ygi “ θ0 ` θ1Tg `

K
ÿ

j“1

θjXg,i,j`1 ` Ugi

following MacKinnon, Nielsen, and Webb (2022, Equation (40)) among others. The binary

treatment variable Tg takes the value of one for r0.2Gs clusters and zero for the remaining

clustersG´r0.2Gs, where ras denotes the smallest integer greater than or equal to a. We draw

cluster sizes Ng „ rParetop1, αqs independently for g P t1, ¨ ¨ ¨ , Gu. For each g P t1, ¨ ¨ ¨ , Gu,

we independently draw Ng-variate random vectors, p rXg1j, ¨ ¨ ¨ , rXgNgjq
1 „ N p0,Ωq for j P

t1, ¨ ¨ ¨ , Ku and p rUg1, ¨ ¨ ¨ , rUgNgq1 „ N p0,Ωq in the baseline design, where Ω is an Ng ˆ Ng

variance-covariance matrix such that Ωii “ 1 for all i P t1, ¨ ¨ ¨ , Ngu and Ωii1 “ 1{2 whenever

i ‰ i1. The controls are constructed by Xgij “ 0.2F´1
Betap2,2q

˝ Φp rXgijq, where FBetap2,2q and
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Φ denote the CDFs of the Betap2, 2q and standard normal distributions, respectively. The

errors are heteroskedastically constructed by Ugi “ 0.2rUgi if Tg “ 0 and Ugi “ rUgi if Tg “ 1.

We vary values of the exponent parameter α P t1.1, 1.2, ¨ ¨ ¨ , 1.9, 2.0u across sets of simula-

tions. The regression coefficients are fixed to pθ0, θ1, θ2, ¨ ¨ ¨ , θK`1q1 “ p1, 1, 1, ¨ ¨ ¨ , 1q1 through-

out, whereas the dimension K of covariates vary as K P t0, 5, 10u. We set the sample size

(i.e., the number of clusters) to G “ 50 across sets of simulations, which is close to the

number of states in the U.S. Each set of simulations consists of 5,000 Monte Carlo iterations.

Figure 2 illustrates the Monte Carlo coverage frequencies. The horizontal axis measures

the value of α, and the vertical axis measures the coverage frequency. In the legend, ‘SUB’

(respectively, ‘WCB’, ‘JACK’ and ‘CR1’) indicates the score subsampling (respectively, wild

cluster bootstrap, jackknife standard error with normal critical value, and CR1 standard

error with normal critical value). The nominal coverage probability of 95% is indicated by

the horizontal gray line at 0.95.

When α is small, say α ă 1.6, the score subsampling performs the best, followed by the

jackknife, the WCB, and the CR1. When α is larger, say α ą 1.6, the score subsampling

still performs the best, followed by the WCB, the jackknife, and the CR1. Overall, the score

subsampling robustly yields the coverage frequencies closest to the nominal probability of

95% across various values of α. All the conventional methods suffer from sever under-coverage

especially for small values of α.

5 Size-Adjusted Reweighting as the Second Reliable

Solution

The score subsampling method introduced in the previous section is theoretically robust and

sound. However, its practical implementation may pose challenges with existing statistical

software such as Stata. To address this limitation, we introduce an alternative solution based

on size-adjusted reweighting, which can be easily implemented using Stata.

We first present the proposed method without theoretical details in Section 5.1. Its

theoretical support follows in Section 5.2. Section 5.3 presents simulation studies.

22



Figure 2: Monte Carlo coverage frequencies for the baseline design with normal errors. ‘SUB’
(respectively, ‘WCB’, ‘JACK’ and ‘CR1’) indicates the score subsampling (respectively, wild
cluster bootstrap, jackknife standard error with normal critical value, and CR1 standard
error with normal critical value). The nominal coverage probability of 95% is indicated by
the horizontal gray line.

5.1 The Method

To accommodate arbitrarily non-ignorable clusters, we propose using the following size-

adjusted least squares (SACR) method. Modify (2.1) and (2.2) by

pθSACR
“

˜

G
ÿ

g“1

N´1
g X 1

gXg

¸´1 ˜

G
ÿ

g“1

N´1
g X 1

gYg

¸

and (5.1)

pV SACR
pθ

“ aG

˜

G
ÿ

g“1

N´1
g X 1

gXg

¸´1 ˜

G
ÿ

g“1

N´2
g

pSg
pS 1
g

¸ ˜

G
ÿ

g“1

N´1
g X 1

gXg

¸´1

, (5.2)

respectively, where aG Ñ 1 almost surely. Note that aG is stochastic under the current

framework since Ng is random.

We provide a heuristic discussion about the SACR method and will discuss its theoretical

properties in the next subsection. First, the SACR method is easy to implement using an
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existing Stata command and is compatible with nearly all regression-based Stata commands.

Specifically, the SACR method can be readily implemented by

regress y x1 x2 ... [aweight=1/N g], cluster(cid)

in the Stata command line, and other commands may replace regress y x1 x2.

Second, to ensure that pθSACR is consistent for the estimand θ, we replace the conventional

conditional mean independence assumption ErXgUgs “ 0 with the modified assumption

ErN´1
g XgUgs “ 0, accounting for the randomness of Ng in our framework. This assumption

is no stronger than the conventional one, in which Ng is considered deterministic.

Third, compared to the conventional CR method, pθSACR assigns a weight of N´1
g to

the summands X 1
gXg and X 1

gYg for each cluster g. This inverse cluster size mitigates the

dominant effects of extremely large clusters. For example, with 51 states as clusters, pθSACR

allocates equal weight to each state instead of each entity. The size adjustment transforms

the intra-cluster summation X 1
gYg “

řNg

i“1XgiYgi into the intra-cluster average N´1
g X 1

gYg “

N´1
g

řNg

i“1XgiYgi, contributing to maintaining the asymptotic normality unlike the OLS.

5.2 Theoreical Properties

We now present the asymptotic properties of our SACR method. Again, let P be a generic

class of models that generate the triplet pNg, Xg, Ygq. For any P P P , we use the notations

EP for the expectation to emphasize its dependence on P . With these notations, we impose

the following assumptions under slightly more structure than in Section 4.2.

Assumption 2 (Intra-Cluster). There exists a δ ą 0 such that for all P P P , 1.

EP

“

}Xgi}
4`4δ|Ng

‰

P rC3, C4s for 0 ă C1 ă C2 ă 8 almost surely for all i and g. 2.

EP

“

}XgiUgi}
2`2δ|Ng

‰

P rC5, C6s for 0 ă C3 ă C4 ă 8 almost surely for all i and g.

Assumption 3 (Across-Cluster). 1. pNg, Xg, Ygq is i.i.d. across g. 2. EP rN´1
g X 1

gXgs is

non-singular.

Assumptions 2 and 3 are mild and sufficient for establishing the uniform asymptotic

normality for our SACR method. Specifically, Assumption 2 requires that individual obser-
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vations X2
gi and XgiUgi have 2 ` δ finite moments, which is common in the CR literature.

Assumption 3 requires i.i.d.ness across clusters and a full rank condition, typically imposed

in the literature when G Ñ 8. Note that we do not assume any specific intra-cluster cor-

relation structure or distribution of Ng, making it robust against (i) arbitrary intra-cluster

correlations and (ii) non-ignorable clusters. These points are significant because point (i)

is a primary motivation for using CR inference and point (ii) is a recent challenge for the

conventional CR methods. Under Assumptions 2 and 3, the following theorem establishes

the uniform asymptotic normality of our SACR method:

Theorem 4 (Uniformity of Size-Adjusted Reweighting). Suppose P is a set of DGPs that

for each P P P, Assumptions 2 and 3 are satisfied. Then for any significance level a P p0, 1q

and any dimpθq-vector r ‰ 0, we have

sup
PPP

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

¨

˝

r1ppθSACR ´ θq
b

r1
pV SACR

pθ
r{G

ą z1´a

˛

‚´ a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ op1q.

as G Ñ 8, where z1´a denotes the 1 ´ a quantile of the standard normal distribution.

A proof can be found in Appendix B.

This uniform validity is novel in the CR inference literature. We provide some dis-

cussions about this result. First, we note that Assumptions 2 and 3 can be regarded as

sufficient conditions for Assumption 1, provided the score is redefined. Specifically, consider

the cluster-level score rSg “ N´1
g

řNg

i“1XgiUgi. Assumptions 2 and 3 ensure that rSg has a

finite second moment, thereby allowing the central limit theorem to apply as G Ñ 8. Con-

sequently, rSg belongs to the domain of attraction of stable laws with a stability index α “ 2.

The structure of our SACR method enables us to derive more intuitive primitive conditions.

Second, since the asymptotic properties of the SACR method are derived under a different

set of conditions, its uniformity is not directly comparable to that of the subsampling method

studied in Section 4.2.2. However, under the environment of Theorem 4, the uniformity

of SACR-based statistic appears more general, as it maintains uniform size control even

when the distribution of cluster size Ng lacks a first moment—unlike the score subsampling

method. As discussed in the introduction, the literature on urban economics and economic
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geography has established theoretical results indicating that city sizes follow Zipf’s law with

a unit exponent (e.g., Gabaix, 1999), which leads to the issue of the nonexistence of the first

moment. Therefore, we recommend SACR for such applications.

