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1 Introduction

It has been more than forty years since Paelinck and Klaassen (1979) published the book
entitled Spatial Econometrics, which outlined comprehensively the field of spatial economet-
rics and its distinct methodology. Through forty years’ development, spatial econometrics
has gained popularity in applied econometrics and social science. Many different model spec-
ifications and estimation methods are investigated. See, e.g., the survey papers of Anselin
and Bera (1998), Anselin (2010) and Arbia (2016).

With the increasing richness and accessibility of network and spatial data, researchers
pay more attention to heterogeneity among units and complex relationships between vari-
ables, which leads to more complicated models in recent papers. Among them, two types of
models attract much attention theoretically and empirically. First, high order spatial autore-
gressive models capture heterogeneous network and spatial interdependence (Lee and Liu,
2010; Badinger and Egger, 2011, 2015; Gupta and Robinson, 2015, to mention a few). Sec-
ond, various estimation methods for simultaneous equations spatial autoregressive (SESAR)
models which intend to incorporate interdependence of agents’ choices or outcomes across
different activities on networks have been developed (Kelejian and Prucha, 2004; Yang and
Lee, 2017; Liu and Saraiva, 2019, to mention a few).

Maximum likelihood (ML) or quasi-maximum likelihood (QML), generalized methods
of moments (GMM), and two (or three) stage least square (2/3SLS) estimators have been
developed for the above models. ML and QML estimators are considered to have advantages
on estimation efficiency. However, researchers face two issues that complicate estimation
procedures in empirical applications when using ML or QML. First, the parameter space of
multiple network and spatial effect coefficients need to be clearly specified as the Jacobian
involved in the likelihood function can be negative at some parameter values. This drawback
becomes clear and more severe in estimating models such as the high order SAR model
and SESAR model, as their parameter spaces for spatial effect coefficients are complicated.

Second, the computational cost of ML and QML is usually large. Compared with ML



and QML, GMM (and 2/3SLS) estimators do not need to specify parameter spaces when
evaluating its objective function empirically and they are less burdened in computation. A
potential disadvantage of the GMM estimator (GMME) is on efficiency as the selection of
moments affects its asymptotic variance.

We propose the best GMME for a large class of cross-sectional network and spatial
econometric models, where the moments for estimation can be linear and quadratic functions,
since it has advantages on computation and can be more efficient than the QML estimator
when the distribution of disturbances is not normal.! Therefore, there is an issue on the
search for possible best linear and quadratic moments if they exist, so that the derived
GMME can be the best within the class of GMMEs derived from linear and quadratic
moments. In the literature, researchers derive the best moments for some models using
trial-and-error methods: Liu et al. (2010) for the first order SAR model with SAR and
homoskedastic disturbances (SARAR model); Lee and Liu (2010) for high order SARAR
models with homoskedastic disturbances; Dogan and Tagpmmar (2013) for the SAR model
with SMA disturbances; Debarsy et al. (2015) for the matrix exponential spatial specification
model. However, derivations of those best moments were subject to trial and error by
utilizing a characterization of redundant moments in Breusch et al. (1999). There is no
general approach so far existed in the econometrics literature so researchers need to search
for best moments for each model individually. The trial-and-error approach might not be
easy to be applied to other network and spatial econometric models as best moments might
not be easily figured out, especially for models with combined features such as high order,
simultaneous equations, spatial error and moving average errors, heteroskedasticity, etc. As
an evidence, Lee (2007) and Liu and Saraiva (2015) only consider best linear and quadratic
moments for the special case with normal disturbances, and for the SAR model without and
with endogenous regressors, respectively.

In this paper, we provide a novel analytical procedure to derive best linear and quadratic

"'When the disturbances are normally distributed, the best GMME is asymptotically as efficient as the ML
estimator. The best GMME is defined as the optimal GMME with selected linear and quadratic moments,
which can achieve the smallest asymptotic variance.



moments for the GMM estimation of a large class of cross-sectional spatial econometric
models, which can have a spatial autoregressive (SAR) process in the dependent variable
(Whittle, 1954; Cliff and Ord, 1973), SAR and/or spatial moving average (SMA) processes
in the disturbances (Haining, 1978; Cliff and Ord, 1973), higher order and multivariate
versions of the above processes, and possibly other processes such as spatial error components
(Kelejian and Robinson, 1993). The models we consider also feature heteroskedasticity in
generality, which provides a useful modeling approach for empirical studies.

