
The permanent and temporary effects of
stock splits on liquidity in a dynamic

semiparametric model

Christian M. Hafner∗a, Oliver B. Linton†b, and Linqi Wang‡b

a
Louvain Institute of Data Analysis and Modelling in economics and statistics (LIDAM), and ISBA,

UCLouvain
bFaculty of Economics, University of Cambridge

November 19, 2024

Abstract

We develop a dynamic framework to detect the occurrence of permanent

and transitory breaks in the illiquidity process. We propose various tests that

can be applied separately to individual events and can be aggregated across

different events over time for a given firm or across different firms. We use this

methodology to study the impact of stock splits on the illiquidity dynamics of

the Dow Jones index constituents and the effects of reverse splits using stocks

from the S&P 500, S&P 400 and S&P 600 indices. Our empirical results show

that stock splits have a positive and significant effect on the permanent compo-

nent of the illiquidity process while a majority of the stocks engaging in reverse

splits experience an improvement in liquidity conditions.

Keywords: Amihud illiquidity, Difference in Difference, Event Study, Nonparametric Esti-

mation, Reverse Split, Structural Change

JEL Classification: C12, C14, G14, G32

∗Email: christian.hafner@uclouvain.be.
†Email: obl20@cam.ac.uk.
‡Corresponding author; Email: lw711@cam.ac.uk; Address: Austin Robinson Building, Sidgwick Av-

enue, Cambridge, CB3 9DD.



1 Introduction

One commonly held market explanation for why companies split their stock is the theory

that this creates “wider” markets.1 Reducing the price level should make it easier for a

bigger pool of retail (uninformed) investors to buy into the stock and allow existing in-

vestors to sell part of their holdings more easily to other investors thereby increasing the

investor base and the volume of transactions. This in turn should lead to improved liq-

uidity conditions and reduce the cost of capital to companies. However, there are other

theoretical arguments presented in Copeland (1979) that may point to a decrease in liq-

uidity following a stock split, such as increases in real transaction costs.2 In his empirical

study, Copeland found that liquidity worsened following stock splits on average. However,

his dataset terminated over fifty years ago and at that time stocks were traded in 1/8ths of

a dollar and the trading system was pit based rather than electronic. More recent work we

review below has found mixed results. We will evaluate Copeland’s findings with updated

data and modern statistical methods.

Many of the empirical studies about stock splits distinguish between short-term and

long-term effects but do so in an informal way statistically.3 We use a recently developed

time series model, Hafner et al. (2023) henceforth HLW, to capture this distinction formally

and to provide new methodology to test the effects on liquidity of stock splits. We base

our analysis on the popular Amihud (il)liquidity measure proposed by Amihud (2002),

which is considered an empirical proxy of Kyle’s price impact parameter. But rather than

1Announcing their 4 for 1 split in June of 2020, the Apple Board of Directors gave the reason “to make

the stock more accessible to a broader base of investors.”
2As Weld et al. (2009) say “commissions paid by investors on trading ten $35 shares are about ten times

those paid on a single $350 share”. Nowadays, trading costs for retail traders would not scale in this way

but nevertheless the total costs would be higher.
3Copeland (1979) for example worked with a dynamic regression model for trading volume estimated

separately for before and after.
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averaging over daily measures as in the usual approach, we feed the daily measures directly

into our model. Our model is a member of the class of multiplicative error models (MEM)

that have been applied to many different positive-valued financial time series including

volatility, duration between trades, and transaction volume, see e.g. Engle (2002). We

allow for a nonparametric time trend to capture the secular improvement in liquidity that

has happened for most stocks from the 1960s to the present day. The MEM model and its

applications and developments over the last 20 years are reviewed in Cipollini and Gallo

(2022).4 Within our econometric model, we test the following hypotheses

H1
0: Stock splits have no permanent effect on the level of liquidity against the

alternative that they do have a permanent effect.

H2
0: Stock splits have no additional temporary effect on the level of liquidity

against the alternative that they do have a temporary effect.

Our test of H1
0 is similar to that used in the regression discontinuity literature and the

structural break literature - we look for discrepancy between forward- and backward-looking

trend estimates based on local linear kernel smoothing, Fan and Gijbels (1996). Our test

involves the estimated permanent component of liquidity based on the model prewhitened

liquidity series, see Hafner et al. (2023). We establish the large sample properties of our

statistic under the null and alternative hypotheses. Since the tests are based on smoothing

methods, there is the issue of bias and we use several different methods to account for that

in our inference procedures including the recent work of Armstrong and Kolesár (2020).

We consider individual event-specific tests, tests that pool across different splits for the

same firm, and tests that pool across firms as well. One issue with these tests is whether

4An alternative approach can be based on fitting linear models to the logarithm of liquidity, but we

avoid this approach here primarily because taking logarithms emphasizes values close to zero, the so-called

inlier problem, and deemphasizes large positive values of illiquidity, which are of much more interest and

concern to policymakers.
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they account for major events like the tech bubble and bust of 1999-2001 and the Global

Financial Crisis of 2008 that occur at the same time as some forward splits and reverse

splits. To control for this we develop a difference in difference (DID) test statistic that

estimates the difference in jumps at the specified time relative to the jumps observed in a

control group of stocks that did not experience a split at the given time.

Our test of H2
0 are designed in the spirit of event studies as e.g. in Fama et al. (1969), i.e.,

we look at abnormal liquidity and cumulative abnormal liquidity and determine whether

these quantities are consistent with the null of no change. Our tests are robust to the

presence of a permanent break and are looking additionally for short-term adjustments to

the new level of liquidity. We propose a nonparametric method for estimating the critical

values for these test statistics under the assumption that the shock process is stationary

and mixing and show that it is asymptotically valid. Since we focus on liquidity rather than

firm valuation, we concentrate on the post split effects rather than the post announcement

effects, although our test statistics are computed in some cases over periods including the

announcement as well as the split itself.

We next discuss our empirical results. Our results broadly support findings in Copeland

(1979) using a more recent sample of Dow Jones index component stocks. Specifically, we

document that stock splits cause significant shifts in the long-term Amihud illiquidity

trend while no additional significant effects on short-run Amihud liquidity dynamics are

detected. This seems to suggest that the market quickly adjusts to the new pricing regime.

The change in the long-term trend of illiquidity is predominantly positive, implying that

liquidity conditions deteriorate in the long run after stock splits. We also investigate

whether the effects of reverse stock splits on the illiquidity process are symmetric to the

ones documented for stock splits. Our empirical study uses low-price stocks from the

constituents of the S&P 500, S&P 400 and S&P 600 indices with a reverse split during the

past 30 years. The results suggest that a majority of the low-price stocks engaging in reverse
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splits experience an improvement in liquidity conditions. However, we find limited effects

on the short-run illiquidity dynamics. The fact that reverse splits result in a significant

decrease in the illiquidity trend for the majority of those stocks is in line with the results in

Han (1995). The pronounced improvement in liquidity conditions for our sample of stocks

with low pre-event price levels is consistent with the evidence in Blau et al. (2023). This

could be linked to the fact that short-selling activity increases after reverse splits in part

because reverse splits ease the constraints on short selling for low-priced stocks (Kwan et al.

(2015)).

Li and Ye (2023) (henceforth LY) develop an innovative model capturing the effects

of discrete prices and discrete quantities (lot sizes) on liquidity. Their model implies that

there should be a U-shaped relationship between a stock’s nominal price and its liquidity.

Their empirical analysis confirms some of their theoretical predictions, in particular, they

find that most splits improve liquidity. They are working with a different measure of

liquidity, the quoted bid-ask spread (which they obtain at the millisecond frequency and

then average over [-180,-60] days and [60,180] days. They make cross sectional predictions

the centerpiece of their empirical work, whereas we are working with lower frequency daily

data and fit a time series model. Nevertheless, we try to build on some features of their

model. Specifically, we also compute a measure of the permanent effect of a stock split

based on our proxy for one of their model implied liquidity measures. In this case, we find

different empirical results, which we discuss below.

Literature Review. There is a substantial literature on the effect of stock splits on

firm valuation starting with Dolley (1933) who studied stock splits between 1921-1931 and

found (split-adjusted) price increases around the time of the split. Fama et al. (1969)

introduced a new methodology based on the market model for stock returns that we now

call event study and applied it to 940 splits between 1927-1959. They argued that Dolley

and other studies used windows that were too short and consequently did not control for the
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price appreciation trend established prior to the split decision and they find that most of

the effect occurs before the split itself consistent with this sample selection interpretation:

firms that take the decision to split their stock tend to have had a period of high price

appreciation prior to their decision. Other studies following Fama et al. (1969) did find

significant short-term/long-term effects on firm valuation. Weld et al. (2009) summarize a

lot of this evidence. They discuss the proposed reasons why companies split their stock and

how this evidence stacks up with those theories. These include: signaling management’s

confidence about the future, optimal trading ranges for retail investors, and optimal real

tick size for market making. However, they find that none of the existing theories are able

to explain the observed constant nominal stock prices over a large part of the 20th century

(in contrast with the CPI, which went up manyfold over the same period).5

Although the early focus of the empirical work was on firm valuation, there has been a

lot of subsequent work looking at other outcome variables. Ohlson and Penman (1985) ex-

amine stock return volatilities before and after the execution dates (ex-dates) of stock splits.

They find an increase of approximately 30% in the return standard deviations following the

ex-date. This holds for daily and weekly returns and persists for a long while. Lamoureux

and Poon (1987) find that of 215 splits, eighty-seven showed a statistically significant drop

in split-adjusted, market-adjusted average daily volume, while twenty-seven exhibited a

significant increase. Of forty-nine reverse splits, fifteen exhibited a statistically significant

increase and two exhibited a significant decrease in split-adjusted, market-adjusted volume.

Lakonishok and Lev (1987) report that trading volume temporarily increased on announce-

5Since the time period considered by that article, it appears that some of the facts have changed

regarding stock splits. Specifically, the frequency of stock splits has fallen considerably up to a few years

ago. Reflecting this reduction in the frequency of splits, the average price of large caps (S&P500) has

increased from around $50 in 2000 to more than $200 in 2022, Mackintosh (2022). However, recently there

has been an upsurge in stock splits, for example: Walmart (3:1 on February 22nd 2024), Nvidia (10:1 on

June 7th 2024), Chipotle (50:1 on June 25th 2024), and Broadcom (10:1 on July 12th, 2024).
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ment day and decreased after the split announcement. Consistent with this, Huang et al.

(2015) find that there is a liquidity improvement on announcement day, as well as in the

period between announcement day and execution date. However, the liquidity declined

after the ex-date to the level before the announcement. The authors concluded that liq-

uidity improvement is a short-lived effect of stock splits. Copeland (1979) provided an

empirical study that worked with weekly trading volume mostly for stocks from 1963-1974.

He developed a dynamic regression model for trading volume, his main liquidity measure.

He estimated the model for 25 firms before their split and then separately for after their

split. He tested the differences using classical F tests. He found that volume increases less

than proportionately after a split. He also found that brokerage revenues increase, and

that percentage bid-ask spreads increased following stock splits, i.e., liquidity worsened.