5.3 Simulation Studies

In this section, we present simulation studies to evaluate the finite sample performance of

the SACR methods in comparison with the conventional CR methods. The data-generating

design is largely the same as that described in Section 4.3, but is redefined below for com-

pleteness. We consider the cluster treatment model with individual covariates

Ygi “ θ0 ` θ1Tg `

K
ÿ

j“1

θjXg,i,j`1 ` Ugi

following MacKinnon, Nielsen, and Webb (2022, Equation (40)) among others. The binary

treatment variable Tg takes the value of one for r0.2Gs clusters and zero for the remaining

clusters G ´ r0.2Gs, where ras denotes the smallest integer greater than or equal to a. We

draw cluster sizes Ng „ r10 ¨ Paretop1, αqs independently for g P t1, ¨ ¨ ¨ , Gu. For each

g P t1, ¨ ¨ ¨ , Gu, we independently draw Ng-variate random vectors, p rXg1j, ¨ ¨ ¨ , rXgNgjq
1 „

N p0,Ωq for j P t1, ¨ ¨ ¨ , Ku and p rUg1, ¨ ¨ ¨ , rUgNgq1 „ N p0,Ωq, where Ω is an Ng ˆNg variance-

covariance matrix such that Ωii “ 1 for all i P t1, ¨ ¨ ¨ , Ngu and Ωii1 “ 1{2 whenever i ‰ i1.

The controls are constructed by Xgij “ 0.2F´1
Betap2,2q

˝ Φp rXgijq, where FBetap2,2q and Φ denote

the CDFs of the Betap2, 2q and standard normal distributions, respectively. The errors are

heteroskedastically constructed by Ugi “ 0.2rUgi if Tg “ 0 and Ugi “ rUgi if Tg “ 1.

We vary values of the exponent parameter α P t1, 2, 4u across sets of simulations. The re-

gression coefficients are fixed to pθ0, θ1, θ2, ¨ ¨ ¨ , θK`1q
1 “ p1, 1, 1, ¨ ¨ ¨ , 1q1 throughout, whereas

the dimension K of covariates vary as K P t0, 1, 5u. We set the sample size (i.e., the number

of clusters) to G “ 50 across sets of simulations, which is close to the number of states in

the U.S. Each set of simulations consists of 10,000 Monte Carlo iterations.

In addition to the OLS (2.1) with the CR variance estimator (2.2), we also implement
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the jackknife variance estimator defined by

pV CR,JACK
pθ

“

G
ÿ

g“1

´

pθOLS
´g ´ pθOLS

¯ ´

pθOLS
´g ´ pθOLS

¯1

, (5.3)

where pθOLS
´g denotes the leave-one-cluster-out OLS estimator defined by

pθOLS
´g “

˜

ÿ

h‰g

X 1
hXh

¸´1 ˜

ÿ

h‰g

X 1
hYh

¸

.

Likewise, the size-adjusted version of jackknife is

pV SACR,JACK
pθ

“

G
ÿ

g“1

´

pθSACR
´g ´ pθSACR

¯ ´

pθSACR
´g ´ pθSACR

¯1

,

where

pθSACR
´g “

˜

ÿ

h‰g

N´1
h X 1

hXh

¸´1 ˜

ÿ

h‰g

N´1
h X 1

hYh

¸

denotes the leave-one-cluster-out SACR estimator.

Figures 3–4 draw Q-Q plots under α “ 2 and α “ 1, respectively, of the self-normalized

statistics:

(CR)
´

pθOLS
1 ´ θ1

¯M b

pV CR
pθ,11
,

(CR Jackknife)
´

pθOLS
1 ´ θ1

¯M b

pV CR,JACK
pθ,11

,

(SACR)
´

pθSACR
1 ´ θ1

¯M b

pV SACR
pθ,11

, and

(SACR Jackknife)
´

pθSACR
1 ´ θ1

¯M b

pV SACR,JACK
pθ,11

.

For these figures, we focus on the case with K “ 0. In each figure, the dashed line indicates

the 45˝ line, and the solid line indicates the fitted line.

Observe that the self-normalized statistics based on the conventional CR methods suffer

from farther deviation away from the theoretical quantiles, whereas those based on the SACR

methods more precisely follow the theoretical quantiles. This observation is true for both

the analytic standard error estimator and the jackknife estimator. The deviations for the
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α “ 2

Figure 3: Q-Q plots for the self-normalized statistics under α “ 2. The dashed line indicates
the 45˝ line, and the solid line indicates the fitted line. The left column shows the results
for the conventional CR methods, while the right column shows the results for the SACR
methods. The top row shows the results with analytic standard errors, while the bottom
row shows the results with jackknife estimators.
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α “ 1

Figure 4: Q-Q plots for the self-normalized statistics under α “ 1. The dashed line indicates
the 45˝ line, and the solid line indicates the fitted line. The left column shows the results
for the conventional CR methods, while the right column shows the results for the SACR
methods. The top row shows the results with analytic standard errors, while the bottom
row shows the results with jackknife estimators.
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Conventional CR New SACR

MSE Rejection (level “ 0.050) MSE Rejection (level “ 0.050)

K α pθOLS
1

pV CR
pθ,11

pV CR,JACK
pθ,11

pθSACR
1

pV SACR
pθ,11

pV SACR,JACK
pθ,11

0 4 0.057 (0.095) [0.072] 0.054 (0.088) [0.067]

2 0.077 (0.141) [0.088] 0.055 (0.086) [0.069]

1 0.144 (0.272) [0.106] 0.053 (0.073) [0.068]

1 4 0.058 (0.096) [0.073] 0.054 (0.088) [0.068]

2 0.074 (0.136) [0.085] 0.054 (0.087) [0.070]

1 0.138 (0.273) [0.108] 0.053 (0.074) [0.070]

5 4 0.057 (0.094) [0.065] 0.054 (0.082) [0.063]

2 0.071 (0.130) [0.082] 0.053 (0.079) [0.064]

1 0.121 (0.254) [0.101] 0.053 (0.070) [0.068]

Table 4: Simulation results based on 10,000 Monte Carlo iterations. Displayed are the mean

square error (MSE), the rejection frequencies based on the analytic standard error estimation

in round brackets with the nominal probability of 0.05, and the rejection frequencies based

on the jackknife standard error estimation in square brackets with the nominal probability

of 0.05. The first three columns show the results for the conventional CR methods, and the

last three columns show the results for the SACR method.

conventional CR methods further exacerbate as the tail of Ng becomes heavier, as in the

transition from α “ 2 (in Figure 3) to α “ 1 (in Figure 4). These results are consistent with

the non-normality of the conventional CR methods as discussed in Section 3, as well as the

guaranteed normality of the SACR methods as shown in Theorem 4.

Table 4 summarizes simulation results. Displayed are the mean square error (MSE), the

rejection frequencies based on the analytic standard error estimation in round brackets, and

the rejection frequencies based on the jackknife standard error estimation in square brackets.

The nominal probability of rejection is set to 0.05 throughout. The first three columns show

the results for the conventional CR methods. The last three columns show the results for

the SACR methods.
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We find the following three observations in these simulation results. First, focus on the

MSE. While the MSE of the OLS estimator pθOLS
1 exponentially blows up as α decreases, the

MSE of the SACR estimator pθSACR
1 remains stable as α varies. Second, consider the rejection

frequencies reported in the round brackets based on the analytic standard error estimators,

pV CR
pθ,11

and pV SACR
pθ,11

. While the rejection frequencies for the conventional CR method based

on pV CR
pθ,11

blows up as α decreases, the rejection frequencies for the SACR method based on

pV SACR
pθ,11

remain stable and closer to the nominal rejection probability of 0.05 as α varies.

Third, consider the rejection frequencies reported in the square brackets based on the jack-

knife standard error estimators, pV CR,JACK
pθ,11

and pV SACR,JACK
pθ,11

. While these jackknife standard

error estimators deliver more desirable rejection frequencies than the analytic standard error

estimators for each of the conventional CR methods and the new SACR method, we continue

to observe the same qualitative pattern as in the case of the analytic estimators. Namely,

while the rejection frequencies for the conventional CR method based on pV CR,JACK
pθ,11

blows up

as α decreases, the rejection frequencies for the SACR method based on pV SACR,JACK
pθ,11

remain

stable and closer to the nominal rejection probability of 0.05 as α varies.

From these observations, it seems more desirable to use the SACR method over the

conventional CR methods for estimation accuracy as well as robust inference.

6 Summary

Conventional methods for cluster-robust inference often fail to provide consistent results

when faced with unignorably large clusters. In this paper, we formalize this limitation by

deriving a necessary and sufficient condition for consistency. We find that 77% of empirical

research articles published in the American Economic Review and Econometrica in 2020-

2021 fail to satisfy this condition. To address this challenge, we propose two alternative

solutions: (i) score subsampling and (ii) size-adjusted cluster-robust (SACR) estimation.