Our analytic method of deriving best linear and quadratic moments is illustrated in detail
for a high order SARAR model with heteroskedasticity. There are a few merits of analyzing
this class of models. First, the high order model allows researchers to investigate a number
of channels of interdependence by estimating parameters for each channel represented by
different weight matrices (Baltagi et al., 2022), and may be considered as alternatives of a
poorly specified spatial weight matrix (Anselin and Bera, 1998). Second, the SARAR model
allows spatial errors, which captures important spatial interdependence due to unobserved
explanatory variables (Cliff and Ord, 1973; Kelejian and Prucha, 1998, 2010, to name a few).
Third, while ignoring heteroskedasticity usually leads to inconsistent ML, QML and GMM
estimators, robust methods (e.g., Kelejian and Prucha, 2010; Lin and Lee, 2010; Liu and
Yang, 2015; Tagpmar et al., 2019) can lead to substantial efficiency loss, as shown in our
Monte Carlo study. We show that, with a proper decomposition of the variance matrix for a
corresponding set of linear-quadratic moments and reformulation of the gradient matrix of
a GMM objective function, best linear and quadratic moments can be derived analytically
by applying the Cauchy-Schwarz inequality to derive a variance lower bound that can be
attained.

Since non-normal model disturbances indicate the existence of a GMM estimator that is
asymptotically more efficient than the QML estimator, we derive tests for the normality of
disturbances in the SARAR model. These tests might also be of interest in other situations,
e.g., normality of disturbances implies that the information matrix equality holds for the

QML estimator, so the asymptotic variance can be simplified.



To facilitate estimation for various models in empirical research, we also employ the
proposed analytic procedure to derive best linear and quadratic moments for a general new
multivariate model: a high order SESAR model with multivariate spatial autoregressive

and moving average (MSARMA) heteroskedastic disturbances.?

This model nests many
single equation and simultaneous equations models in the literature as special cases, such
as those in Kelejian and Prucha (2004), Yang and Lee (2017), etc. In particular, while
SAR disturbances capture global spatial dependence, SMA disturbances capture local spatial
dependence (Fingleton, 2008; Dogan and Tagpinar, 2013, e.g.,). The SESAR model has been
employed to applications on, e.g., regional science (de Graaff et al., 2012; Gebremariam et al.,
2010), housing economics (Baltagi and Bresson, 2011; Jeanty et al., 2010), macroeconomics
(Elhorst and Emili, 2022), and fiscal policy analysis (Hauptmeier et al., 2012; Allers and
Elhorst, 2011). Therefore, the potential applications of the proposed method are wide in
applied econometrics.

The spatial interdependence or propagation of local economic growth is documented in
the literature (Wheeler, 2001; Gebremariam et al., 2010; Feyrer et al., 2017, etc). How-
ever, the patterns and channels of interdependence have not been addressed. Postulating
a coefficient for spatial correlation and a decay function in geographical distance to form a
SAR model cannot fully capture heterogeneity through different channels, and at the same
time heteroskedasticity and spatial correlation in errors may occur in this issue. Thus the
high order SARAR model with heteroskedasticity is a more suitable model. We use county-
level census data in the contiguous US to investigate the degree to which employment growth
disseminates through different channels between neighbors with geographic proximity, indus-
trial proximity, and political tendency proximity. We decompose the interdependence into
three channels and measure their heterogeneous magnitudes: the interdependence decays
fast geographically; and spatial interdependence among neighbors with industrial proximity
is the strongest among the three channels. The proposed best GMM generates efficient and

precise estimates which unveil the above insights simultaneously.

2The analysis is in the supplementary file.