On the other hand, other researchers (Chern et al. (2008); Guo et al. (2008); Yu and Webb

(2009)) found that stock splits reduce bid-ask spreads, and increase the number of small

traders who are attracted to the lower price on ex-date, indicating liquidity improvement.

Mohanty and Moon (2007) also found a significant improvement in the average trading

volume, comparing the 12-month post-split announcement period with the one prior to the

announcement. Han (1995) studied the effect of reverse splits on liquidity using bid-ask

spread, trading volume, and the number of non-trading days as liquidity proxies. He finds

that liquidity significantly improves after reverse splits relative to a control group matched

on industry, size, and share price. Lin et al. (2009) find contrarily that following forward

stock splits a nontrading type of liquidity proxy improves. The upshot of this literature

is that the evidence of the impact of stock splits on company-specific liquidity is, to this

date, inconclusive.

The remainder of the paper is organized as follows. The following section recalls the

Dynamic Autoregressive Liquidity (DArLiq) model introduced in HLW and defines a mea-

sure for the permanent effect. Section 3 presents the econometric methodology including
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estimation of the dynamic model and various tests of permanent and temporary effects.

Sections 4 and 5 present an empirical application where we use our framework to analyze

the effect of stock splits and reverse splits on the long-run trend and short-run illiquid-

ity dynamics. Section 6 concludes. Some additional figures for the empirical analysis are

collected in Appendix D of the supplementary material.

2 The dynamic model for illiquidity

2.1 Liquidity measures

We are concerned with stock market liquidity, which is essentially the ability to buy and sell

shares quickly at a good price. Kyle (1985), O’Hara (1995), Hasbrouck (2006) identify three

aspects of liquidity: trading costs and price impact; depth; and resiliency. Common ways of

measuring liquidity using high frequency trade and quote data on limit order book include:

quoted bid-ask spreads, effective spreads, realized spreads, quoted depth and weighted

depth, and transaction volume. High frequency intraday data is now very complex and

requires a lot of computation and in any case is not available for all markets of interest

for a long period of time.6 For these reasons, low-frequency measures are very popular.

There are several methods widely used to measure liquidity using lower-frequency data.

The usual approach is to work with daily data and then average to a monthly or longer

6Quoted bid-ask spreads are not such a good measure of liquidity or transaction costs because trades

often occur outside of the quoted prices. The effective spread, which is the difference between the trade price

and the mid-quote price, is a better measure of execution cost, as reflected in SEC rule 605, Foresight (2012).

Nevertheless, there are many complex issues in calculating effective spreads with high frequency trade and

quote data in a legally integrated market such as the US, where separate venues exist without synchronized

timestamps so that for example establishing the time priority of messages at say the millisecond frequency

across different venues is difficult. For example, it takes at least 4 milliseconds for messages to travel

between New York and Chicago, according to the laws of physics.
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horizon. Some of these measures are based on the autocovariance function of daily returns

such as the Roll measure, see Li and Linton (2022) for a recent contribution. Some are

based on the frequency of zero returns in say a month, the so-called LOT model of Lesmond

et al. (1999). These approaches are less easy to adapt to create a meaningful daily measure

of liquidity in the absence of intradaily data. We focus on the Amihud illiquidity, Amihud

(2002), which can be interpreted as a price impact measure of liquidity, and which has a

natural daily counterpart. This has been used in countless studies (this paper is cited more

than 13500 times) as: a dependent variable measuring market quality; and an independent

variable as a priceable factor in asset pricing cross-sectional regressions, Amihud (2002).

Goyenko et al. (2009) and Fong et al. (2017) compare a large number of low-frequency

liquidity measures, and generally speaking the Amihud measure does pretty well. There

are several variations on the Amihud measure, and we present some of them in Table 1.

In the empirical study, our main results are obtained with the measure ℓt = σt/Vt, where

σt is the high-low measure of daily volatility. One advantage of this measure is that it avoids

the zero problem sometimes encountered with daily returns, see HLW. Furthermore, it has

been argued that this version leads to a more efficient low-frequency liquidity measure than

the classic daily Amihud proxy, see Lacava et al. (2023). Our main empirical results are

qualitatively robust to the use of alternative liquidity measures except the LY measure,

which gives quite different results. This seems to arise because of the additional presence

of the nominal price level.
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Table 1: Alternative Daily Liquidity or Illiquidity measures.

Paper Daily Measures

Amihud (2002)
|PC

t −PC
t−1|

Vt×PC
t−1

Amivest
Vt×PC

t−1

|PC
t −PC

t−1|
Lacava et al. (2023) σt

Vt

Barardehi et al. (2021)
|ln(PC

t )−ln(PO
t )|

Vt

Fong et al. (2018) aσt

V
1/2
t

Li and Ye (2023) 2σtLtPt

Vt

Copeland (1979) Vt

Kyle and Obizhaeva (2016) c
V

1/3
t

σ
2/3
t

Hui and Heubel (1984)
(PH

t −PL
t )

PL
t

mcapt
Vt

Danyliv et al. (2014) log10

(
Vt

PH
t −PL

t

)
Note: σt is a daily measure of volatility such as the high-

low measure
PH

t −PL
t

PC
t

. Vt is trading volume, Lt is round lot

size, and mcapt is the market capitalization. The high, low,

close and open prices are denoted PH
t , PL

t , PC
t , and PO

t .
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2.2 Time series model

Suppose that the non-negative time series ℓt follows a multiplicative dynamic stochastic

process

ℓt = g(t/T )λtζt (1)

B(L)λt = ω + C(L)ℓ∗t−1, (2)

where g(.) is a positive but unknown function of rescaled time while ℓ∗t = ℓt/g(t/T ) = λtζt is

the rescaled liquidity, and ζt is a sequence of non-negative random variables with conditional

mean one and finite unconditional variance denoted by σ2
ζ . We here consider the special

case where the lag polynomials satisfy B(L) = 1− βL and C(L) = γ, where β, γ > 0 and

β + γ < 1 in which case the process λt is mean stationary. The component g(.) captures

the long-term slowly evolving trend in the process, which is necessary to include for many

stocks and indices due to the longer term improvements in liquidity that we have observed.

The dynamic process λt represents short-term stationary predictable variation around this

trend, which is also needed for liquidity time series that have this moderately persistent

deviations from the trend as documented in HLW. The last component ζt represents the

new information, the shock driving the process. In HLW we investigated the tail thickness

issue and found Pareto type tails but tail thickness parameters in the range five to ten.

When it comes to estimation, there is an identification issue because we can multiply and

divide the two components g, λ by constants and obtain the same value of liquidity. To

resolve this we suppose that E(λt) = 1, which is achieved by setting ω = 1 − β − γ. The

properties of this model and the overall estimation strategy are discussed in HLW.7

7A more general approach could be based on Inoue et al. (2021) where all the parameters are allowed

to change over time in a smooth fashion. This would be a purely nonparametric model that includes ours

as a special case (at least when the shocks are assumed to be i.i.d.). Our model leans on the old idea

of trend+cycle decomposition and imposes more structure with the benefit of faster convergence rates for

some quantities.
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The Amihud (2002) liquidity measure is formally defined as At =
∑

s∈It ℓs/nt. Usually,

A is measured monthly, quarterly, or annually by averaging the daily values of ℓs within

period It of length nt days.
8 Note that our trend function g(t/T ) can be interpreted as

the model-specific counterpart of the low-frequency measure At. The key feature of our

model is that we allow the detrended liquidity ℓ∗t = ℓt/g(t/T ) to have nontrivial short-term

predictability through the process λt so that shocks to liquidity have persistent effects on the

level of liquidity relative to trend. In practice, both short-term and long-term predictability

is present in this series, and it is important to take account of both features when carrying

out inferential procedures and in predicting future liquidity.

Our model implies that E(ℓt | Ft−1) = g(t/T )λt and E(ℓt) = g(t/T ), which is the

basis of our estimation strategy. It also implies that var(ℓt | Ft−1) = g(t/T )2λ2
tσ

2
ζt, where

σ2
ζt = var(ζt | Ft−1). If we additionally assume that ζt is i.i.d., then var(ℓt | Ft−1) is, apart

from a constant, the square of E(ℓt | Ft−1), which may be rather restrictive. Therefore,

since we do not need this for estimation, we shall not require this, preferring the weaker

assumption that ζt − 1 is a martingale difference sequence.

We suppose that the liquidity trend function g is almost everywhere a smooth function

of (rescaled) time, specifically, it has two continuous derivatives. The function g captures

the long-run variation of liquidity, which is generally smoothly varying (and for most assets

shows improvements over time). However, we allow the possibility of permanent shifts in

liquidity (structural change) by allowing the function g to be discontinuous at a finite set

of known points u1 = t1/T, . . . , um = tm/T ∈ (0, 1). For a given point u ∈ (0, 1) define the

left and right limits of the function and its first two derivatives

lim
u↑u

g(r)(u) = g
(r)
− (u), lim

u↓u
g(r)(u) = g

(r)
+ (u), r = 0, 1, 2,

8Acharya and Pedersen (2005) modify At by multiplying it by lagged market price to take care of

nonstationarity and then winsorizing to reduce the effect of outliers. We instead explicitly model the trend

to account for nonstationarity. In HLW we discussed the issue of heavy tails and how to deal with them.

12



which we assume are well defined and finite. We allow that g
(r)
− (ui) ̸= g

(r)
+ (ui) for i =

1, . . . ,m and r = 0, 1, 2, but for all u /∈ {0, u1, . . . , um, 1} we maintain that g
(r)
− (u) =

g
(r)
+ (u) = g(u), for r = 0, 1, 2.9 We adopt the convention that g(r)(.) are CADLAG (contin-

uous from the right with limits from the left), that is, g(r)(ui) = g
(r)
+ (ui), and so we may

write for r = 0, 1, 2 and u ∈ [0, 1]

g(r)(u) = g
(r)
0 (u) + J (r)

i 1(u ∈ [ui, ui+1))

for some baseline function g0(.) that is twice continuously differentiable, where 1(.) is the

indicator function, and
∣∣∣J (r)

i

∣∣∣ ≤ C < ∞. One question of interest is whether a break has

occurred, and, if one has occurred, how big is the effect in terms of the level of g. The size

of the jump at point ui is measured in level terms and percentage terms, respectively, by:

Ji = J (0)
i = g+(ui)− g−(ui), J%i = 2

g+(ui)− g−(ui)

g+(ui) + g−(ui)
. (3)

This is the magnitude of the permanent effect of the split on the level of Amihud illiquidity

of a given firm at time ui (the effect that remains in the absence of further changes).

LY develop an interesting framework for thinking about discreteness in markets. In

their Corollary 1, they present a formula for their model implied nominal bid ask spread

(in the case of continuous pricing but discrete quantities)

SL
t =

2σλjL

DV olt
P 2
t , (4)

where σλj can be interpreted as a volatility measure (they assume that value evolves in

continuous time like a Poisson jump process with constant volatility) and DV olt is dollar

trading volume, L is the round lot size, and Pt is the stock price level; they call this the

square rule. We interpret σλj/DV olt as our Amihud illiquidity measure, in which case we

find that the percentage bid-ask spread, sLt = SL
t /Pt, can be written in our notation as

sLt = 2L× ℓt × Pt.