Both methods ensure uniform size control across a wide range of data-generating processes

where conventional methods fall short.

The first approach retains the original least squares estimator and approximates its non-

standard asymptotic distribution. The second one changes the estimator to a weighted
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least squares, which is is easily implementable in Stata. Our simulation studies confirm the

reliability and effectiveness of these methods, highlighting their practical utility in addressing

the limitations of existing cluster-robust inference techniques.
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Appendix

A Omitted Details

This appendix section collectes technical details that are omitted from the main text.

A.1 Alternative Characterization of ξg Belonging to the Domain

of Attraction of an α-Stable Distribution for α ă 2

Citing a result from the existing literature, this section presents complete details about the

power law characterization (2.4) discussed in Section 2 in the main text.

Theorem 5 (de la Peña et al., 2009, Theorem 2.24). Suppose α ă 2. Then, ξg belongs to

the domain of attraction of an α-stable distribution if and only if

P p|ξg| ą tq “ t´αLptq and

lim
tÑ8

P pξg ą tq

P p|ξg| ą tq
“ p, p P r0, 1s,

for some slowly varying function Lp¨q.

The first condition means that the tail limit of the absolute value of the random vari-

able of interest has an approximately Pareto tail, or so-called power law. Known as the

balancing condition, the second condition in this alternative characterization imposes a mild

restriction on the existence of limiting ratios of one-sided tail probabilities over the two-sided

tail probability; it rules out some irregular, infinitely oscillating type situations such that

these limiting ratios do not exist. This condition only imposes restrictions in the limit and

accommodates a wide range of tail behaviors as p are permitted to be either 0 or 1.

A.2 Auxiliary Theory Focusing on Cases with α ă 2

This section presents a lemma that we state and prove on the way to proving Theorem 2 in

Section 4.2 in the main text. Namely, for ease of writing, we state our main result focusing
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on cases with α P p1, 2q. An extension of this result to the general cases with α P p1, 2s

follows as Theorem 2 with additionally accounting for the case with α “ 2.

Lemma 1 (Cluster robust inference by score subsampling). Suppose that Assumption 1 is

satisfied for α P p1, 2q. If b Ñ 8 and b{G “ op1q as G Ñ 8, then

sup
tPR

|L˚
G,bptq ´ J˚

ptq|
p

Ñ 0

and the limiting distribution J˚p¨q is continuous. In addition, if M Ñ 8, then

sup
tPR

|pLG,bptq ´ J˚
ptq|

p
Ñ 0,

and thus

P
´

ppδ ´ δq{pσ ď pcG,bp1 ´ aq

¯

Ñ 1 ´ a.

A proof is provided in Appendix B.1.

Remark 4 (Heavy-tailed cluster sums). In this lemma, we essentially assume that the tails

of the distributions of }Sg} and }X 1
gXg} both follow the power law with the shape parameter

(Pareto exponent) in p1, 2q, which implies that the variances of Sg and pX 1
gXgq do not exist.

See Appendix A.1. This is a rather general condition in the sense that the heavy tail can

come from the distribution of cluster sizes Ng, the distribution of individuals’ pX 1
gi, Ugiq, or

both. ▲

Remark 5 (Unignorability and impossibility of normal approximation). An inspection of

the proof of Lemma 1, combined with Remark 2 in LePage et al. (1981), unveils that, when

α ă 2, the tails of the first component of representation (B.3) satisfies

P p|ϵ1Z1 ´ p2p ´ 1qErZ11pZ1 ă 1qs| ą tq „ P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

tϵkZk ´ p2p ´ 1qErZk1pZk ă 1qsu

ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

as t Ñ 8. Since the term |ϵ1Z1 ´ p2p ´ 1qErZ11pZ1 ă 1qs| corresponds to the limiting distri-

bution of the absolute value of the scaled score of the largest cluster, it has an asymptotically
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unignorable influence on the limiting α-stable distribution – see also Section 1.4 in Samorod-

nitsky and Taqqu (1994). For ease of illustration, suppose that the regressor and error

distributions are uniformly bounded and CovpXgiUgi, XgiUgi1 |Ngq ě c ą 0 for all i “ 1, ..., Ng

with probability one. This then implies

maxg“1,...,G }Sg}

G
„p

maxg“1,...,GNg

G
" 0,

which directly violates the necessary and sufficient condition for the asymptotic variance

to be estimable derived in Corollary 4.1 in Kojevnikov and Song (2023), as well as the

conventional assumption

maxg“1,...,GN
2
g

G
“ opp1q,

required in the literature (e.g. Assumption 2 in Hansen and Lee 2019) for normal approxi-

mation.8

In addition, a necessary and sufficient condition for the limiting distribution of sums of

independent random variables to be normal is the uniform asymptotic negligibility condition,

i.e., the largest summand in absolute value has an asymptotically negligible contribution to

the sum (cf. Davidson, 1994, Theorem 23.13). Thus, it is impossible to derive a theoretically

valid normal-approximation-based procedure of inference in the presence of unignorably large

clusters without imposing restrictions on within-cluster dependence. ▲

Remark 6 (On CR standard error estimation). The test statistic we consider is the standard

t-statistic used in the literature. Its denominator consists of a CR standard error without

imposing a null hypothesis. When α ă 2, the asymptotic variance does not exist, and nor is

this “standard error” consistent but remains random asymptotically. This is similar in spirit

to the fixed-b asymptotics (e.g., Kiefer and Vogelsang, 2002) in the literature of long-run

variance estimation, although the underlying theory is completely different as the fixed-b

asymptotics crucially relies on normal approximation and the functional central limit theo-

8It is assumed in the literature of CR inference based on the normal approximation that
maxg“1,...,G N2

g

N “

opp1q. When ErNgs “ c ą 0 exists, this assumption is equivalent to
maxg“1,...,G N2

g

G “ opp1q.
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rem. Showing that this “standard error” with estimated residuals has negligible impact on

the asymptotic distribution requires a completely different proof strategy from the conven-

tional approach of those taken in the proof of Theorem 7.6 in Hansen (2022a) for example.

▲

A.3 Inconsistency of the Wild Cluster Bootstrap under α ă 2.

The wild cluster bootstrap (Cameron et al., 2008) is a popular alternative resampling method

of CR inference. It has been shown in various simulation studies to behave well under α “ 2.

Validity of the wild cluster bootstrap in cases of α “ 2 has been shown in Djogbenou

et al. (2019) under fairly general conditions. As their proof relies crucially on Lyapunov’s

CLT, however, their arguments do not hold under α ă 2 – see Remark 5. A remaining and

potentially more interesting question is whether one can prove its validity using an alternative

argument. The following result suggests that such efforts are ill-fated when α ă 2.

For simplicity of illustration, consider the case of a univariate regression with only the

intercept, i.e. a cluster sampled mean pθ “ N´1
řG

g“1

řNg

i“1 Ygi with the cluster specific pop-

ulation mean normalized to θ “ E
”

řNg

i“1 Ygi

ı

“ 0 without loss of generality. Suppose that

the parameter of inference is θ. Under the null hypothesis H0 : θ “ 0, the standard CR

t-statistic can be formed as

TG “

řG
g“1

řNg

i“1 Ygi
c

řG
g“1

´

řNg

i“1pYgi ´ pθq

¯2
.

The wild-cluster-bootstrap version of the estimator is defined by pθ˚ “ N´1
řG

g“1 v
˚
g

řNg

i“1 Ygi,

where pv˚
g qGg“1 are i.i.d. Rademacher auxiliary random variables generated by a researcher

independently from the observed data ttYgiu
Ng

i“1u
G
g“1. The null-imposed wild cluster bootstrap

test statistic is defined by

T ˚
G “

řG
g“1 v

˚
g

řNg

i“1 Ygi
c

řG
g“1

´

v˚
g

řNg

i“1pYgi ´ pθ˚q

¯2
.
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We introduce the notation Y1:G “ pYgi : g “ 1, ..., G, i “ 1, ..., Ngq for convenience. As

Lemma 1 implies continuity of the limiting distribution of TG, the wild cluster bootstrap is

consistent if

sup
tPR

|P pT ˚
G ď t|Y1:Gq ´ P pTG ď tq| “ opp1q as G Ñ 8.

Theorem 6 (Inconsistency of the wild cluster bootstrap). Under the above setup and As-

sumption 1, if α P p1, 2q, then the wild cluster bootstrap with Rademacher auxiliary random

variables is inconsistent.

A proof can be found in Appendix B.6

A.4 Choosing the Number b of Cluster Subsamples

For the choice of b in practice, we adapt the minimum volatility method (Algorithm 9.3.3 in

Politis et al., 1999, Section 9.3.2) to our framework of cluster-robust inference.

For subsampling to be valid, b needs to grow with the number G of clusters but at a

slower rate. If b is too close to G, then all the subsampled t-statistics will be almost identical

to the full-sample t-statistic, resulting in a subsampling distribution being too tight and

thus in under-coverage by confidence intervals. On the other hand, if b is too small, then the

subsampled t-statistics will be noisy and can result in either under-coverage or over-coverage.

Thus, intuitively, we wish to select a b that is in a stable range for the test statistic. The

following algorithm formalizes such an idea.