This paper is organized as follows. In Section 2, we present the high order SARAR model
with possibly heteroskedastic disturbances, derive analytically best linear and quadratic
moments, develop normality tests of the disturbances, and present some Monte Carlo results
on the GMM estimator with best linear and quadratic moments. Section 3 applies the
high order SARAR model and best GMM to county-level census data for the investigation
of spatial interdependence of local economic growth. Section 4 concludes. Analysis on the
general high order SESAR model, more Monte Carlo results, proofs, and detailed derivations

are provided in the supplementary file.

2 The high order SARAR model

Consider the following high order SARAR model with heteroskedasticity:

luw Im
Yn - Z )\jOVanYn + Xn/BO + Up, Up = Z pkOMknun + Zi{fvna (]-)

=1 k=1
where n is the sample size, Y,, is an n x 1 vector of observations on the dependent variable,
W;,'s and My,’s are n x n spatial weight matrices of known constants with zero diagonals
such that W, # Wj,, and My, # Mg,y for ji,52 = 1,2,--- l,, and ki, ko = 1,2, , [,
X, = [Tn,j] 1s an n x [, matrix of exogenous variables, 2%2 = diag(0n1.0,- -, 0nno) is a diag-
onal standard deviation matrix of heteroskedasticity, formed by o,;0 = f(Zni1, - Tnity, Y0)

" are i.i.d. with mean zero and unit

for some known function f(-),®> v;’s in V,, = [vy,-- - ,v,]
variance, A\g = [A10, -+, A0l and po = [p10, -+, 0] are spatial dependence parameters
for the dependent variable and disturbances respectively, and [y is an [, x 1 vector of pa-
rameters. Model (1) embodies multiple spatial interdependence, which is especially useful
when researchers want to investigate multiple possible channels of interdependence or allow

for flexible rates of decay of interdependence (Lee and Liu, 2010; Gupta and Robinson, 2015;

Baltagi et al., 2022, etc.). Furthermore, Model (1) considers spatial errors in a high order

3With an unknown form of heteroskedasticity, we have investigated the possibility of estimating best
linear and quadratic moments nonparametrically, but found it unable to achieve the same efficiency as the
infeasible best moments. The literature on best moments for spatial econometric models typically assumes
homoskedasticity, while our analytical procedure allows us to handle heteroskedastic errors with quite flexible
known functional forms.



form as additional sources of spatial dependence.

Denote R,(p) = I, — ka”;l peMpy, and S, (\) = I, — Z?;l A\jWin, where p and A are
parameter values in their parameter spaces, and I, is the n-dimensional identity matrix.
Under the regularity condition that R, = R,,(po) and S,, = S,(\o) are invertible, Y;, has the

reduced form Y,, = S; (X5 + R, 127%2‘/”)_

2.1 GMM estimation and best moments

We consider the GMM estimation of model (1) with the following vector of linear and

quadratic moments:*

gn(0) = [VA(Q)Pann(Q) —tr(Prn), - aVri(Q)PlannW) - tr(Plpn)a Vr;(e)@n]/a (2)
where 6 = [N,p,(',7]’, which is a finite dimensional parameter vector of the model,
Va(0) = S P (0) Ra(p)[Su(N)Yo = XaB] with X/ (7) = diag(0m (1), -, on(1) for os(7) =
f(@nit, s Znat,, ), Prn’s are n x n matrices constructed from Wj,’s, My,’s and X,,, and

Q) is an n x [, instrumental variable (IV) matrix as a function of W;,’s, My,’s and X,,.

For example, P.,’s can be I, Wj,, M,, W?

ind M}, and so on, and @, can be the matrix

formed by the independent columns of X,,, W;, X,,, My, X,, W]-Qan, M} X, and so on.” The
moments linear and quadratic in V,,(#) are motivated from the quasi maximum likelihood
estimation of the SARAR model, as in Lee (2007). Our moments quadratic in V,,(0) differ
from those of Lee (2007) for homoskedastic SAR models in that P,,’s are not required to
have zero traces. Our approach simplifies the search for best moments since possible best
P,,’s do not need to have zero races either. Efficiency implications due to this difference are
discussed in Appendix A. We consider the GMM estimation based on the objective func-
tion g, (0)al,a,g,(0) for some weighting matrix a}a,, where a, is an [, x (I, + ;) full row

rank matrix with [, greater than or equal to the number of parameters ly in € and the limit

4The moment V, (0) P}, Vy,(0) — tr(P;y,) is called a quadratic moment as it is quadratic in V;,(#). Similarly,
Q. Vi (0) is called a linear moment.