9Note that g
(r)
+ (0) and g

(r)
− (1) are also assumed to be well defined finite quantities.
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Let P+ (ℓ+) be the price (illiquidity) right after a split and P− (ℓ−) be the price (illiquidity)

just before a split so that P+ = ςP−, where ς is (one over) the split factor. The percentage

effect of a stock split at ui on the implied percentage bid-ask spread, can be measured

in this framework by 2
(
Lℓ+P+ − Lℓ−P−) / (Lℓ+P+ + Lℓ−P−) , where we drop the time

subscripts for convenience. Assuming that the lot size does not change over the split period

we can cancel L and P− from the numerator and denominator, and replacing ℓ± by the

corresponding permanent component g± yields our LY measure of the permanent effect of

a split at ui on liquidity:

J LY
%i = 2

ςig
+(ui)− g−(ui)

ςig+(ui) + g−(ui)
, (5)

where ςi is (one over) the split factor.10 For forward splits, ςi < 1 and so J LY
%i could be

negative when J%i is positive - a split could make Amihud illiquidity worse but the LY

implied bid ask spread better in percentage terms. From this it is quite clear why the LY

measure gives different results.

3 Econometric methodology

3.1 Estimation of the model

We observe a sample of daily illiquidities {ℓt, t = 1, . . . , T} for a given firm. We first

estimate the trend process by a local linear kernel smoother designed to be robust to

potential breaks at known distinct points u0 = 0 < u1 < u2 < · · · < um < 1 = um+1.

Specifically, we define ĝ(u) = F (α̂0(u)) and ĝ′(u) = F ′(α̂0(u))α̂1(u), where for u ∈ [ui, ui+1),

(α̂0(u), α̂1(u)) = arg min
α0,α1

T∑
t=1

Kh(t/T−u)
{
ℓt − F (α0 + α1(t/T − u))

}2
1
(
ui ≤ t/T < ui+1

)
.

(6)

10On the other hand, if the round lot size changes in the same proportion, the effect cancels out and

J LY
%i = J%i.
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Here, Kh(.) = K(./h)/h, where K is a continuous kernel supported on [−1, 1] and h is

a bandwidth, while F is a known function. The choice of F : R → R+ imposes non-

negativity on ĝ(u), albeit at the cost of nonlinear optimization. For most series this step

may be unnecessary and the choice of F (y) = y yields the local linear regression, which

has an explicit formula  α̂0(u)

α̂1(u)

 = ST (u)
−1∆−1

T QT (u)

ST (u) =
1

T

T∑
t=1

1
(
ui ≤ t/T < ui+1

)
Kh(t/T − u)

 1 t/T−u
h

t/T−u
h

(
t/T−u

h

)2



QT (u) =
1

T

T∑
t=1

1
(
ui ≤ t/T < ui+1

)
Kh(t/T − u)

 1

t/T−u
h

 ℓt,

where ∆T = diag(1, h). We continue the presentation with the case F (x) = x for simplicity.

HLW used a local constant estimator with an additional explicit boundary adjustment. Our

method provides an automatic boundary adjustment that preserves the rate of convergence

of the estimator at all points u ∈ [0, 1]. At interior points of the interval (ui, ui+1) the

estimator is the standard local linear with two-sided smoothing, but for points ui+ ch with

c ∈ [0, 1] only time points to the right of ui are included and at points ui+1 − ch with

c ∈ [0, 1] only points to the left of ui+1 are included. This is exactly what happens with the

local linear estimator at a boundary point of the covariate support, see Fan and Gijbels

(1996). The estimator ĝ(u) is CADLAG everywhere on [0, 1] and is continuous everywhere

except at the points {u0, u1, . . . , um+1}, consistent with the posited behaviour of g(u).

Robinson (1989) established large sample properties of local constant kernel estimators in

a similar time series setting without structural breaks, and Francisco-Fernández et al. (2003)

established uniform consistency. Kristensen (2012) and others have extended these results

to settings with abrupt changes like ours. We carry out the estimation of the dynamic

15



parameters of λt using this jump robust estimator. In the supplementary material we

discuss how we select bandwidth h.

Define the detrended liquidity ℓ̂∗t = ℓt/ĝ(t/T ), t = 1, . . . , T. We use GMM to estimate

the dynamic parameters θ = (β, γ)⊺ from the conditional moment restriction E(ℓ∗t |Ft−1) =

λt, where ℓ∗t = ℓt/g(t/T ), t = 1, . . . , T. We work with the residual ℓ∗t/λt(θ) − 1, which is

a martingale difference sequence at the true parameter values β = β0, γ = γ0. In practice,

we use ℓ̂∗t/λ̂t(θ) − 1, where λ̂t(θ) = 1 − β − γ + βλt−1 + γℓ̂∗t−1. Then define ρt(θ, ĝ) =

zt−1(ℓ̂
∗
t/λ̂t(θ)− 1) and

θ̂GMM = argmin
θ∈Θ

∥∥MT (θ, ĝ)
∥∥
W
, MT (θ, ĝ) =

1

T

T∑
t=1

ρt(θ, ĝ), (7)

where W is a weighting matrix, while zt ∈ Ft are instruments, for example lagged values,

while for a vector a and matrix W, ∥a∥2W = a⊺Wa. This provides initial root-T consistent

estimators of θ under the conditions of HLW, which are based on Chen et al. (2003). These

conditions include undersmoothing (relative to what would be optimal for estimation of

g(u)), that is, the first round bandwidth sequence h satisfies Th4 → 0.

Given consistent estimates of θ, g(.) one can improve θ̂GMM and ĝ(.) for efficiency gains

or simplicity of standard errors by working with the ”pre-whitened” liquidity, ℓ†t = ℓt/λt.

We have E
(
ℓ†t

)
= g(t/T ), which provides an alternative local moment condition for es-

timation of g, and one that is purged of the short-run variation induced by the dynamic

process λt. We let g̃(u) = α̃0(u), where (α̃0(u), α̃1(u)) are defined as the minimizers of (6)

with ℓt replaced by ℓ̂†t = ℓt/λ̂t, where λ̂t = λ̂t(θ̂GMM , ĝ), and θ̂GMM , ĝ(.) were estimated

in the previous procedure. HLW show that the preliminary estimation of λt by λ̂t has no

effect on the large sample distributions of the “pre-whitened” estimator g̃(u). As discussed

in HLW, the benefit of working with g̃(u) is that its large sample variance is much sim-

pler to estimate than the large sample variance of ĝ(u) (which requires long-run variance

estimation), which tends to benefit inference in finite and large samples.
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To estimate the jump size at points ui we compute two different estimates of g(ui), a

left sider and a right sider. Specifically, we let ĝ+(ui) = α̂0,+(ui) and ĝ−(ui) = α̂0,−,(ui),

i = 1, . . . ,m, where: (α̂0,+(ui), α̂1,+(ui)) minimize (6), while (α̂0,−(ui), α̂1,−(ui)) minimize

(6) with 1
(
ui ≤ t/T < ui+1

)
replaced by 1

(
ui−1 ≤ t/T < ui

)
. We further let g̃+(ui) =

α̃0,+(ui) and g̃−(ui) = α̃0,−,(ui), i = 1, . . . ,m, where: (α̃0,+(ui), α̃1,+(ui)) minimize (6) with

ℓt replaced by ℓt/λ̂t, while (α̃0,−(ui), α̃1,−(ui)) minimize (6) with ℓt replaced by ℓt/λ̂t and

1
(
ui ≤ t/T < ui+1

)
replaced by 1

(
ui−1 ≤ t/T < ui

)
. Note that ĝ−(ui), g̃−(ui) consistently

estimate g−(ui).

The raw and percentage sizes of the jump can be estimated by the first round or second

round estimates, and for preserving space we just present here the second round versions

J̃i = g̃+(ui)− g̃−(ui), J̃%i =
2
(
g̃+(ui)− g̃−(ui)

)
g̃+(ui) + g̃−(ui)

. (8)

3.2 Test of permanent effect

3.2.1 Single Split

We first consider the null hypothesis that g−(ui) = g+(ui) versus the alternative that

g−(ui) ̸= g+(ui) for a given ui. One may also consider the “kinked” case where g is

continuous but its first or higher order derivatives are not continuous, which is a more

subtle change in the liquidity trend, but our focus is on jumps (or breaks) in the level

of liquidity. There is a large literature on testing for structural change (at an unknown

point) in parametric models, Perron (1989), and in nonparametric regression, Muller (1992),

Delgado and Hidalgo (2000), and Vogt (2015). In our case the change point(s) are known in

advance so the methodology is more similar to that of the regression discontinuity literature,

see Imbens and Lemieux (2008), Cattaneo and Titiunik (2022). The main difference here is

that we have a fully specified dynamic model in the background that provides a framework

for the construction of standard errors appropriate for the type of dependence found in this
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type of data, and the model also suggests alternative estimates of the jumps based on the

prewhitened liquidity. We test for the presence of a discontinuity at ui by computing an

adjusted t-statistic based on the final stage one-sided local linear estimators. We employ

different ways of conducting inference in this nonparametric setting that take account of

the smoothing bias, including some recently proposed methods.

Define the standard error and bias and the infeasible test statistic where for simplicity

here we suppose that a common bandwidth h (in practice our estimate of h∆,opt(ui) defined

above) is used:

SE(ui) =
√

||K+||2
(
σ2
+(ui) + σ2

−(ui)
)
/Th, b(ui) =

1

2
h2µ2(K

+)
(
g
(2)
+ (ui)− g

(2)
− (ui)

)
,

τ(ui) =
J̃i − Ji

SE(ui)
. (9)

Here, K+ is the right boundary kernel derived from K, which is defined in the supplemen-

tary material. Note that the estimators subscripted + are asymptotically independent of

the estimators subscripted −, because K+×K− = 0, no matter what the correlation struc-

ture of the errors (this explains why there is no covariance term in the standard errors). In

practice, we replace σ2
±(ui) by estimates σ̃2

±(ui), where

σ̃2
±(ui) = g̃±(ui)

2 × σ̂2
ζ , σ̂2

ζ =
1

T

T∑
t=1

(
ζ̂t − ζ̂

)2

.

Let τ̃(ui) denote the feasible statistic with SE(ui) replaced by the estimated version S̃E(ui).

Theorem 1. Suppose that the conditions A1-A3 given in the supplementary material

hold and that conditions A4-A6 of HLW hold. Furthermore, suppose that Th5 → γ, where

γ ∈ [0,∞). Then, we have as T → ∞

τ̃(ui) =⇒ N(ρi, 1), ρi = lim
T→∞

b(ui)

SE(ui)
. (10)

We test the hypothesis that Ji = 0 by comparing the value of τ̃(ui) (with Ji = 0) with

some critical value that we discuss below.