Algorithm 1 (Minimum volatility method for cluster-robust inference).

1. For b P tbsmall, bsmall ` 1, ..., bbigu, compute the critical value pcG,bp1 ´ aq at a desired

significance level a.

2. For b P tbsmall`k, bsmall`k`1, ..., bbig´ku, compute a volatility index V Ib of the critical

value, i.e., the standard deviation of the values pcG,b´kp1´aq, ...,pcG,bp1´aq, ...,pcG,b`kp1´

aq for a small positive integer k.

3. Pick b˚ that has the smallest V Ib˚ and the corresponding confidence interval.
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Remark 7. As pointed out by Romano and Wolf (1999, Section 11.5), empirical bootstrap

is not valid in the presence of heavy-tailed distributions. Thus, the common calibration

method for the choice of subsampling block size cannot be used in our setup. ▲

A.5 Details of Section 3.1

Section 3.1 argues that the self-normalized CLT may or may not hold under our framework.

This appendix section presents details of this argument.

For the estimand θ “ ErYgis for simplicity, consider the estimator

pθ “
1

N

G
ÿ

g“1

Sg,

where Sg “
řNg

i“1 Ygi and N “
řG

g“1Ng. For simplicity, assume that Ygi is identically

distributed with mean zero and variance one, and that Ygi is independent from Ng. Also,

assume the cluster-sampling framework in which observations are independent across g. Let

ΩN denote the variance of
?
Npθ, i.e., ErNpθ2s.

We now consider three cases of within-cluster dependence: (i) Ygi is i.i.d. across i within

each g (i.e., no cluster dependence); (ii) Ygi “ Ygj for all i and j within the same cluster (i.e.,

the strongest form of cluster dependence); and (iii) a combination of the cases (i) and (ii).

Case (i) Suppose that Ygi is i.i.d. across i. The self-normalized CLT considers

´

Erpθ2s
¯´1{2

pθ
d

Ñ N p0, 1q .

Since ErNpθ2s “ E
“

Y 2
gi

‰

“ 1 under the independence across i and g, we have

´

Erpθ2s

¯´1{2
pθ “

?
Npθ “

G´1{2
řG

g“1 Sg
b

1
G

řG
g“1Ng

. (A.1)

By the law of large numbers and the assumption that Ng is regularly varying with

exponent α ą 1, we have

1

G

G
ÿ

g“1

Ng
d

Ñ E rNgs ă 8
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for the denominator of (A.1). The independence within cluster implies that conditional

on tNguGg“1,

1
?
N

G
ÿ

g“1

Ng
ÿ

i“1

Ygi
d

Ñ N p0, 1q .

for the numerator of (A.1). Therefore, the self-normalized CLT still holds, but with the

convergence rate being N´1{2, instead of G´1{2 if we treat tNguGg“1 as fixed sequences

of constants. Now consider tNguGg“1 as random variables. Given the Pareto tail of Ng,

we have that

N “

G
ÿ

g“1

Ng “ Op pGq .

It follows that G´1{2
řG

g“1

řNg

i“1 Ygi “ Op p1q.

Case (ii) Consider the case with perfect within-cluster dependence, i.e., Ygi ” Yg for all

i P t1, ..., Ngu for each g. In this case, Sg “
řNg

i“1 Ygi “ NgYg, yielding that

?
Npθ “

G´1{2
řG

g“1NgYg
b

1
G

řG
g“1Ng

.

The denominator still converges to
a

E rNgs. For the numerator, since NgYg is i.i.d.

across g and the two factors are independent with regularly varying tails, Mikosch

(1999, Proposition 1.3.9) implies that the product NgYg also has regularly varying

tail with exponent α ă 2. Therefore, G´1{2
řG

g“1 Zg “ G´1{2
řG

g“1NgYg is no longer

Op p1q. More specifically, VarrG´1{2
řG

g“1NgYgs is equal to VarrNgs ¨ VarrYgs, which is

infinite given α ă 2. In fact, Geluk and de Haan (2000, Theorem 1) implies that if the

distribution of NgYg is α-stable, under some sequences of constants aG » n1{α Ñ 8

and bG P R, the limiting distribution

lim
GÑ8

P

˜

1

aG

G
ÿ

g“1

Sg ´ bG ą x

¸
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has the characteristic function

ψα psq “ exp

#

´

˜

|s|α ` is p1 ´ αq tanpαπ{2q
|s|α´1

´ 1

α ´ 1

¸+

.

Thus, the CLT fails, and the asymptotic distribution will be non-normal. Therefore,

even the jackknife standard error fails in this scenario. See, for example, Figures 5 and

6 in MacKinnon et al. (2022).

Case (iii) Combining the above two cases, we now consider

Ygi “ ρGRg ` Ugi,

where Rg can be thought as a cluster-specific random effect and Ugi is a random noise,

which is i.i.d. across both i and g. The normalizing constant ρG determines the weights

of Rg in Ygi. Under this setting, we have

?
Npθ “

G´1{2
řG

g“1 Sg
b

1
G

řG
g“1Ng

“
G´1{2ρG

řG
g“1NgRg

b

1
G

řG
g“1Ng

`
G´1{2

řG
g“1

řNg

i“1 Ugi
b

1
G

řG
g“1Ng

. (A.2)

Following the same arguments as those in Case (ii), the first item above is asymptot-

ically non-normal (after some suitable normalization), but the second term is asymp-

totically normal. The orders of magnitudes of them depend on the distribution of

pRg, Ng, Ugiq. For example, if E rRgs “ 0 and E
“

R2
g

‰

ă 8, then NgRg again has

a regularly varying tail with exponent α ă 2 (e.g., Embrechts and Goldie, 1980,

Theorem 3). The generalized central limit theorem (e.g., Ibe, 2013, Chapter 11) im-

plies that
řG

g“1NgRg »p G
1{α. For the second term in (A.2), Case (i) derives that

G´1{2
řG

g“1

řNg

i“1 Ugi “ Op p1q. The non-normal part then dominates the normal part

if ρGG
1{α´1{2 Ñ 8 as G Ñ 8. Since α ă 2, a constant ρG will satisfy this condition.

As a final remark, we note that Assumption 3 in Djogbenou et al. (2019) could relax the
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condition on Ng into that supgNg{N Ñ 0 when the within-cluster dependence is strong. The

stochastic counterpart of this assumption fails under our framework where Ng is treated as

a random variable. More specifically, consider Case (ii) again for illustration. Let µN denote

the reciprocal of the variance of pθ conditional on tNguGg“1 as in Djogbenou et al. (2019). The

above derivation yields

Varrpθ|tNgu
G
g“1s “

řG
g“1N

2
gVarrYgis

p
řG

g“1Ngq2

“

řG
g“1N

2
gVarrYgisG

´2

pG´1
řG

g“1Ngq2

»pG
2{α´2,

and hence µN »p G
2´2{α. Therefore, for any constant λ ą 0, we have

µ
2`λ
2`2λ

N

supgNg

N
»p G

ρpλq,

where ρpλq “ p2 ´ 2{αqrp2 ` λq{p2 ` 2λq ´ 1{2s. Recall α P p1, 2q, yielding that ρpλq ą 0 for

all λ ą 0. Then, the above term diverges with probability approaching one.

B Mathematical Proofs

This section collects all the mathematical proofs. The order in which the proofs appear

below differs from the order in which the corresponding statements appear. Namely, the

proof of Theorem 2 uses Lemma 1, and hence we present the proof of Lemma 1 before the

proof of Theorem 2. Furthermore, the proof of Theorem 1 uses Lemma 1 and Theorem 2,

and hence we present the proofs of Lemma 1 and Theorem 2 before the proof of Theorem 1.

Proofs for all the remaining theorems are presented in the order of the appearance of their

correponding results, that is, Theorem 3 (the uniform validity of the subsampling method),

Theorem 4 (the uniform validity of the SACR method), and Theorem 6 (the failure of wild

bootstrap). Some technical lemmas are relegated to Appendix C.
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B.1 Proof of Lemma 1

Proof of Lemma 1. Without loss of generality, suppose that Xgi is a scalar and r “ 1,

and hence δ “ θ. The proof is divided into two steps. In the first step, we derive the

asymptotic distribution of the self-normalized sums that consist of the linear component of

the influence function of the estimator. In the second step, we derive the validity of the

proposed subsampling inference procedure.

Step 1. Recall that

pθ ´ θ “

˜

G
ÿ

g“1

X 1
gXg

¸´1 G
ÿ

g“1

Sg.