5Tt is possible to use higher powers of spatial weight matrices to construct instruments. But there can be
a many instruments problem (Liu and Lee, 2013) and potentially a weak instruments problem. One method
of solving these problems is to use synthetic instruments as in Fingleton (2023). Our GMM estimator with
best linear and quadratic moments not only solve these problems, but also is efficient among a class of GMM
estimators with linear and quadratic moments.



a = lim,,_,, a, exists by design.
The following assumption contains basic regularity conditions for model (1) and its GMM

estimation. We abbreviate “bounded in both row and column sum norms” as UB.

Assumption 1. (i) v;’s are i.i.d. with mean zero and unit variance, and E(|v;|*™) < oo for
some n > 0; (1i) The elements of X,, are uniformly bounded constants, and lim,, . %XT'ZX,Z
exists and is nonsingular. (iit) {W;,} for j = 1,... 1, and {My,} for k = 1,... 1y,
which are UB, have known constant entries and zero diagonals; {R,} and {S,} are in-
vertible and {R,'} and {S,'} are UB. (i) {P,,} for r = 1,...,1, are UB, and the ele-
ments of «n are uniformly bounded constants. (v) The parameter space © of 0 is a compact
subset of Rl. (vi) sup; ,, [f(Tnit, - 5 Tty Y0)| < 00, inferin [f(@Tnits - Tna,,v)| > 0,
and f(Tni1, -+ Tna,, ") s differentiable such that sup.cp ., ||%f(mml, e T, )| < 00,

where I' is the compact parameter space of .

Assumptions 1(i)—(iv) are typical regularity conditions in the spatial econometric litera-
ture (see, e.g., Kelejian and Prucha, 1998, 1999; Lee, 2004, 2007). In Assumption 1(7), the
finite moment condition with an order higher than four on the disturbances is needed for
the applicability of the central limit theorem for linear and quadratic forms in Kelejian and
Prucha (2001). The nonstochasticity of X, in Assumption 1(4i) is maintained for simplicity.
The UB properties of spatial weight matrices in Assumption 1(i¢) originate in Kelejian and
Prucha (1998, 1999). As the analysis will use the reduced form of Y, {R;'} and {S;'}
are also assumed to be UB. These UB properties are also required on the matrices P,,’s, as
they are functions of spatial weight matrices. Assumption 1(v) is a usual condition on the
parameter space for an extremum estimation. In Assumption 1(vi), the function f(-) for het-
eroskedasticity is required to be uniformly bounded at the true vy, uniformly bounded away
from zero and satisfy some smoothness conditions. As 7 is of finite dimension, the norm || - ||

for the derivative of f(-) can be taken as the familiar Euclidean norm. This general model

6The asymptotic distribution of the GMM estimator with best linear-quadratic moments will use the
central limit theorem for linear-quadratic forms in Kelejian and Prucha (2001), which require square matrices
in linear-quadratic forms to be nonstochastic. The square matrices in our derived best quadratic moments
will involve X,,. We leave the extension to a random X,, to future research.
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nests the SARAR model with homoskedastic disturbances when f(-) is a constant function.

We have E[Q"V,(0)] = Q. V,(0), and
B[V (0) P Va(0)] = Vi(0) P Va(0) + tr[ AL (A, p,7) PrnAn (X, p,7)] (3)

forr=1,...,1,, where

b

Va(0) = E[Va(9)] = Z,*(7) Ru(p) [Z(Ag‘o = M)W S XnBo + Xn(Bo = B) |, (4)

=1
and A, (A, p,7) = S0 2 (V) Ra(p)Sn(N)S;IRISY2. The following assumption provides suffi-
cient parameter identification conditions for lim,,_, % E[g,(0)] to be uniquely zero at 0 = 6,

which are similar to those in Lee and Liu (2010).
Assumption 2. FEither the following (i) or (ii) is satisfied:

(1) limp, o0 =Q0 5 S0 (V) R (0) Wi S XnBos -+ + s Wiun S X0, X has full column rank
for any (p,v), and the equation system lim,_,oo{= tr[A} (X0, p, ) PrnAn(Xo, p,7)]
— %tr(Pm)} =0 forr=1,....1, holds uniquely at (p,7y) = (po,Y0);:

(i) For any (p,7), iy o0 Q1% S0 (V) R (p) X, has full column rank, limy,_o LQ.2 S0 (y)
R (p)[(W1n S, X0 B0y -+ s WiynSi X0 o, X] has column rank I, + 1, — Lo for some 1 <
lwo < Ly, and the equation system limn_m{% tr[AL (A, p,7) PrnAn (A, p, 7)) =2 tr(Pr) } =

0 forr=1,...,1, has a unique solution at (X, p,7y) = (Ao, Po;Y0)-

For the asymptotic distribution of the GMM estimator, the gradient matrix %%g—é?o) in

the limit needs to be considered. For any square matrix C,, let C¥ = C,, + C!, and vec(C,,)

be the vectorization of C,. Denote G,, = E(aggé?o ), the dimension of the vector v by [,

and the jth element of v by 7;. Then,

G 1 %w;qjln %w;qJQn 0 %w;qj?m
"\ o, 0 'y PR X, 0
where w, = [vec(P;,), -+, vec(Py,,)], Wi, = [vec(J3,), -, vec(Jp, )] with Jp, = S0/ Ry Wi

X SRS Wy, = [vee(K3,), -, vee(KP )] with K, = Y/* M, RSN Wy, =



vee( L), vee(Li )] with Lyn = S22 and T, = [Tyn,---, i) with Ty =
Z;()l / QRnanS; 1X,By. Thus, for lim, ,., G, to have full column rank, under Assumption
2(1), a sufficient condition is that lim, o ~w/,[¥a,, ¥s,] has full column rank; on the other
hand, for the situation of Assumption 2(ii), a sufficient condition is that lim,, %w;[\lfln, Uy, U3,

has full column rank. In addition, for the asymptotic distribution of the GMM estimator,

we also need the usual condition that vy is in the interior of its parameter space.

Assumption 3. (i) In the case of Assumption 2(i), we assume that limy, e *w),[Pay, Us,)
has full column rank; in the case of Assumption 2(ii), we assume that lim,, %wﬁl[\llln, Uy, Usy,]

has full column rank. (ii) Oy is in the interior of ©.

Proposition 1. Under Assumptions 1-2 and the condition that lim,,_, %an E[g.(0)] is
uniquely zero at 6 = 6y, the GMM estimator gy = argmingeeg),(0)al,angn(8) is con-
sistent. If Assumption 3 also holds and lim,, . %an@n has full column rank, then éGMM has

the asymptotic distribution

V(B — 0o) 4 N(O7 lim (@;a;an@n)_1@;a;an(lna;anén(@;a;an@n)_l>,

n—oo

where Q,, = var(\/iﬁgnwo)).

As in Hansen (1982), the optimal choice of the weighting matrix aj,a, is the inverse of
the variance matrix ,,. Let uzo = E(v}), pao = E(v}), and wyy = [dp,, , - - ,dp, ], where d¢
for a square matrix C' is a column vector formed by the diagonal elements of C'. Then, as in

Lee (2007),

_ 1 [ (pta0 — 3)wlywna + swhwn  HaowhgQn
Q= : ()

N30Q;1wnd Q%Qn

As , is a variance matrix of moments, it would be a positive (or at least a nonnegative)
definite matrix. It is well known that a nonnegative definite matrix can be written as a
product of a matrix and its transpose. From the above expression of ), it is not written

as a product of a square matrix and its transpose without a careful manipulation, because

10



(40 — 3) might be negative. With a manipulation, it can be rewritten as

q — 1 H3oWnand  (tta0 — 1 — p130)w] qwna + (5005,wn — 20 4wna)  H30Wna@n

Ton 130QWnd @, Qn
As E(v?) = 1 and E[(vZ—1)?]-E(v?) > p3, by the Cauchy-Schwarz inequality, pso—1—p3, > 0.
Note that the (j, k)th element of w;w, is tr(P;, P;,). For any n X n matrices Cy,, and Cy,,
tr{diag(Cy,)[Ca, — diag(Cs,)]} = 0, where diag(C},) is the diagonal matrix formed by the

diagonal elements of C},. By writing each matrix P} as diag(P;,) + [P35, — diag(Ps,)],