18



Stock splits are not the only reason why the liquidity process can experience discon-

tinuities, there may be other firm specific reasons as well as macroeconomic effects and

regulatory changes. These other breaks do not impact ĝ(ui) or ĝ±(ui) when they occur at

sufficiently different timepoints, since our kernel estimators are local, but they may affect

estimation of θ (although since the distortion is only affecting a small fraction h of the

observations, this may not be catastrophic) and hence g̃(ui) and g̃±(ui). One solution to

this is to identify the other break points using the methodology of Delgado and Hidalgo

(2000) and then to implement ĝ(ui), g̃(ui) using all the identified breakpoints in (6). Since

the break points are estimated at a faster rate than the break magnitudes, their estimation

does not affect the limiting behavior of the test statistic τ̃(ui). The alternative solution is

to work with ĝ±(ui) throughout, although the test statistics associated with this require

long run variance estimation.

In some cases, the event of interest takes place at the same time as other structural

changes affecting all stocks, such as during decimilization or the Global Financial Crisis.

In this case, we propose to include a control group to eliminate common trends at the

change time. This amounts to a diff in diff test, Angrist and Pischke (2009). Specifically,

suppose that we have a “treatment” stock labelled with an S subscript and a “control”

stock labelled with an C subscript.11 We suppose that the univariate dynamic model holds

for both stocks separately but that the corresponding shocks ζSt and ζCt may be correlated.

We define g̃S,±(ui), g̃C,±(ui), J̃C,i, JC,i, J̃S,i, and JS,i for the given period ui, and then define

the diff-in-diff statistic as

τdid(ui) =

(
J̃S,i − J̃C,i

)
−
(
JS,i − JC,i

)
SEdid(ui)

(11)

SEdid(ui) = ||K+||

√√√√(
σ2
S,+(ui) + σ2

C,+(ui)− 2σS,C,+(ui)
)
+
(
σ2
S,−(ui) + σ2

C,−(ui)− 2σS,C,−(ui)
)

Th

11In the empirical section we do a synthetic control method explained there.
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bdid(ui) =
h2

2
× µ2(K

+)×
((

g
(2)
S,+(ui)− g

(2)
S,−(ui)

)
−
(
g
(2)
C,+(ui)− g

(2)
C,−(ui)

))

σ̃S,C,±(u) = g̃S,±(ui)× g̃C,±(ui)× σ̂ζS ,ζC , σ̂ζS ,ζC =
1

T

T∑
t=1

(ζ̂St − ζ̂S)(ζ̂Ct − ζ̂C).

Define τ̃did(ui) like τdid(ui) but with S̃Edid(ui) in place of SEdid(ui).

Theorem 2. Suppose that the conditions A1-A4 given in the supplement hold and that

condition A4-A6 of HLW hold. Furthermore, suppose that Th5 → γ, where γ ∈ [0,∞).

Then, we have as T → ∞

τ̃did(ui) =⇒ N(ρdid, 1), ρdid = lim
T→∞

bdid(ui)

SEdid(ui)
.

We test the hypothesis that JS,i = JC,i by comparing the value of τ̃did(ui) (with JS,i−JC,i =

0) with some critical value that we discuss below. We comment that the control group

approach heavily relies on being able to find stock(s) that are not themselves influenced

by the effect on the treatment group, i.e., where spillover effects from S to C are not

anticipated. One may use a single stock as control or construct a synthetic control, see

Abadie (2021).

Inference. We consider several approaches for inference; we focus on the statistic

τ̃(ui), but the same arguments apply to τ̃did(ui). The central approach we adopt is to

assume that the bias terms e.g., b(ui), are of smaller order such that one does not need to

account for it in the CLT and one does not need to estimate g
(2)
± (ui). This holds under

the case that g
(2)
+ (ui) = g

(2)
− (ui), i.e., the curve has a level shift but the curvature from the

left and the right are equal. It also holds when this condition is violated provided that

γ = limT→∞ Th5 = 0, which is referred to as the undersmoothing case. In this case we

carry out the test of Ji = 0 by comparing the statistics τ̃(ui) with the normal critical values

±zα/2 for a size α test.

An alternative approach is to consistently estimate the bias and subtract it from the

estimator, which can be done in a number of ways either explicitly or implicitly but for
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consistent estimation of the bias another bandwidth has to be used. A popular method

called jackknife is due to Schucany and Sommers (1977) in which we replace the esti-

mator g̃±(ui;h) computed with whatever bandwidth h by 2g̃±(ui;h/2) − g̃±(ui;h), which

removes the bias effect from the limiting distribution but raises the variance by making

the implicit kernel of higher order and hence raising its L2 norm, see Härdle and Linton

(1994). Calonico et al. (2014) advocate an explicit bias correction with the same band-

width used in the estimation of g. This bias correction eliminates the bias asymptotically

but leads to an additional contribution to the variance, which needs to be accounted for.

In the application we consider a parametrically guided bias correction based on the pilot

parametric model that has been used for bandwidth selection as outlined in the supple-

mentary material. We suppose that g+(u), g−(u) are globally polynomial with parameters∑p
j=0 a

i
ju

j on the interval [ui, ui+1), in which case the bias is b(ui) = h2µ2(K)r(ui)/2, where

r(ui) =
∑p

j=2 j(j−1)(ai+1
j −aij)u

j−2
i , and we estimate the parameters aij by segmented global

polynomial regression on the separate regimes. One does not need to adjust the standard

error in our case because the estimates of aij are root-T consistent.12 In this case we carry

out the test of Ji = 0 by comparing the statistics τ̃(ui) − b̃(ui)/S̃E(ui) with ±zα/2 for a

size α test.

Armstrong and Kolesár (2020) suggest an alternative approach that provides “honest”

confidence intervals. In this case one estimates an upper bound on the bias terms. Specif-

ically, let ρmax = max1≤i≤J supG limT→∞(| b(ui) | /SE(ui)) be the upper bound over the

class of functions G. We let ρ̃max = max1≤i≤J(| b̃(ui) | /S̃E(ui)) be the estimated upper

bound described below. In this case we carry out the test of Ji = 0 by comparing the

statistics τ̃(ui) with cv1−α(ρ̃max), where cv1−α(ρ̃max) is the 1−α critical value of the folded

normal distribution | N(ρ̃max, 1) | for a size α test. In one implementation Armstrong and

12Note that in our case there are also bias terms from θ̂GMM , which are of smaller order since we required

that Th4 → 0 for that theory.
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Kolesár (2020) use a global polynomial model for g+(u), g−(u) on the interval [ui, ui+1) to

estimate the bias b(ui), as we have done above for bandwidth selection and bias correction.

Our tests are valid against all fixed departures for which Ji ̸= 0, since τ̃(ui)
P−→ ∞

(with Ji = 0) in this case. They also have power against some small departures, specifically,

power lies between zero and one for alternatives such that Ji = δi∆T for some sequence

∆T → 0 such that
√
Th∆T → ∆ ̸= 0. Our tests also have power against local alternatives

regarding the timing of the break (when there may be some small anticipation or delay in

the effects), such as the break point occurring at ui ± ch for some c ∈ [0, 1], see Hidalgo

and Seo (2013) for some discussion. This is relevant since a number of authors include

quarantine periods in their before and after analysis, see for example Copeland (1979) and

Li and Ye (2023). One can also construct confidence intervals for Ji and J̃%i using any of

the above approaches without imposing Ji = 0, since the distribution theory is stated in

this general case.

To save space, we do not report the simulation results here, but keep them available upon

request. We note that both the undersmoothing method and the honest confidence interval

approach work well overall, especially when the sample size is large. In smaller samples

(e.g. n=1000), the honest confidence interval approach performs slightly better than the

undersmoothing approach. For the bias correction method, we observe that there is an

over-rejection issue when the true trend does not have a break and this does not improve

as the sample size increases. Therefore, a more sophisticated bias correction method should

be considered but we do not pursue this direction in this paper.

3.2.2 Multiple Splits

We provide a joint test of the null hypothesis of no breaks at any of the ui versus the

alternative of one or more breaks. We may also average across a sample of firms j = 1, . . . , n

with breaks at times uji, i = 1, . . . ,mj, so we suppose that N is the total number of events
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being considered, where N ≤
∑n

j=1mj. We consider either of the statistics

W =
N∑
i=1

τ̃(ui)
2, M = max

1≤i≤N

∣∣τ̃(ui)
∣∣ , (12)

Provided the splits occur at different times the above arguments regarding the asymptotic

variances follow. Under the null hypothesis of no breaks anywhere, W is asymptotically

distributed as
∑N

i=1 (Zi + ρi)
2 and M is asymptotically distributed as max1≤i≤N |Zi + ρi| ,

where Zi are i.i.d. standard normal random variables (the individual t-statistics are mutu-

ally independent in large samples given the physical separation between ui and uj).

An alternative approach is to work with a directional test. Suppose that we pool the

jumps across the splits (either for a given firm or across firms) as follows

τ̃w =

∑N
i=1wiτ̃(ui)√∑N

i=1w
2
i

, (13)

where wi is a (possibly stochastic) weighting scheme such as market cap or equal weight-

ing. Then we may show that under the null hypothesis, we have (as T → ∞ for N

fixed) τ̃w =⇒ N(ρw, 1), where ρw =
∑N

i=1wiρi/
√∑N

i=1w
2
i . The individual statistics are

uncorrelated across distinct points ui. We may test the null hypothesis by comparing τ̃w

with the normal critical values in the undersmoothing case or by comparing τ̃w with criti-

cal values cv1−α(ρ̃w,max) in the “honest” confidence interval case, where cv1−α(ρ̃w,max) is the

1−α critical value of the folded normal distribution | N(ρ̃w,max, 1) | for a size α test. Here,

the worst case ratio is (
∑N

i=1wi/
√∑N

i=1w
2
i ) × max1≤i≤N supG limT→∞(| b(ui) | /SE(ui)).

This test is more directional in its intent, and will not reject all null hypotheses, only those

for which the discontinuities tend to go in the same direction, i.e., for which
∑N

i=1wiJi ̸= 0.

This is similar to the principle underlying the variance ratio tests and the usual way in

which event studies are conducted through cumulative abnormal returns.
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3.3 Test of temporary effects

We next consider how to allow for temporary effects or rather short-term adjustments that

eventually die out. One approach might be to include dummy variables in the dynamic

equation, that is, let

λt = 1− β − γ + βλt−1 +
J∑

j=1

δjDjt + γℓ∗t−1, (14)

where Djt is a dummy variable that is one in period tj and zero otherwise. To allow

for anticipation effects and slow transmission one could focus on times around the known

intervention point, that is, if tj is a stock split day, include dummy variables for tj −

E, . . . , tj + E for some event window E of length J = 2E + 1. With multiple splits one

could include dummy variables around all the key dates. Under this modelling assumption

the level of the process λt is affected for all t ≥ t1, with a flexible effect between t1 and

tJ , but after tJ the effect decreases rapidly as t − tJ → ∞ and the long run effect of the

intervention is zero. One can estimate the parameters δ by GMM jointly with β, γ, but the

estimates of δj so-formed are not consistent.