We shall derive the asymptotic distribution for the following self-normalized sums of the

linear component
řG

g“1 Sg:

SN1Gpθq :“

řG
g“1 Sg

b

řG
g“1 S

2
g

, SN2Gpθq :“

řG
g“1 Sg

b

řG
g“1

pS2
g

, (B.1)

where pSg “ X 1
g

pUg. The asymptotic distribution of a properly re-scaled ppθ ´ θq will then

follow straightforwardly from the multiplication of Q´1 on both the numerator and the

denominator. Since α P p1, 2q, Corollary 1 in LePage et al. (1981) yields

SN1Gpθq
d

Ñ

ř8

k“1tϵkZk ´ p2p ´ 1qErZk1pZk ă 1qsu
a

ř8

k“1 Z
2
k

(B.2)

as G Ñ 8, where

p “ lim
tÑ8

P pSg ą tq

P p|Sg| ą tq
,

Zk “ pE1 ` ...`Ekq´1{α for each k, tEkuk are i.i.d. standard exponential random variables,

and tϵkuk are i.i.d. random variables that take the value of 1 with probability p and ´1 with

probability p1 ´ pq and are independent of tZkuk.

We now claim that SN2Gpθq converges in distribution to the same limiting distribution
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as (B.2). By Theorems 1 and 11 in LePage et al. (1981),

˜

1

AG

G
ÿ

g“1

Sg,
1

A2
G

G
ÿ

g“1

S2
g

¸

d
Ñ pS, V q :“

˜

8
ÿ

k“1

tϵkZk ´ p2p ´ 1qErZk1pZk ă 1qsu,
8
ÿ

k“1

Z2
k

¸

“ Opp1q

(B.3)

holds for AG “ G1{αL1pGq, where Zk, ϵk, and p are defined below Equation (B.2), and L1p¨q

is slowly varying at 8; and

1

pA1
Gq2

G
ÿ

g“1

pX 1
gXgq

2 d
Ñ

8
ÿ

k“1

rZ2
k “ Opp1q (B.4)

holds where A1
G “ G1{αL2pGq, rZk “ p rE1 ` ...` rEkq´1{α for each k, t rEkuk are i.i.d. standard

exponential random variables, and L2p¨q is slowly varying at 8. Because α P p1, 2q and L1

is slowly varying at 8, Equation (B.3) implies the consistency

}pθ ´ θ} “

›

›

›

›

›

›

˜

G
ÿ

g“1

X 1
gXg

¸´1 G
ÿ

g“1

Sg

›

›

›

›

›

›

“ OppL1pGqG´p1´1{αq
q “ opp1q (B.5)

under Assumption 1. Using pUg “ Ug ` Xgpθ ´ pθq and pSg “ Sg ` X 1
gXgpθ ´ pθq, where

pUg “ p pUg1, ..., pUgNgq1, we can write

1

A2
G

G
ÿ

g“1

pS2
g “

1

A2
G

G
ÿ

g“1

S2
g `

1

A2
G

G
ÿ

g“1

´

pSg ´ Sg

¯

pSg `
1

A2
G

G
ÿ

g“1

Sg

´

pSg ´ Sg

¯

“
1

A2
G

G
ÿ

g“1

S2
g ` p1q ` p2q.

We are going to show that the terms (1) and (2) are opp1q. First,

}p1q} “

›

›

›

›

›

1

A2
G

G
ÿ

g“1

pSg ` X 1
gXgpθ ´ pθqqpX 1

gXgpθ ´ pθqq
1

›

›

›

›

›

ď

›

›

›

›

›

1

A2
G

G
ÿ

g“1

SgX
1
gXg

›

›

›

›

›

}pθ ´ θ} `

›

›

›

›

›

1

A2
G

G
ÿ

g“1

pX 1
gXgq

2

›

›

›

›

›

}pθ ´ θ}
2
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ď

g

f

f

e

1

A2
G

G
ÿ

g“1

S2
g

loooooomoooooon

“Opp1q

g

f

f

e

1

A2
G

G
ÿ

g“1

pX 1
gXgq2

loooooooooomoooooooooon

“Opp1q

}pθ ´ θ}
loomoon

“opp1q

`
1

A2
G

G
ÿ

g“1

pX 1
gXgq

2

loooooooomoooooooon

“Opp1q

}pθ ´ θ}
2

looomooon

“opp1q

“opp1q

holds, where the second inequality follows from the Cauchy-Schwarz inequality and the

stochastic orders are due to Equations (B.3), (B.4), and (B.5). Second, similar lines of

calculations yield

}p2q} “

›

›

›

›

›

1

A2
G

G
ÿ

g“1

SgpX 1
gXgpθ ´ pθqq

1

›

›

›

›

›

“ opp1q.

We have now established that

1

A2
G

G
ÿ

g“1

pS2
g “

1

A2
G

G
ÿ

g“1

S2
g ` opp1q,

and consequently, SN1Gpθq is asymptotically equivalent to SN2Gpθq.

Step 2. We next show the validity of cluster robust score subsampling procedure. Define

the conventional subsampling estimator

qθb,j “

¨

˝

ÿ

gPSj

X 1
gXg

˛

‚

´1

ÿ

gPSj

X 1
gYg.

Since B´1 ´ A´1 “ A´1pA ´ BqB´1, we have

qθb,j ´ pθb,j “

¨

˝

ÿ

gPSj

X 1
gXg

˛

‚

´1

ÿ

gPSj

X 1
gYg ´

ˆ

G

b

˙

˜

G
ÿ

g“1

X 1
gXg

¸´1
ÿ

gPSj

X 1
gYg

“

˜

1

G

G
ÿ

g“1

X 1
gXg

¸´1
¨

˝

1

G

G
ÿ

g“1

XgXg ´
1

b

ÿ

gPSj

X 1
gXg

˛

‚

¨

˝

1

b

ÿ

gPSj

X 1
gXg

˛

‚

´1

1

b

ÿ

gPSj

X 1
gYg

“opp1q ¨ qθb,j

This implies pθb,j “ qθb,jp1`opp1qq. Therefore, in the subsampling process, qθb,j can be replaced
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by pθb,j without changing the asymptotic behavior. Thus, it suffices to establish validity of

subsampling procedure based on the conventional subsampling estimator qθb,j.

Now, since the stable distributions S and V defined in the previous step are both continu-

ous and V ą 0 with probability 1, S{V 1{2 is continuously distributed and J˚p¨q is continuous.

Hence, by invoking Theorem 11.3.1 in Politis et al. (1999), we have

sup
tPR

|L˚
G,bptq ´ J˚

ptq| “ opp1q

as G Ñ 8, b Ñ 8, and b{G “ op1q. Next, note that pLG,b is an empirical CDF consisting

of M i.i.d. summands as we randomly sample the subsample clusters with replacement. By

Dvoretzky-Kiefer- Wolfowitz inequality, therefore, we have the uniform convergence of the

empirical CDF:

sup
tPR

|pLG,bptq ´ J˚
ptq| “ opp1q

as M Ñ 8 and G Ñ 8 This concludes the proof.

B.2 Proof of Theorem 2

Proof of Theorem 2. The case of α ă 2 follows directly from Lemma 1. For α “ 2, the

proof is similar to the proof of Lemma 1 with the following minor modifications. First, when

α “ 2, Sg is in the domain of attraction of the normal distribution and hence Theorem 3.4

in Giné et al. (1997) yields

SN1Gpθq
d

Ñ N p0, 1q.

Second, to show the asymptotic equivalence of SN1pθq and SN2pθq, note that both Sg and

pX 1
gXgq belong to the domain of attraction of the normal law when α “ 2. We branch into

two cases. In case that both Sg and pX 1
gXgq have finite variances, we have

1

G

G
ÿ

g“1

pS2
g “

1

G

G
ÿ

g“1

S2
g ` opp1q

p
Ñ VarpSgq
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by following the standard argument for consistency of the CR variance estimator. In case

their variances do not exist, Lemma 3.1 in Giné et al. (1997) yields

1

A2
G

G
ÿ

g“1

S2
g

p
Ñ 1

for AG such that

1

AG

G
ÿ

g“1

pSg ´ ErSgsq
d

Ñ N p0, 1q.

A similar argument holds when Sg is replaced by pX 1
gXgq. Then, the arguments for bounding

}p1q} and }p2q} in the proof of Lemma 1 still go through, and thus for the self-normalized

sums defined in Equation (B.6), it holds that SN2pθq “ SN1pθq ` opp1q. Finally, for the

validity of the subsampling procedure, we now invoke Theorem 2.2.1 in Politis et al. (1999)

and note that the limiting distribution is normal and hence continuous.

B.3 Proof of Theorem 1

Proof of Theorem 1. The if part of the statement follows from the proof of Theorem 2. The

only if part is a direct implication of Theorem 3.4 in Giné et al. (1997) and the fact that

for any α P p1, 2s, the self-normalized sums defined in Equation (B.6) satisfy SN2pθq “

SN1pθq ` opp1q, as shown in the proofs for Lemma 1 and Theorem 2.

B.4 Proof of Theorem 3

Proof of Theorem 3. Let us first introduce the following lemma.

Lemma 2 (Weak convergence of triangular arrays). For any sequence of PG P Ppεq such

that αG Ñ α0 P r1 ` ε, 2s and pG Ñ p0 P r0, 1s as G Ñ 8, we have

R1G
d

Ñ Sα0,p0 .