Instead of estimating the model (14), we propose a test of the null hypothesis that

δ1 = . . . = δJ = 0 against the general alternative under the assumption of i.i.d. shocks ζt.

In fact our test is also valid when ζt − 1 is only a stationary mixing martingale difference

sequence. Our test is based on the residuals from the null estimation, which is the common

practice in stock market event studies. Here, we just present the single event setting and

take a simple approach. We suppose that the event window is given by {t1−E, . . . , t1+E}.

Define the residuals ζ̂t = ℓt/g̃(t/T )λ̂t, t = 1, . . . , T, where the estimation of θ̂ and g̃(·) are

described above. Under our conditions, these residuals are asymptotically equivalent (as

T → ∞) to the true unobserved ζt.We define abnormal illiquidity and cumulative abnormal

illiquidity at times τ = 0, . . . , 2E as follows:

ÂILτ = ζ̂t1−E+τ − 1, ĈAIL(τ) =
τ∑

s=0

ÂILs. (15)
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We do not use the usual normal critical values here because this is not likely to be a good

assumption in view of the fact that ζt ≥ 0 and that the event window is typically short,

i.e., E is finite so that a CLT does not apply. We use instead nonparametrically estimated

critical values. Suppose that ζt−1 is a stationary mixing process with marginal distribution

F that is unknown and let Feτ denote the marginal distribution of the stationary mixing

series {er,τ}, where er,τ =
∑τ

s=0(ζr+s−1). We estimate the distributions F and Feτ based on

the data not including the event window, S = {1, . . . , T}\{t1−E, . . . , t1+E}. Specifically,

letting êr,τ =
∑τ

s=0(ζ̂r+s − 1), we define

F̂êτ (x) =
1

TS

∑
t∈S

1
(
êt,τ ≤ x

)
, x ∈ R,

where TS is the cardinality of the set S, and F̂ (x) = F̂ê0(x). Then define the critical

values F̂−1
êτ

(α/2), F̂−1
êτ

(1−α/2). We reject the null hypothesis (for a given τ = 0, . . . , 2E) if

ĈAIL(τ) is outside the interval [F̂−1
êτ

(α/2), F̂−1
êτ

(1−α/2)]. There is a large literature about

estimation of distribution functions of residuals in time series settings, see for example Koul

and Ling (2006) and Escanciano (2010).

Theorem 3. Suppose that conditions A1-A4 in the supplementary material hold. Then,

as T → ∞, F̂−1
êτ

(α/2)
P−→ F−1

eτ (α/2) and F̂−1
êτ

(1 − α/2)
P−→ F−1

eτ (1 − α/2), and therefore

the rejection frequency of our test converges to α under the null hypothesis.

We may average across events (same firm different events or across firms) and obtain a

CLT when the number of events being averaged across is large. Provided the timing of the

stock splits across firms does not coincide very much, the standard errors can be based on

the “as if independence” assumption. Specifically, let

ÂAIL(τ) =
N∑
i=1

wiÂILiτ , ÂCAIL(τ) =
N∑
i=1

wiĈAILi(τ) (16)

denote the averaged abnormal and cumulative abnormal illiquidity across N events. For

large N and T , these statistics are asymptotically normal and can be compared with the
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critical values ±zα/2

√∑N
i=1w

2
i σ̂

2
ζi and ±zα/2

√
(τ + 1)

∑N
i=1w

2
i σ̂

2
ζi, respectively, where σ̂2

ζi

is the estimated variance of the corresponding ζ for the particular firm event.

Our tests are applied using the jump consistent estimate of the trend and so the null

hypothesis here includes the possibility of a permanent change to liquidity at the specified

points. We should expect to see that adjustments, if any, should be relatively quick if

markets are efficient and so there should not be much of a role for slow dynamic responses.

4 Empirical study: stock splits

4.1 Data description

In our application, we use the proposed framework to analyze whether stock splits have

permanent and temporary effects on the illiquidity process. We consider historical daily

price and volume data for component stocks of the Dow Jones, the S&P 500 (Large caps),

S&P 400 (mid caps) and S&P 600 (small caps) indices.13 The sample period starts from

each asset’s first available data point (after June 15, 1992) until December 31, 2023. We

plot in Figure 1 the number of splits by year. We observe that stock splits happen more

often during periods of strong market performance. For example, numerous splits took

place during the build-up phase of the dot-com bubble between 1992 and 2000, and a

pronounced drop in the occurrence of splits can be observed across most stock indices in

the aftermath of its collapse. Likewise, there were hardly any splits during the Global

Financial Crisis. This empirical evidence suggests that periods of high price appreciation

could be one of the factors motivating firms’ decision to split their stock, in line with Fama

et al. (1969).

We summarize in Table 2 the frequency of different split sizes. The vast majority of the

splits in the sample are two-for-one or lower, and larger stock splits occur less frequently.

13The price and volume data as well as the stock split information are retrieved from the CRSP database.
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Figure 1: Number of splits per year.

For the Dow Jones index, large stock splits could be motivated by index inclusion reasons

as the Dow Jones weights its constituents based on their stock price.14 We focus on the

most common split factor in our empirical study, i.e. the two-to-one stock splits, leaving

us with 519 distinct index constituents and 943 splits for the analysis below.

Table 2: Distribution of different split sizes 1992-2023.

Split Size <1 1− 1.25 1.25− 1.5 1.5 2 3 4 >4 Total

Dow Jones 0 0 1 7 61 3 3 2 77

S&P 500 17 2 14 167 518 42 11 13 788

S&P 400 18 2 47 94 201 14 6 1 383

S&P 600 61 8 47 204 263 17 4 1 611

14For instance, Apple joined the Dow Jones index in 2015 after undergoing a seven-to-one stock split in

June 2014. The split brought Apple’s stock price into a more comparable range to the other constituents.
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4.2 Test for permanent effects

We assess whether a permanent shift in illiquidity occurs at the time of the ith split for

stock j, denoted as uj
i . This is achieved by testing for potential discontinuities in the long-

run trend function g at uj
i . More specifically, we estimate g±(uj

i ) using the local linear

approach and construct the test statistics τ(uj
i ) as described in Section 3.2. To facilitate

the computation of the variance of the two estimates ĝ±(uj
i ), we work with the improved

estimator obtained by smoothing out ℓt, i.e. ℓt/λ̂t. We first look at the size of the jump

in percentage terms for each split as defined in (3), i.e. J̃ (uj
i ). Panel (a) of Figure 2

presents the distribution of J̃ (uj
i ) obtained using the undersmoothing method. The results

show that the majority (85.47%) of the distribution lies in the positive domain, indicating

significant increases in the long-run illiquidity trend level and a corresponding negative

effect of stock splits on long-run liquidity conditions. Additionally, we find that 81.65% of

the splits yield a positive J̃ (uj
i ) statistic when we consider the bias correction method.
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Figure 2: Cross-split distribution of J̃ and τ̃ .

We compute the test statistic τ(uj
i ) using the undersmoothing (τUS), bias correction

(τBC) and honest confidence interval (τHCI) approaches developed in Section 3.2.15 In panel

15In the undersmoothing and bias correction cases, the τw statistics should be compared to standard

normal critical values (±1.96 for α = 5%). For the honest confidence interval approach, we should compare
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(b) of Figure 2, we present the distribution of τ(uj
i ) obtained with the undersmoothing

method. We observe that the majority (67.13%) of the test statistics are positive and

exceed 1.96, suggesting a significant deterioration in liquidity conditions following stock

splits. This result is robust across different inference approaches, with respectively 65.43%

and 58.64% of the test statistics being significant when one uses the bias correction and

honest confidence interval approaches.

The timing of stock splits might sometimes coincide with other market events affecting

all stocks simultaneously. Examples of such instances include the introduction of decimal-

ization in US stock markets in the early 2000s and the Global Financial Crisis. To control

for these significant events, we use the stock market index ETF (SPY) as a control group to

eliminate common trends at the event date and isolate the effects of stock splits from other

market-wide events. We report in Table 3 the difference-in-difference (DID) test statistics

computed as in (11). We observe that 82% of the test statistics are positive and around 50%

are so. This confirms that stock splits negatively impact long-run liquidity conditions even

when accounting for potential confounding effects from concurrent market-wide events.

Table 3: Summary of τDID statistics.

Min 25% Median 75% Max J̃%w/τw > 0(%) significant (%)

τDID
w -11.47 0.24 1.94 4.73 15.37 81.79% 49.57%

4.2.1 Aggregating multiple splits by firm

We first look at the average jump size in percentage terms aggregated across all splits for

each stock. The values of the statistics are summarized in the second and third rows of

the τw statistics with the critical values from the corresponding folded normal distribution obtained based

on the worst-case-scenario bias.
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Table 4. The first row provides the number of splits.16 We observe that stock splits increase

the illiquidity trend level by 41% in the median case. The interquartile range suggests a

high degree of variability around this central tendency.

Table 4: Summary of the average J̃%w statistics, p-values of the joint test W and the aggregated

statistics for directional tests.

Min 25% Median 75% Max J̃%w/τw > 0(%) significant (%)

# of splits 1 1 2 2 6

J̃ US
%w -146.13% 18.91% 40.76% 62.74% 178.60% 88.05%

J̃ BC
%w -181.52% 14.90% 37.07% 62.58% 208.03% 84.01%

pUS
W 0.00 0.00 0.00 0.01 0.93 83.43%

pBC
W 0.00 0.00 0.00 0.05 1.00 74.95%

τUS
w -15.76 1.80 4.45 7.13 20.95 87.86% 73.99%

τBC
w -16.94 1.43 4.70 7.82 18.53 83.62% 71.68%

τHCI
w -17.34 1.59 5.02 7.84 19.11 84.78% 58.00%

Note: The statistics are aggregated by firm. J̃%w is the average jump in percentage as defined in (3). pW is the

p-value of the aggregated statistic W =
∑m

i=1 τ(ui)
2. τw is the statistic computed as in (13) and is asymptotically

N(0, 1) under the null hypothesis. US stands for undersmoothing and BC stands for bias correction. HCI stands for

honest confidence interval where we compare the τw statistics with cvHCI
1−α .

We aggregate the individual test statistics τ(uj
i ) for each company j to provide a joint

test of the null hypothesis of no breaks at any point of the illiquidity series for this stock.

The fourth and fifth rows of Table 4 report the p-values for the statistic W j =
∑m

i=1 τ
(
uj
i

)2

for the undersmoothing and bias correction approaches. In the undersmoothing case, the

p-values associated with the W j statistics are below 5% for 83% of the stocks considered in

our analysis. When considering the bias correction approach, the p-values suggest that the

effects are significant for 75% of the stocks. These results indicate strong evidence against

the null hypothesis of no long-term effect on liquidity from the stock split events.