Its proof is presented in the end of this section.
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Now, to show the statement of Theorem 3, we shall derive the asymptotic distribution

for the following self-normalized sums of Sg:

R1G :“

řG
g“1 Sg

b

řG
g“1 S

2
g

and R2G :“
pδ ´ δ

pσ
“

řG
g“1 Sg

b

řG
g“1

pS2
g

. (B.6)

Following Eq (1.3) in Logan et al. (1973), we obtain

R2G “ R1G

ˆ

G

G ´ R2
1G

˙1{2

.

Thus, by Lemma 2, the limiting distribution of R2G coincides with the one of R1G.

The proof follows a similar structure to the one for Theorem 3.1 in Romano and Shaikh

(2012). We will apply our Lemma 3 in Appendix C with

RG “
pδ ´ δ

pσ
and pRb “

pδb,j ´ pδ

pσb,j
.

First, we verify

sup
PPP

sup
xPR

|Jbpx, P q ´ JGpx, P q| Ñ 0 (B.7)

as b,G Ñ 8 with b{G “ op1q. By way of contradiction, assume that it fails. Then, there

exists a subsequence Gl and some pα, pq P r1 ` ε, 2s ˆ r0, 1s such that either

sup
xPR

|JbGl
px, PGl

q ´ Fα,ppxq| Ñ 0 or sup
xPR

|JGl
px, PGl

q ´ Fα,ppxq| Ñ 0.

Recall that Sα,p „ Fα,p has a continuous distribution (almost everywhere). Yet, either of

these would violate Lemma 2. Thus Condition (B.7) must hold.

We will next verify the condition that

sup
PPP

P

ˆ

sup
xPR

ˇ

ˇ

ˇ

pLGpxq ´ LGpx, P q

ˇ

ˇ

ˇ
ą ε1

˙

“ op1q
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for all ε1 ą 0. Consider any sequence tPG P P : G ě 1u. For any η ą 0, we have

sup
xPR

tpLGpxq ´ LGpx, PGqu

ď sup
xPR

tpLGpxq ´ LGpx ` η, PGqu ` sup
xPR

tLGpx ` η, PGq ´ LGpx, PGqu

ď sup
xPR

tpLGpxq ´ LGpx ` η, PGqu ` sup
xPR

tLGpx ` η, PGq ´ Lbpx ` η, PGqu

` sup
xPR

tLbpx, PGq ´ LGpx, PGqu ` sup
xPR

tLbpx ` η, PGq ´ Lbpx, PGqu

“piq ` piiq ` piiiq ` pivq.

Note that piiq and piiiq are both oPG
p1q by Lemma 4.5 in Romano and Shaikh (2012).

Furthermore, pivq converges to zero as η Ñ 0.

Finally, we will verify piq “ oPG
p1q as η Ñ 0. By considering a subsequence, if necessary,

one may assume without loss of generality that PG is such that αG Ñ α and pG Ñ p. The

proof for this statement utilizes an argument similar to those taken in Theorem 11.3.1 in

Politis et al. (1999). By its definition,

pLGpxq “
1

BG

BG
ÿ

j“1

1

#

pδb,j ´ pδ

pσb,j
ď x

+

ď
1

BG

BG
ÿ

j“1

1

#

pδb,j ´ δ

pσb,j
ď x `

pδ ´ δ

pσb,j

+

ď
1

BG

BG
ÿ

j“1

1

#

pδb,j ´ δ

pσb,j
ď x ` η

+

` p1 ´ RGpηqq,

where RGpηq is defined for η ą 0 as

RGpηqq “
1

BG

BG
ÿ

j“1

1

#

pδ ´ δ

pσb,j
ď η

+

“
1

BG

BG
ÿ

j“1

1
!

pb{Abqpσb,j ě pb{Abqppδ ´ δq{η
)

,

Ab “ b1{αLpbq for some slow varying L at infinity. As AG{Ab Ñ 0, for any ε2 ą 0, it holds

that pb{Abqppδ ´ δq ď ε2 with probability approaching one along PG. This is because pδ is the
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full sample estimator and thus pG{AGqppδ ´ δq “ OPG
p1q follows from the proof of Lemma 2.

As such, following the proof of Lemma 2, we have

RGpηq ě
1

BG

BG
ÿ

j“1

1 tpb{Abqpσb,j ě ε2
{ηu

PG
Ñ PGpV ě ε2

{ηq

as G Ñ 8, where V is the stable distribution with index of stability of α{2. By Theorem

11 in LePage et al. (1981) for example, V has the representation V “
ř8

k“1 Z
2
k , where

Zk “ pE1 ` ...`Ekq´1{α for each k, tEkuk are i.i.d. standard exponential random variables,

and tϵkuk are i.i.d. random variables that take the value of 1 with probability p and ´1 with

probability p1 ´ pq and are independent of tZkuk. As ε2 can be arbitrarily small, we have

RGpηq “ 1 ` oPG
p1q. Thus, we have

pLGpxq ď
1

BG

BG
ÿ

j“1

1

#

pδb,j ´ δ

pσb,j
ď x ` η

+

` p1 ´ RGpηqq

ďLGpx ` η, PGq ` oPG
p1q.

A similar argument derives pLGpxq ě LGpx ` η, PGq ` oPG
p1q. This shows piq “ oPG

p1q as

η Ñ 0, and hence concludes the proof of Theorem 3.

Proof of Lemma 2. First, consider the case of α0 ă 2. Denote Sg “ Sgpα, pq to emphasize

the dependence of the DGP on the index α of stability and the tail balancing parameter p.

(It does not suggest that the DGP is uniquely defined by these two parameters.) For each

DGP, PG P tPG : G ě 1u Ă P1pεq, with indices pαM , pMq for an auxiliary index M “ G,

define

XMn “

řn
g“1 SgpαM , pMq

b

řn
g“1 S

2
g pαM , pMq

for each n ě 1. Since pαM , pMq is fixed over n for each M , we can apply Theorem 11

in LePage et al. (1981) to obtain that, for each M as n Ñ 8, there exists some positive
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sequence AMn Ñ 8 such that

˜

1

AMn

n
ÿ

g“1

SgpαM , pMq,
1

A2
Mn

n
ÿ

g“1

S2
g pαM , pMq

¸

d
Ñ

˜

8
ÿ

k“1

tϵkppMqZkpαMq ´ p2pM ´ 1qErZkpαMq1pZkpαMq ă 1qsu,
8
ÿ

k“1

Z2
kpαMq

¸

“ pSM , VMq

as n Ñ 8, where ZkpαMq “ pE1 ` ... ` Ekq´1{αM for each k, tEkuk are i.i.d. standard

exponential random variables, and tϵkppMquk are i.i.d. random variables that take the value

of 1 with probability pM and ´1 with probability p1´pMq and are independent of tZkpαMquk.

Note that the distributions of both SM and VM are stable with indices of stability of αM and

αM{2, respectively. Furthermore, it follows from Corollary 1 in LePage et al. (1981) that

XMn
d

Ñ XM
d
“

ř8

k“1tϵkppMqZkpαMq ´ p2pM ´ 1qErZkpαMq1pZkpαMq ă 1qsu
a

ř8

k“1 Z
2
kpαMq

.

Let the limiting distribution on the right-hand side be denoted by SαM ,pM . Also, note that

pαM , pMq Ñ pα0, p0q by our construction, and thus,

XM
d

Ñ X „ Sα0,p0

follows from the convergence of the sequence of the characteristic functions of the stable

distributions SM and VM , as these characteristic functions are continuous in pα, pq over

p1, 2q ˆ r0, 1s (cf. Remark 4 on page 7 in Samorodnitsky and Taqqu, 1994) and VM is

positive with probability one for all α P p1, 2q.

Next, by invoking the Skorohod’s representation theorem (as R is a separable metric

space), there exist versions of XMn and XM such that XMn
a.s.
Ñ XM for each M and as

n Ñ 8, and XM
a.s.
Ñ X as M Ñ 8. Now, for such XMn, define Yn “ Xnn. By construction,

we have Yn
d
“ R1n for all n ě 1. Also, it follows from the almost sure converges that

lim
MÑ8

lim sup
nÑ8

P p|XMn ´ Yn| ě εq “ 0

for all ε ą 0. Applying Lemma 4 in Appendix C, we have Yn
d

Ñ X as n Ñ 8. Thus, we
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conclude R1n
d

Ñ X.

Now, consider the case of α0 “ 2. We only need to consider the case where we have

αG ă 2 for at least one G, as, otherwise, αG “ 2 for all G and

R1G
d

Ñ N p0, 1q

follows immediately from the Lindeberg-Feller CLT. Now, for those αM ă 2, construct XMn

as in the previous case. By Corollary in LePage et al. (1981), we have

XMn “

řn
g“1 SgpαM , pMq

b

řn
g“1 S

2
g pαM , pMq

d
Ñ XM „ SαM ,pM .

By Assertion (vi) in Section 5 and Equation (5.13) in Logan et al. (1973), the density

fαM ,pM p¨q of SαM ,pM exists and is bounded everywhere except on a set with measure zero,

and, as αM Ñ 2, fαM ,pM Ñ φ, the standard normal density, on the real line. Thus, by

the bounded convergence theorem, the CDF FαM ,pM pxq of SαM ,pM converges to the standard

normal distribution function Φpxq for all x P R, i.e. XM
d

Ñ X „ N p0, 1q. Using the same

construction of Yn as above, we conclude R1n
d

Ñ N p0, 1q by Lemma 4 in Appendix C.

B.5 Proof of Theorem 4

Proof of Theorem 4. Without loss of generality, assume that Xgi is a scalar. We show the

claim that for any sequence of DGPs pPGq8
G“1 Ă P , it holds that

ppθSACR ´ θq
b

pV SACR
pθ

{G

d
Ñ N p0, 1q.

Given such a claim, the result follows from a standard assume toward a contradiction argu-

ment that can be found in, e.g. Theorem 11.4.5 in Lehmann and Romano (2005). Explicitly,

if the statement of the theorem fails, one could extract a subsequence, with an abuse of
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notation still denoted as pPGq8
G“1, such that for an a1 P p0, 1q

PG

¨

˝

ppθSACR ´ θq
b

pV SACR
pθ

{G
ą z1´a

˛

‚Ñ a1
‰ a,

which violates the claim, a contradiction.

To prove the claim, fix any sequence of DGPs pPGq8
G“1 Ă P . For pPGq8

G“1, we first

establish the asymptotic normality of pθSACR along this sequence of DGPs

ppθSACR ´ θq
b

V SACR
pθ

d
Ñ N p0, 1q.

by invoking a CLT for triangular arrays (e.g., Lehmann and Romano, 2005, Lemma 11.4.1)

and a WLLN for triangular arrays (e.g., Lehmann and Romano, 2005, Lemma 11.4.2).

Given the row-wise i.i.d. triangular array assumption, it suffices to establish that for a

δ ą 0

lim
λÑ8

lim sup
GÑ8

EP r|N´1
g X 1

gXg|1t|N´1
g X 1

gXg| ą λus “ 0 (B.8)

lim
λÑ8

lim sup
GÑ8

EP r|N´1
g X 1

gUg|
2
1t|N´1

g X 1
gXg| ą λus “ 0. (B.9)

Without loss of generality and for ease of writing, we show them for the case with a scalar

Xgi. For (B.8), note that for each fixed λ ą 0 Assumption 2.1 yields that for some finite

constant C

EP r|N´1
g X 1

gXg|1t|N´1
g X 1

gXg| ą λus ď
1

λδ
EP r|N´1

g X 1
gXg|

1`δ
s

“
1

λδ
EP

»

–EP

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

Ng

Ng
ÿ

i“1

X2
gi

ˇ

ˇ

ˇ

ˇ

ˇ

1`δ

|Ng

fi

fl

fi

fl

ď
1

λδ
EP

«

1

Ng

Ng
ÿ

i“1

EP

”

ˇ

ˇX2
gi

ˇ

ˇ

1`δ
|Ng

ı

ff

ă
1

λδ
C

where the second inequality follows from Jensen’s inequality and the last follows from

EP

”

ˇ

ˇX2
gi

ˇ

ˇ

1`δ
|Ng

ı

ă C.
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For (B.9), for each fixed λ ą 0, Assumption 2.2 yields that for some finite constant C 1,

it holds that

EP r|N´1
g X 1

gUg|
2
1t|N´1

g X 1
gUg| ą λus

ď
1

λδ
EP r|N´1

g X 1
gUg|

2`δ
s

“
1

λδ
EP

»

–E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

N2
g

Ng
ÿ

i“1

Ng
ÿ

i1“1

X 1
giUgiUgi1Xgi1

ˇ

ˇ

ˇ

ˇ

ˇ

1`δ{2

|Ng

fi

fl

fi

fl

ď
1

λδ
EP

«

1

N2
g

Ng
ÿ

i“1

Ng
ÿ

i1“1

E
”

ˇ

ˇX 1
giUgiUgi1Xgi1

ˇ

ˇ

1`δ{2
|Ng

ı

ff

ă
1

λδ
C 1

following Jensen’s inequality and as

EP

”

ˇ

ˇX 1
giUgiUgi1Xgi1

ˇ

ˇ

1`δ{2
|Ng

ı

ď

c

EP

”

ˇ

ˇX 1
giUgi

ˇ

ˇ

2`δ
|Ng

ı

EP

”

ˇ

ˇX 1
gi1Ugi1

ˇ

ˇ

2`δ
|Ng

ı

ďEP

”

ˇ

ˇX 1
giUgi

ˇ

ˇ

2`δ
|Ng

ı

ă C 1.

Now we show the ratio consistency of the variance estimator along pPGq8
G“1

GpV SACR
pθ

{V SACR p
ÝÑ 1.

Note that

EP r|N´1
g X 1

gXg|
2
1t|N´1

g X 1
gXg| ą λus

ď
1

λ2δ
EP r|N´1

g X 1
gXg|

2`2δ
s

ď
1

λ2δ
EP

»

–EP

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

Ng

Ng
ÿ

i“1

X2
gi

ˇ

ˇ

ˇ

ˇ

ˇ

2`2δ

|Ng

fi

fl

fi

fl

ď
1

λ2δ
EP

«

1

Ng

Ng
ÿ

i“1

EP

”

|Xgi|
4`4δ

|Ng

ı

ff

ă
1

λδ
C

which converges to zero as λ Ñ 8. Hence, the convergence G´1
řG

g“1N
´1
g X 1

gXg
p

Ñ

EP rN´1
g X 1

gXgs follows from WLLN for triangular arrays given (B.8) and Assumption 3.1.

Following the assumption on aG, it holds that aG Ñ 1 almost surely. (Recall that aG is

53



stochastic in general under our framework in which Ng is random.) Then, it remains to

show that along pPGqG, it holds that

G´1
G

ÿ

g“1

N´2
g

pSg
pS 1
g

p
Ñ EP rN´2

g X 1
gUgU

1
gXgs.

To this end, we first write

pSg “

Ng
ÿ

i“1

Xgi
pUgi

“

Ng
ÿ

i“1

XgiUgi ´

Ng
ÿ

i“1

X2
gi ppθ ´ θq

“Sg ´ Ξg ppθ ´ θq,

where Ξg “
řNg

i“1X
2
gi. Then, we have

G´1
G

ÿ

g“1

N´2
g

pSg
pS 1
g

“G´1
G

ÿ

g“1

N´2
g S2

g ´ 2G´1
G

ÿ

g“1

N´2
g SgΞgppθ ´ θq ` G´1

G
ÿ

g“1

N´2
g Ξ2

gppθ ´ θq
2

“EP rN´2
g S2

g s ´ 2EP rN´2
g SgΞgsppθ ´ θq ` EP rN´2

g Ξ2
gsppθ ´ θq

2
` opp1q

“EP rN´2
g S2

g s ` opp1q,

by WLLN for triangular arrays given (B.8), (B.9), Assumption 2, Assumption 3, and the

consistency of pθ from the first part of this proof.

B.6 Proof of Theorem 6

Proof of Theorem 6. Write

TG “
SG

?
VG

:“
A´1

G

řG
g“1

´

řNg

i“1 Ygi

¯

c

A´2
G

řG
g“1

´

řNg

i“1pYgi ´ pθq

¯2
and
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T ˚
G “

S˚
G

a

V ˚
G

:“
A´1

G

řG
g“1 v

˚
g

´

řNg

i“1 Ygi

¯

c

A´2
G

řG
g“1

´

v˚
g

řNg

i“1pYgi ´ pθ˚q

¯2
.

Let P denote the probability measure for the data and P ˚ denote the probability measure

of Rademacher auxiliary random variables. Define

p “ lim
tÑ8

P
´

řNg

i“1 Ygi ą t
¯

P
´

ˇ

ˇ

ˇ

řNg

i“1 Ygi

ˇ

ˇ

ˇ
ą t

¯ .

Write Wg “

ˇ

ˇ

ˇ

řNg

i“1 Ygi

ˇ

ˇ

ˇ
and the order statistics of W1, ...,WG as follows:

WG1 ěWG2 ě ... ě WGG.

The rescaled counterpart is denoted by ZGg “ A´1
G WGg, for g “ 1, ..., G – recall that AG “

G1{αLpGq for a slow varying Lp¨q is defined right before Assumption 1. For each G, we can

collect them into a countably long vector

ZG
“ pZG1, ..., ZGG, 0, 0, ...q P R

8.