The last three rows of Table 4 provide the directional average statistics (τw) defined as

in (13) and computed using an equal weighting scheme. Each row reports the summary

results using the undersmoothing, bias correction and honest confidence interval inference

16Our analysis includes a total of 519 stocks: 257 stocks with one two-to-one split, 154 stocks with two,

71 stocks with three, and 37 stocks with more than three splits within the sample period.
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approaches. Most τw statistics are positive – 88% for undersmoothing, 84% and 85% for

bias correction and honest confidence interval. In addition, 74% of the statistics are positive

and significant, with a median value of 4.45 for τw. This indicates a significant difference

in pre- and post-split long-run illiquidity trends on average. For the honest confidence

interval method, we observe a lower percentage of significant statistics but a majority of

the companies still experience a significant increase in the illiquidity trend level (58%).

4.2.2 Alternative illiquidity measures

This section evaluates the robustness of our main results to the use of the alternative

illiquidity measures introduced in Section 2.1. The results are summarized in Table 5

and confirm that our main empirical findings remain robust across the different measures

considered. The only exception is the LY implied bid-ask spread measure in the last row,

which yields notably different results. This diverging result may stem from the additional

presence of the nominal price level in the measure, which changes by the size of the split

factor between the pre- and post-split date. This feature of the illiquidity measure may

introduce a mechanical downward effect in the tests computed based on it.

Table 5: Summary of the aggregated statistics for directional tests.

ℓt Min 25% Median 75% Max τw > 0(%) significant (%)

σt

Vt
-15.76 1.80 4.45 7.13 20.95 87.86% 73.99%

|RCC
t |
Vt

-9.59 3.41 5.30 7.26 13.78 94.61% 87.67%
|ROC

t |
Vt

-12.27 0.85 2.70 4.40 12.98 83.82% 59.73%

σt√
Vt

-9.13 2.44 5.40 8.05 18.81 88.82% 76.88%

(
σ2
t

Vt
)
1
3 -12.63 2.66 5.57 8.52 19.11% 88.05% 79.19%

σt

Vt
PM
t−1 -16.71 1.45 4.62 7.27 20.27 84.59% 70.91%

σt

Vt
mcapt -10.92 2.28 5.10 7.77 17.85% 90.56% 77.84%

σt

Vt
Pt -15.84 -6.80 -3.59 -1.31 7.40 13.68% 68.59%

Note: RCC is close-to-close return while ROC is the open-to-close intra-day return. PM is the

price of the market index. The significant (%) column shows the percentage of positive and

significant τw statistics for the first seven measures and the percentage of negative and significant

τw statistics for the last measure.
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4.3 Test for temporary effects

We plot in Figure 3 the aggregated test statistics for the temporary effects across all splits

for all considered firms as defined in (16). The blue line represents the aggregated Cumu-

lative Abnormal Illiquidity (ACAIL) test statistics at horizons ranging from 45 days before

to 45 days after the event, i.e. ÂCAIL(τ), τ = 0, . . . , 90. The red lines are the 2.5%

and 97.5% quantiles, i.e. zα/2

√
τ
∑N

i=1w
2
i σ̂

2
ζi. We find very limited evidence supporting a

statistically significant effect of stock splits on short-term illiquidity. In addition, there is

no clear direction for the temporary effects.

We plot in Figures 12 and 13 (Appendix D.3) the aggregated test statistics across events

of a given firm as defined in (16). The directions of the temporary effects for different firms

are mixed, with most stocks exhibiting insignificant increases and decreases in liquidity

over the event window. These unclear patterns are consistent with the mixed evidence

in previous literature on the effect of stock splits on market liquidity, with some authors

reporting liquidity improvements following a split (Lamoureux and Poon (1987)) and others

documenting a reduction in liquidity or muted effect in the post-split period (Lakonishok

and Lev (1987)). A notable exception is the Apple stock, which experiences a significant

increase in cumulative abnormal illiquidity before the split execution date persisting in the

post-split period. This is in line with the prediction from the signaling theory of Brennan

and Copeland (1988) who model a firm’s decision to split its stock as a costly signal about

its prospects, which is associated with a (at least) temporary decrease in the stock liquidity.

To summarize, our empirical evidence suggests that stock splits have an overall signifi-

cant permanent effect on the long-run trend level of illiquidity but very limited effects on

the short-run illiquidity dynamics. The documented increase in stocks’ long-run illiquidity

following a split challenges somewhat the predictions from the optimal price range and

optimal tick size (Angel (1997)) theories that splitting firms should experience an increase

32



−1

0

1

−25 0 25
J

S
ho

rt
−

ru
n 

A
C

A
IL

Figure 3: Test for temporary effects. The blue line is the aggregated test statistic and the red lines are

the corresponding 2.5% and 97.5% quantiles.

in the liquidity of their stock in the long run. See also Goyenko et al. (2006) for an in-depth

discussion of the short- and long-run liquidity effects of stock splits.

5 Reverse stock splits

We investigate whether the effects of reverse stock splits on illiquidity are symmetric to

the ones documented for stock splits in Sections 4.2 and 4.3. The analysis in the literature

shows that the reverse splits have a more pronounced improvement in liquidity conditions

for low-price stocks. This could be because reverse splits ease the constraints on short

selling for low-priced stocks, see e.g. Kwan et al. (2015). Therefore, in this part of the

analysis, we focus our attention on the constituents of the S&P 500, S&P 400 and S&P

600 indices with a pre-event price level below $5. In total, we have 53 stocks in our sample

and there is only one reverse split for each stock in the sample. The sample period starts

from each asset’s first available data point (after June 15, 1992) until December 31, 2023.

We estimate the g±(u0) functions using the local linear approach and construct the test
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Table 6: τw statistics for directional tests..

AAON ACLS AIG ARWR ASRT BANR BCEI BCOR BKNG C CAR

Split size 1-4 1-4 1-20 1-10 1-4 1-7 1-111.6 1-10 1-6 1-10 1-10

τw -0.09 -2.71 -21.37 -10.53 4.42 15.40 -8.41 -7.87 -11.77 8.64 -17.14

τw,SC -2.63 -1.02 -6.75 -9.52 3.98 5.02 -14.07 -3.48 -8.38 0.15 -23.24

CBB CCOI CIEN CIVI COO CPE CPF CSII CYTK EPAC EXPR

Split size 1-5 1-20 1-7 1-111.6 1-3 1-10 1-20 1-10 1-6 1-5 1-20

τw -0.01 -2.20 3.83 -8.41 0.49 -2.71 -9.85 -6.97 -24.56 -14.86 -0.46

τw,SC 3.77 -3.49 -6.72 -14.53 0.44 -1.51 -16.14 -9.19 -17.34 -6.90 -0.63

FBP FTR HAFC HPR HSKA IART KEM KLXE LCI LPI MSTR

Split size 1-15 1-15 1-8 1-50 1-10 1-2 1-3 1-5 1-4 1-20 1-10

τw -4.26 -1.90 -7.65 -4.10 -7.48 4.55 -3.93 1.02 -2.19 -7.99 -19.93

τw,SC -4.11 -0.86 -10.26 -1.59 -8.29 5.17 -1.94 2.64 -2.28 -7.75 -9.44

MTH NEU ODP OPCH PFBC PPBI RRC SANM SBCF SNV SPPI

Split size 1-3 1-5 1-10 1-4 1-5 1-5 1-15 1-6 1-5 1-7 1-25

τw -0.63 -4.48 -4.76 1.27 -4.15 0.47 -1.33 -13.75 -8.22 -1.69 6.36

τw,SC 0.19 -7.12 1.09 1.06 -4.49 0.61 -2.30 -9.02 -7.76 -9.33 8.23

SSP THRM TISI UCBI UFI UIS VIAV XPO ZD

Split size 1-3 1-5 1-10 1-5 1-3 1-10 1-8 1-4 1-4

τw 12.78 1.05 -2.22 0.66 -6.77 -18.41 -2.24 -0.09 -3.33

τw,SC 19.07 0.58 -1.53 -3.78 -12.32 -10.75 -0.20 0.25 -3.66

Note: SC stands for synthetic control.

statistics τ(u0) for the permanent effect introduced in Section 3.2. The test statistics τ(uj),

using an undersmoothing approach, are reported in the second row of Table 6. We observe

for 40 out of 53 stocks that there is a negative effect of the reverse splits on the illiquidity

trend – corresponding to an improvement in liquidity conditions. Among those, there are

32 stocks for which the decrease in the illiquidity trend after a reverse split is statistically

significant.17 The fact that reverse splits result in a significant decrease in the illiquidity

17We also consider the robustness of our results to the use of the bias-corrected and the honest confidence

interval approaches. Using bias correction, 37 out of 53 stocks experienced improved liquidity conditions

after a reverse split, and it is statistically significant for 34 of them. When adopting the honest confidence

interval, 36 out of 53 stocks experienced improved liquidity conditions with 32 being statistically significant.
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trend for the majority of the stocks considered is in line with the results in Han (1995). The

pronounced improvement in liquidity conditions for our sample of stocks with low pre-event

price levels is consistent with the evidence in Blau et al. (2023) that short-selling activity

increases after reverse splits – in part because reverse splits ease the constraints on short

selling for low-priced stocks (Kwan et al. (2015)).

We also consider the robustness of our results to the inclusion of a control group to

account for other events that can potentially impact all stocks at the event time (see

Equation (11) in Section 3.2). We use the synthetic control approach of Abadie (2021).

For each reverse stock split event, we use the constituents from the same index that did

not undergo a reverse split as the donor pool for the control group. We use the pre-event

trend to construct the weights, i.e. min
w

∑
(gS −w′gC)2 subject to w ≥ 0, and i′w = 1. The

superscripts “S” and “C” refer to the “treatment” stock and “control” group respectively.

The test statistics are reported in the third row of Table 6. Our conclusion that reverse stock

splits significantly decrease the illiquidity trend level is robust to controlling for common

changes in stock trends around the event time via the synthetic control approach.

We plot in Figure 4 the average test statistics for the temporary effects of the reverse

stock splits aggregated across all firms.18 The results echo our analysis in Section 4.3 for

stock splits, with limited evidence supporting a statistically significant effect of reverse

splits on short-term illiquidity. However, we do observe a short-lived worsening in liquidity

conditions around the execution date although it is not significant. The test statistics for

the temporary effects of individual reverse splits are plotted in Figures 14 to 19 (Appendix

D.4). We can see that only a handful of stocks exhibit significant changes in cumulative

abnormal illiquidity during the event window and, as in the stock split case, no clear pattern

emerges for the impact of reverse splits on short-term illiquidity. We note however that

the worsening in liquidity conditions observed for some stocks before the execution date is

18See Sections 3.3 and 4.3 for additional detail.
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Figure 4: Test for temporary effects. The blue line is the aggregated test statistic and the red lines are

the corresponding 2.5% and 97.5% quantiles.

consistent with reverse splits signaling a lack of confidence from executives in the prospects

of their firm (Han (1995)).19

To summarize, our empirical evidence suggests that reverse stock splits have an overall

significant permanent effect on the long-run trend level of illiquidity but limited effects on

the short-run illiquidity dynamics. The documented decrease in stocks’ long-run illiquidity

following a reverse split is the symmetric image of our results in Section 4.2 for stock splits

and confirms earlier evidence in the literature such as Han (1995).

6 Conclusions

We propose a framework to detect the occurrence of permanent and transitory breaks in the

illiquidity process. Our approach builds on the class of dynamic semiparametric models

introduced in Hafner et al. (2023), which flexibly capture long-term trends with a non-

19See e.g. NewMarket Corporation and Avis Budget Group Inc.
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parametric component and short-run variations with an autoregressive component. We

develop various tests that can either be applied separately to individual events or can be

aggregated across different events – over time for a given firm and/or across different firms.

The test for permanent breaks in the long-run component of the illiquidity process is built

on differences between forward- and backward-looking trend estimates, which is similar to

the approach used in the regression discontinuity and structural break literature. The test

for transitory breaks in the short-term illiquidity dynamics is inspired by the event-study

approach pioneered by Fama et al. (1969) and is robust to the presence of permanent breaks

in the long-run component of illiquidity.

Equipped with this testing framework, we revisit the long-standing debate surrounding

the impact of stock splits on firm liquidity. Using a sample of 24 stocks from the Dow

Jones index over the period 1992-2023, we find that stock splits have an overall significant

permanent effect on the long-run trend level of illiquidity but very limited effects on the

short-run illiquidity dynamics. Our results are in line with previous studies documenting

a permanent decrease in stock liquidity after a split (e.g. Copeland (1979)) and challenge

the common view that stock splits should increase the potential pool of investors and lead

to improved liquidity conditions. Finally, we investigate whether the effects of reverse

stock splits on the illiquidity process are symmetric to the ones documented for stock

splits. Using a sample of 53 low-price stocks from the constituents of the S&P 500, S&P

400 and S&P 600 indices over the same period, we find that reverse splits result in an

overall significant decrease in long-run illiquidity but with limited effects on the short-run

illiquidity dynamics. The improvement in liquidity conditions is quite pronounced for our

sample of stocks with low pre-event price levels. This is consistent with evidence that

short-selling activity increases after reverse splits (Blau et al. (2023)) for low-priced stocks

as constraints are eased.
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A Proof of main results

We make some assumptions.

Definition. A triangular array process {Xt,T , t = 0, 1, 2, . . . , T = 1, 2, . . .} is said to

be alpha mixing if

α(k) = sup
T,n≥1

sup
A∈Fn,T

−∞, B∈F∞
n+k,T

|P (AB)− P (A)P (B)| → 0, (1)

as k → ∞, where Fn,T
−∞ and F∞

n+k,T are two σ–fields generated by {Xt,T , t ≤ n} and

{Xt,T , t ≥ n+ k} respectively. We call α(·) the mixing coefficient.

We suppose that ℓ∗t is stationary and alpha mixing. This can be shown to hold under the

parameter resrictions provided ζt is i.i.d. It may also hold when ζt itself is only described

as a stationary mixing process although this can be difficult to establish.

We first consider the estimators that are based on the jump robust smoothing of the

raw liquidity.
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enue, Cambridge, CB3 9DD.

1



Assumption A1. We suppose that g(.) ∈ G, where for 0 < c,C < ∞

G =

 g : g : [0, 1] → R+, g±(x) ≥ c, g+(x) = g−(x) except for x ∈ {u1, . . . , um} ⊂ (0, 1),∣∣∣g(j)± (x)
∣∣∣ ≤ C for all x ∈ [0, 1], for j = 0, 1, 2

 .

Assumption A2. Suppose that {vt}, where vt = λtζt − 1, is a stationary alpha mixing

sequence with E(vt) = 0 and E(|vt|κ) ≤ C < ∞ for some κ > 5/2 for t = 1, 2, . . . . such

that
∞∑
k=1

α(k)
κ−2
κ < ∞. (2)

Assumption A3. Suppose that K is symmetric about zero with compact support [−1, 1]

such that K(±1) = 0 and K is twice differentiable where K(2) is continuous on [−1, 1].

Let ||K||22 =
∫ 1

−1
K(s)2ds, and µj(K) =

∫ 1

−1
sjK(s)ds, j = 0, 1, 2.

Assumption A4. Suppose that for each τ = 0, . . . , E, {et,τ} is stationary and mix-

ing and satisfies (2) and has Lebesgue density fet,τ that satisfies supx fet,τ (x) < ∞ and

infx fet,τ (x) > 0.

Proof of Theorem 1. The only change from HLW is the function class G that allows

jumps at known points. We divide [0, 1] into the intervals [u0, u1), [u1, u2), . . . , [um−1, um),

[um, um+1], where u0 = 0 and um+1 = 1. Since we defined g−(ui+1) = limu↑ui+1
g(u) we can

consider the compact intervals [ui, ui+1] on which the function is extended to g(ui+1) =

g−(ui+1), whereas g(u) = g(u) for all u < ui+1. Likewise for the first two derivatives. So

defined, the estimation problem on the sub interval [ui, ui+1] is just like the classic local

linear estimator on a compact support. The local linear estimator is robust to known

boundary effects. Specifically, at the point ui, the modified function g obeys a Taylor

expansion separately from the right and from the left meaning that depending on whether

t/T − ui is greater than or less than zero

g(t/T ) = g±(ui) + (t/T − ui)g
(1)
± (ui) +

1

2

(
t/T − ui

)2
g
(2)
± (ui) +R±(ui, t/T − ui)

=

(
1 t/T−ui

h

)
∆T

 g±(ui)

g
(1)
± (ui)

+
1

2
h2

(
t/T − ui

h

)2

g
(2)
± (ui) +R±(ui, t/T − ui),

where limδ↓0 δ
2R+(ui, δ) = 0 and limδ↑0 δ

2R−(ui, δ) = 0. By the usual algebra we cancel out

the first two terms and what is left in the bias part is a term of order h2 and a smaller

2



order remainder term. Therefore, our first round jump robust smoother satisfies

sup
u∈[0,1]

∣∣ĝ(u)− g(u)
∣∣ ≤ m∑

i=0

sup
u∈[ui,ui+1]

∣∣ĝ(u)− g(u)
∣∣

≤
m∑
i=0

sup
u∈[ui,ui+1]

∣∣ĝ(u)− E(ĝ(u))
∣∣+ m∑

i=0

sup
u∈[ui,ui+1]

∣∣E(ĝ(u))− g(u)
∣∣

= OP

(√
log T

Th

)
+OP (h

2).

It follows that provided Th4 → 0 the GMM estimator θ̂ is
√
T consistent and asymptotically

normal. Furthermore, we can show that g̃±(u) computed with ℓt/λ̂t is equal to the estimator

computed with ℓt/λt = g(t/T )ζt = g(t/T ) + g(t/T )(ζt − 1). This follows because of the

root-T consistency of θ̂ and the arguments in HLW. We then apply the standard arguments

for one-sided local linear smoothers g̃±(ui) with ℓt/λt as dependent variable. In particular,

we have for h = O(T−1/5)

g̃±(ui)− g±(ui) =
1

T

T∑
t=1

K±
h (ui − t/T )g±(t/T )(ζt − 1) +

h2

2
µ2(K

±)g
(2)
± (ui) + oP (T

−2/5),

where the local linear estimator is expressed as a kernel estimator with a certain kernel,

which facilitates the presentation of its limiting properties, see Fan and Gijbels (1996)

(pp 70-72); in this case, the equivalent (right) boundary kernel for any point ui − ch with

c ∈ [0, 1] is

K+
c (u) = (κ0(c) + κ1(c)u)K(u)1(u ∈ [−c, 1]), (3)

κ0(c) =
µ2,c

µ0,cµ2,c − µ2
1,c

, κ1(c) = − µ1,c

µ0,cµ2,c − µ2
1,c

,

where µj,c = µj,c(K) =
∫ 1

−c
K(u)ujdu. Similarly, we can define the left boundary kernel

K−
c (u). In our case, we only need explicitly the case c = 0, and we denote K± = K±

0

and µj = µj,0. If the original kernel K is symmetric about zero, ||K+||2 = ||K−||2, where

||K||2 =
∫
K(u)2du, which we shall assume from now on. Therefore,

g̃+(ui)− g̃−(ui)− (g+(ui)− g−(ui)) =
1

T

T∑
t=1

(
K+

h (ui − t/T )g+(t/T )−K−
h (ui − t/T )g−(t/T )

)
(ζt − 1)

+
h2

2
µ2(K

+)
(
g
(2)
+ (ui)− g

(2)
− (ui)

)
+ oP (T

−2/5),

and the result follows by standard arguments. Note that

1

T

T∑
t=1

K+
h (ui − t/T )K−

h (ui − t/T )g+(t/T )g−(t/T )(ζt − 1)2 = oP (T
−2/5).

3



If ui is irrational, then there is no t such that ui = t/T andK+
h (ui−t/T )K−

h (ui−t/T ) = 0. If

ui is rational then there is at most one t for which ui = t/T andK+
h (ui−t/T )K−

h (ui−t/T ) =

K+(0)K−(0)/h2.

Proof of Theorem 2. The same arguments apply here to the two separate liquidity

series. We have

g̃S,±(ui)− g̃C,±(ui)−
(
E(g̃S,±(ui))− E(g̃C,±(ui))

)
=

1

T

T∑
t=1

K±
h (ui − t/T )

(
gS,±(t/T )(ζS,t − 1)− gC,±(t/T )(ζC,t − 1)

)
+ oP (T

−1/2h−1/2),

which is mean zero and asymptotically normal with asymptotic variance∥∥K±
∥∥2
2

Th
var
((

gS,±(u)(ζS,t − 1)− gC,±(u)(ζC,t − 1)
))

=

∥∥K±
∥∥2
2

Th

(
g2S,±(u)σ

2
S,± + g2C,±(u)σ

2
C,± − 2gS,±gC,±(u)σ

2
S,C,±

)
.

This follows because ζS,t is correlated with ζC,t, but since K+ × K− = 0 (except at the

common point 0), the + estimators are essentially uncorrelated asymptotically with −

estimators. The bias follows by standard arguments, Fan and Gijbels (1996).

Proof of Theorem 3. We show that

sup
x∈R

∣∣∣F̂êτ (x)− Feτ (x)
∣∣∣ P−→ 0.

For simplicity of notation we replace TS by T and just suppose we have a standard con-

tiguous sample of size T. Suppose that

F̂eτ (x) =
1

T

T∑
t=1

1
(
et,τ ≤ x

)
, F̂eτ (x) =

1

T

T∑
t=1

1
(
êt,τ ≤ x

)
,

where et,τ =
∑τ

s=0(ζt+s − 1) and êt,τ =
∑τ

s=0(ζ̂t+s − 1), where ζ̂t = ζt/ĝ(t/T )λ̂t. Under our

conditions

max
1≤t≤T

∣∣êt,τ − et,τ
∣∣ = oP (1). (4)

This follows because max1≤t≤T

∑τ
s=0 ζt+s = OP (T

1/κ) by standard arguments and we have

shown that max1≤t≤T

∣∣ĝ(t/T )− g(t/T )
∣∣ = OP (log(T )T

−2/5), and likewise max1≤t≤T

∣∣∣λ̂t − λt

∣∣∣ .
4



Since κ > 5/2, the result (4) follows. Then (4) says that there is some δT → 0 such that

for all C > 0, Pr
(
Ac

T

)
→ 0, where the event AT is defined

AT =

{
max
1≤t≤T

∣∣êt,τ − et,τ
∣∣ ≤ CδT

}
.