Similarly defined is the countably long sign vector

ϵG “ pϵG1, ..., ϵGG, 1, 1, ...q P R
8,

where ϵGg indicates the sign such that
řNh

i“1 Yhi “ ϵGgWGg for the cluster h that corresponds

to the g-th order statistic WGg for each g “ 1, ..., G, G P N. By Lemmas 1 and 2 in LePage

et al. (1981), we have

ZG d
ÑZ “ pZ1, Z2, ...q and ϵG

d
Ñ ϵ “ pϵ1, ϵ2, ...q,
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where tZkuk and tϵku are defined in the proof for Lemma 1. In addition, since R8 is a

complete separable metric space under the metric

dppx1, x2, ...q, py1, y2, ...qq “

8
ÿ

k“1

1

2k
¨

|xk ´ yk|

1 ` |xk ´ yk|
,

following Skorohod’s representation theorem, on an adequately chosen probability space,

dpZG, Zq Ñ 0 and dpϵG, ϵq Ñ 0

P -almost surely. Denote the countable vector of i.i.d. Rademacher random variables by

v˚ “ pv˚
1 , v

˚
2 , ...q P R8, which is invariant of G. We now claim that the weak convergence

S˚
G “

G
ÿ

g“1

ϵGgZGgv
˚
g

d˚

Ñ S˚ :“
8
ÿ

k“1

ϵkZkv
˚
k

for pZ, ϵq with P -probability one, where the convergence in distribution
d˚

Ñ is with respect

to P ˚. Note that the limiting random variable on the right-hand side is well-defined since

E˚
rϵkZkv

˚
k s “ 0 for all k and

8
ÿ

k“1

E˚
“

pϵkZkv
˚
kq

2
‰

“

8
ÿ

k“1

Z2
k ă 8

P -almost surely. The convergence in distribution is shown following the same arguments as in

the proof of Theorem 2 in Knight (1989) with i.i.d. Rademacher random variables v˚
k in place

of their centered i.i.d. Poisson random variables pM˚
k ´ 1q. Specifically, observe that Zk Ñ 0

as k Ñ 8 P -almost surely. Following Equation (12) in the proof of Theorem 1 in LePage

et al. (1981), define Z Ă R
8 be the subspace consists of countable sequences z “ pz1, z2, ...q

such that z1 ě z2 ě ... ě 0 (note that Z is also a complete separable space with the inherited

topology). Subsequently, for a fixed ε ą 0, define ϕ : Z ˆ t´1, 1u8 ˆ t´1, 1u8 by

ϕpz, ϵ, v˚
q “

$

&

%

ř8

k“1 ϵkzk1pzk ą ϵqv˚
k if zk Ñ 0 as k Ñ 8,

0 otherwise.
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Then ϕ is a continuous mapping with respect to the product topology. Thus by the contin-

uous mapping theorem as well as the convergences of dpZG, Zq Ñ 0 and dpϵG, ϵq Ñ 0 with

P -probability one established earlier, for any ε ą 0,

G
ÿ

g“1

ϵGgZGg1pZGg ą εqv˚
g

d˚

Ñ

8
ÿ

k“1

ϵkZk1pZk ą εqv˚
k

for pZ, ϵq with P -probability one. In addition, note that

E˚

»

–

˜

G
ÿ

g“1

ϵGgZGg1pZGg ď εqv˚
g

¸2
fi

fl “

G
ÿ

g“1

Z2
Gg1pZGg ď εqVar˚

pv˚
kq ď

8
ÿ

k“1

Z2
k1pZk ď εq

holds almost surely in P and the right-hand side converges to zero as ε Ñ 0, which implies

via Markov’s inequality that, for any δ ą 0,

lim
εÑ0

lim sup
GÑ8

P ˚

˜
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

ϵGkZGk1pZGk ď εqv˚
k

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

“ 0

P -almost surely. Finally, for any δ ą 0,

lim
εÑ0

P ˚

˜ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

ϵkZk1pZk ď εqv˚
k

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

“ 0

P -almost surely, which follows immediately from the fact that

E˚

»

–

˜

8
ÿ

k“1

ϵkZk1pZk ď εqv˚
k

¸2
fi

fl “

8
ÿ

k“1

Z2
k1pZk ď εq Ñ 0

P -almost surely as ε Ñ 0. Combining these results yields that

S˚
G

d˚

Ñ S˚
“

8
ÿ

k“1

ϵkZkv
˚
k
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for pZ, ϵq with P -probability one. On the other hand, recall from Step 1 in the proof of

Lemma 1 that

SG “

G
ÿ

g“1

ϵGgZGg
d

Ñ S :“
8
ÿ

k“1

tϵkZk ´ p2p ´ 1qErZk1pZk ď 1qsu,

by Theorem 1 in LePage et al. (1981). Note that Zk, ϵk, and v
˚
k are all mutually independent

from each other. Therefore, the limiting distribution of S˚
G given Y1:G, i.e. S

˚ conditionally

on pZ, ϵq, differs from, S, the limiting α-stable distribution of SG with positive P -probability.

Next, to cope with the denominator term of S˚
G, note that, combined with the law of

large numbers, the above weak convergence of S˚
G also implies

pθ˚
“

1

N

G
ÿ

g“1

ϵGgWGgv
˚
g

“
1

c ` opp1q
¨
1

G

G
ÿ

g“1

ϵGgWGgv
˚
g

“
1

c ` opp1q
loooomoooon

“Opp1q

¨
AG

G
loomoon

“
LpGq

G1´1{α

¨

G
ÿ

g“1

ϵGgZGgv
˚
g

loooooomoooooon

“Opp1q

“ opp1q.

Thus, the denominator term, pV ˚
Gq1{2, of S˚

G turns out to be asymptotically independent of

the auxiliary Rademacher random variables v˚
g :

V ˚
G “

1

A2
G

G
ÿ

g“1

˜

v˚
g

Ng
ÿ

i“1

pYgi ` opp1qq

¸2

“

G
ÿ

g“1

Z2
Gg ` opp1q.

Given Y1:G, the denominator is asymptotically constant. Following Step 1 in the proof of

Lemma 1, we have

VG “

G
ÿ

g“1

Z2
Gg ` opp1q

d
Ñ

8
ÿ

k“1

Z2
k “ Opp1q.

Thus, given Y1:G, the denominator term pV ˚
Gq1{2 is a fixed value, while the original limit of the

denominator is an pα{2q-stable, non-degenerate continuous distribution. Hence, the limiting
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distribution of V ˚
G given Y1:G and the unconditional limiting distribution of VG differs with

non-zero P -probability.

Finally, note that V ˚
G ą 0 P -almost surely. Thus, the fact that

pS˚
G, V

˚
Gq

d˚

Ñ

˜

8
ÿ

k“1

ϵkZkv
˚
k ,

8
ÿ

k“1

Z2
k

¸

for almost every pZ, ϵq and the continuous mapping theorem yield that

T ˚
G

d˚

Ñ

ř8

k“1 ϵkZkv
˚
k

a

ř8

k“1 Z
2
k

for pZ, ϵq with P -probability one. This, together with the unconditional limiting distribution

of TG implies the conclusion that the unconditional limiting distribution of TG and the

conditional limiting distribution of T ˚
G differs with positive P -probability. The inconsistency

then follows.

C Auxiliary Lemmas

Let XpGq “ pX1, ..., XGq be a sequence of i.i.d. random variables with distribution P P P

and let the distribution of a real-valued root RG “ RGpXpGq, P q under P be denoted by

JGpx, P q. In addition, for a subsample size b “ bG ă G such that b “ opGq, define BG “
`

G
b

˘

.

For j “ 1, ..., BG, let X
G,pbq,j denote the j-th subsample of size b. Define

LGpx, P q “
1

BG

BG
ÿ

j“1

1tRbpX
G,pbq,j, P q ď xu and

pLGpxq “
1

BG

BG
ÿ

j“1

1t pRbpX
G,pbq,j

q ď xu,

where pRb is a feasible estimator of Rb, which depends on the unknown P .

The following lemma restates Theorems 2.1 and 2.2 as well as Remark 2.1 in Romano

and Shaikh (2012) for convenience of reference.

59



Lemma 3 (High-level uniformity). Under the current setup,

lim
GÑ0

sup
PPP

sup
xPR

|Jbpx, P q ´ JGpx, P q| “ 0,

implies

lim inf
GÑ8

inf
PPP

P
`

L´1
G pa1, P q ď RG ď L´1

G p1 ´ a2, P q
˘

ě 1 ´ a1 ´ a2

for any nonnegative a1 and a2 such that 0 ď a1 ` a2 ă 1. In addition, if JGpx, P q tends in

distribution to a limiting distribution Jpx, P q that is continuous, then

lim
GÑ8

inf
PPP

P
`

L´1
G pa1, P q ď RG ď L´1

G p1 ´ a2, P q
˘

“ 1 ´ a1 ´ a2.

Finally, if

sup
PPP

P

ˆ

sup
xPR

ˇ

ˇ

ˇ

pLGpxq ´ LGpx, P q

ˇ

ˇ

ˇ
ą ε

˙

“ op1q

for all ε ą 0, then

lim
GÑ8

inf
PPP

P
´

pL´1
G pa1q ď RG ď pL´1

G p1 ´ a2q
¯

“ 1 ´ a1 ´ a2.

The next result is taken from Theorem 3.5 in Resnick (2007).

Lemma 4 (Second converging together theorem). Suppose that tXMn, XM , X, Yn : n ě

1,M ě 1u are random elements of the metric space pS,Sq with a metric dp¨, ¨q that are

defined on a common domain. Assume that for each M , as n Ñ 8, XMn ⇝ XM , and as

M Ñ 8, XM ⇝ X, Further suppose that for all ε ą 0,

lim
MÑ8

lim sup
nÑ8

P pdpXMn, Ynq ě εq “ 0.

Then, as n Ñ 8, we have Yn ⇝ X, where ⇝ denotes weak convergence.
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