We first see that

1

T

T∑
t=1

1

(
et,τ ≤ x− max

1≤t≤T

∣∣êt,τ − et,τ
∣∣) ≤ F̂êt,τ (x) ≤

1

T

T∑
t=1

1

(
et,τ ≤ x+ max

1≤t≤T

∣∣êt,τ − et,τ
∣∣) .

Then, conditional on AT , this is further bounded by

F̂et,τ (x−CδT ) =
1

T

T∑
t=1

1
(
et,τ ≤ x− CδT

)
≤ F̂êt,τ (x) ≤

1

T

T∑
t=1

1
(
et,τ ≤ x+ CδT

)
= F̂et,τ (x+CδT ).

The result follows because by the mean value theorem

E
(
F̂et,τ (x± CδT )

)
= Fet,τ (x± CδT ) = Fet,τ (x)± fet,τ (x± λCδT )CδT

and then for bounded density f the second term goes to zero uniformly in x. Specifically,

by the law of total probability and the Bonferroni inequality

Pr

(
sup
x∈R

∣∣∣F̂êt,τ (x)− Fet,τ (x)
∣∣∣ > ϵT

)

≤ Pr

{sup
x∈R

∣∣∣F̂êt,τ (x)− Fet,τ (x)
∣∣∣ > ϵT

}
∩ AT

Pr(AT ) + Pr(Ac
T )

≤ Pr

max

{
sup
x∈R

∣∣∣F̂et,τ (x− CδT )− Fet,τ (x)
∣∣∣ , sup

x∈R

∣∣∣F̂et,τ (x+ CδT )− Fet,τ (x)
∣∣∣} > ϵT

+ o(1)

≤ Pr

(
sup
x∈R

∣∣∣F̂et,τ (x− CδT )− Fet,τ (x)
∣∣∣ > ϵT

)
+ Pr

(
sup
x∈R

∣∣∣F̂et,τ (x+ CδT )− Fet,τ (x)
∣∣∣ > ϵT

)
+ o(1).

We have by the triangle inequality

sup
x∈R

∣∣∣F̂et,τ (x+ CδT )− Fet,τ (x)
∣∣∣

≤ sup
x∈R

∣∣∣F̂et,τ (x+ CδT )− Fet,τ (x+ CδT )
∣∣∣+ sup

x∈R

∣∣Fet,τ (x+ CδT )− Fet,τ (x)
∣∣

≤ sup
x∈R

∣∣∣F̂et,τ (x)− Fet,τ (x)
∣∣∣+ sup

x∈R

∣∣fet,τ (x)∣∣× CδT

= oP (1).
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The uniform consistency of the empirical process for stationary mixing series is established

in Yu (1994).

Suppose that there are breaks at other points. Specifically, suppose there is a disconti-

nuity in g at the point u∗. Then

∥ĝ − g∥∞ = sup
u∈[0,1]

∣∣ĝ(u)− g(u)
∣∣

= sup
u∈[0,1]

∣∣∣E (ĝ(u))− g(u)
∣∣∣+OP

(√
log T

Th

)

=

∣∣∣∣g+(u∗)− g−(u
∗)

2

∣∣∣∣+ oP (1),

and the estimator of g is inconsistent in the L∞ norm. However, it is consistent in the L2

norm, since

∥ĝ − g∥2 =

(∫ 1

0

(
ĝ(u)− g(u)

)2
du

)1/2

=

(∫ 1

0

(
E
(
ĝ(u)

)
− g(u)

)2
du

)1/2

+OP

(√
1

Th

)

=

(∫ u∗+h

u∗−h

+

∫ u∗−h

0

+

∫ 1

u∗+h

)(
E
(
ĝ(u)

)
− g(u)

)2
du

1/2

+OP

(√
1

Th

)

=

(∫ u∗+h

u∗−h

(
E
(
ĝ(u)

)
− g(u)

)2
du

)1/2

+O(h2) +OP

(√
1

Th

)
,

and ∫ u∗+h

u∗−h

(
E
(
ĝ(u)

)
− g(u)

)2
du ≤ 2h× sup

u∈[0,1]

(
g2+(u) + g2−(u)

)
= O(h) = oP (1).

B Bandwidth Choice

We can rewrite the model in terms of ℓ†t = ℓt/λt as follows:

ℓ†t = g(t/T ) + g(t/T ) (ζt − 1) , (5)

where ζt − 1 is a martingale difference sequence with finite unconditional variance. Under

the assumption of weak stationarity of ζt, we have E(ℓ†t) = g(t/T ) and var(ℓ†t) = g(t/T )2σ2
ζ .
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Under the regularity conditions given in the supplement, the pointwise mean squared errors

of J̃i, g̃±(ui), are respectively:

MSE∆(ui) =
h4

4
µ2
2(K

+)
(
g
(2)
+ (ui)− g

(2)
− (ui)

)2
+

1

Th

∥∥K+
∥∥2 (g+(ui)

2 + g−(ui)
2
)
σ2
ζ , (6)

MSE±(ui) =
h4

4
µ2
2(K

+)
(
g
(2)
± (ui)

)2
+

1

Th

∥∥K+
∥∥2 g±(ui)

2σ2
ζ . (7)

The two estimands present different bias variance tradeoffs (for the first round estimates

the formulas are the same except that σ2
ζ is replaced by the long run variance of λtζt − 1.

The corresponding optimal bandwidths are respectively:

h∆,opt(ui) = CK


(
g+(ui)

2 + g−(ui)
2
)
σ2
ζ(

g
(2)
+ (ui)− g

(2)
− (ui)

)2


1/5

T−1/5, h±,opt(ui) = CK

(
g±(ui)

2σ2
ζ

g
(2)
± (ui)2

)1/5

T−1/5,

where CK = (
∥∥K+

∥∥2 /µ2
2(K

+))1/5 depends only on the kernel.1

Imbens and Kalyanaraman (2012) discuss and propose various methods for estimating

the optimal bandwidth. Our approach is based on the so-called pilot method of Silverman

(1986), Fan and Gijbels (1996). That is, we suppose that g+(u) is globally polynomial with

parameters
∑p

j=0 a
i
ju

j, p ≥ 2, on the interval [ui, ui+1), while g−(u) is globally polynomial

with parameters
∑p

j=0 a
i−1
j uj on the interval (ui−1, ui].We estimate the parameters aij based

on segmented least squares regression using data from the interval [ui, ui+1) and then plug

in the estimated quantities.

C Standard Error Adjustment for overlapping win-

dows

We discuss here our general strategy for taking account of cross correlation of estimated

effects. We just present the idea for the ÂCAIL(τ) statistic from Section 3.3.

We have in general

var

 N∑
i=1

wi

τ∑
t=0

(ζit − 1)

 = w
⊺
Σ(τ)w,

1One issue arises when g
(2)
+ (ui) ≃ g

(2)
− (ui); in that case it may be better to use h±,opt(ui).
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where Σij(τ) = cov
(∑τ

t=0 (ζit − 1) ,
∑τ

t=0

(
ζjt − 1

))
. The time t here is in event time. We

switch to calendar time where we assume that

cov
(
ζit, ζjs

)
=

 σij if t = s

0 if t ̸= s.

Therefore, Σij(τ) = σijn
o
ij(τ), where n

o
ij(τ) is the number of periods of overlap of the event

windows {0, . . . , τ} for splits i and j. For i = j, no
ii(τ) = τ + 1, whereas for different splits

for the same firm we usually have no
ij(τ) = 0. We expect σij ≥ 0 for all pairs i, j. The

corrected standard errors are√√√√(τ + 1)
N∑
i=1

w2
i σ̂

2
i + 2

N∑
j=i+1

N∑
i=1

wiwjσ̂ijno
ij(τ), (8)

where σ̂ij = T−1
∑T

t=1(ζ̂it − 1)(ζ̂jt − 1).
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Figure 1: Average price by index.

D Additional tables and figures

D.1 Preliminary analysis
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Figure 2: Average split factor by year.
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Figure 3: Average split factor by year.
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D.2 Permanent and temporary effects for each stock split

For each split of each stock, we plot in Figures 4 to 11 the results of testing for permanent

breaks and temporary effects of stock splits. The upper panel of each figure presents the

results for permanent effect. The test statistic is marked by a red dot while the two bars

indicate the 2.5% and 97.5% quantiles. We can observe that most of the test statistics on

stock split dates are outside the critical value bands. This suggests that, overall, stock splits

have positive and significant effects on the long-run trend level of the illiquidity process.

The lower panel of each figure presents the results for temporary effects where the blue

line represents the test statistic together with the 2.5% and 97.5% quantiles marked by the

red lines.2 The figures show that the effect of stock splits on the short-term dynamics of

liquidity is rarely significant with only very few exceptions.

2Note that for the split events preceded by another one we only consider the period after the first stock

split event for the computation of the quantiles.
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Figure 4: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the test statistic and the red lines are the 2.5% and 97.5% quantiles.
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Figure 5: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the test statistic and the red lines are the 2.5% and 97.5% quantiles.
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Figure 9: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the test statistic and the red lines are the 2.5% and 97.5% quantiles.
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Figure 10: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the test statistic and the red lines are the 2.5% and 97.5% quantiles.
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Figure 11: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the test statistic and the red lines are the 2.5% and 97.5% quantiles.
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D.3 Temporary effects aggregated across splits for each firm
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Figure 12: Test for temporary effects. The blue line is the aggregated test statistic and the red lines are

the 2.5% and 97.5% quantiles estimated based on data excluding selected window around splits.
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Figure 13: Test for temporary effects. The blue line is the aggregated test statistic and the red lines are

the 2.5% and 97.5% quantiles estimated based on data excluding selected window around splits.
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D.4 Permanent and temporary effects for each reverse split
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Figure 14: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the aggregated test statistic and the red lines are the 2.5% and 97.5% quantiles estimated based on data

excluding selected window around splits.
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Figure 15: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the aggregated test statistic and the red lines are the 2.5% and 97.5% quantiles estimated based on data

excluding selected window around splits.
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Figure 16: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the aggregated test statistic and the red lines are the 2.5% and 97.5% quantiles estimated based on data

excluding selected window around splits.
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Figure 17: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the aggregated test statistic and the red lines are the 2.5% and 97.5% quantiles estimated based on data

excluding selected window around splits.
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Figure 18: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the aggregated test statistic and the red lines are the 2.5% and 97.5% quantiles estimated based on data

excluding selected window around splits.
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Figure 19: Upper panel: test for permanent effects. The red dot is the test statistic with the two bars

marking the two-sided critical values with α = 5%. Lower panel: test for temporary effects. The blue line

is the aggregated test statistic and the red lines are the 2.5% and 97.5% quantiles estimated based on data

excluding selected window around splits.
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