™m

we have 1w/w, — 2w} wne = 3Z,5,, where E, = [vec(P}, — diag(Py,)), . ., vee(B, —
dlag(PS ))]. Let ¢y = \/(,u40 —1—pudy)/2, Ps, i = Co diag(P?)) + [P?, — diag(P?))], and
Wngo = [Vec(Py, ), s vee(F, - )]- Then Q,, can be rewritten as

1 \/75“]”40 0

Q, = —B!B,, where B, = (6)
n

H30Wnd Qn
According to this expression, it is apparent that 2, is non-negative definite. The following

assumption guarantees the positive definiteness of €2, in the limit, and hence, it is so for a

large enough n.

Assumption 4. lim,, . Q) Q,, and lim,,_, %{w;@wn@ + 2030w g L0 — Qn (Q,Qn) 7' Q) Jwna}

exist and are nonsingular.

Let €, be an estimate of Q, such that 2, = Q, + op(1), e.g., (), can be derived by

replacing the unknown true parameters in ,, with their corresponding consistent estimators.

A

A feasible optimal GMM (OGMM) estimator is fogay = arg mingee ¢, (0)2; " gn (6).

Proposition 2. Under Assumptions 1—4, éOGMM 15 consistent and has the asymptotic dis-

tribution \/ﬁ(éOGMM — ) N N(0,1im,, 0o (G4 Q1G) 7).

The remaining issue of interest is to consider possible selections of P,,’s and @), to
minimize the asymptotic variance of an OGMM estimator based on linear and quadratic

moments. For that propose, we are going to derive an upper bound of the precision matrix

11



C_;;LQ; 1@, and then consider the specification of P,,’s and @Q,, for a best GMM estimator
which can attain that upper bound.

(1) Derive the upper bound. In order to derive an upper bound for precision ma-
trices of GMM estimates, we investigate the use of the Cauchy-Schwarz inequality. Cor-
responding to the decomposition of €,, we would like to have a product decomposition
of G,, which involves B,. Theoretically, this can always be done in principle because
G, = B! - B,(B'B,)"'G, = B!C,, where C, = B,(B!B,)"'G,, but C, should depend
only on structures of the model but not on those arbitrary P,,’s and (),,. Our subsequent
analysis provides a more direct decomposition. Let X,, ; be the jth column of X,,. The G,

can be written as G,, = %B;Fn, where

P Foan Fuae Fas Fia 7
Y. 0 S.?R.X, O

with Fj, 11 = \/Li[vec(‘]fn,l/@ — & diag(T1n)), -+, vee(J; 1y — B2 diag(len))], Foi =
\/L§[Vec<Kfn,1/co)7 esvee(KY )]s Fais = v [Vec(dlag(Enol/ RuXp1)), -+, vee(diag(E,, /2
X Ry Xn,1,))], and F, 14 = f( [vec(Li,), - ,vee(L] ,)], where J5, |, = Cio diag(J2,)+ /5, —
diag(J;,)] and K}, . is similarly defined with K7,. By the Cauchy-Schwarz inequality,
G.Q'G, = 1FB,(B,B,) 'B,F, < +F/F,. This upper bound is valid for the selection
of any finite number of quadratic matrices P,,’s and IV matrix @), because F;,, depends on
neither P,,’s nor (),,. The bound can be attained if B,, includes F}, in its column space. For
that purpose, we shall find proper F,,, r =1,...,l, and @),, which can generate B,

(2) Derive the specification of P.,’s and (,, which can attain that upper bound.
For a column vector [ay, ..., qq,,]' conformable with the rows of B,,, By[ay,. .., o, a/]' =
[\% vec((o diag(Ps) + [Ps — diag(P2)]), tpsodps + Qnoz]/, where P? = Z;p:l P;.aj. The
above vector can equal the rth column of F, for 1 <r </, if {,diag(P?) = Cio diag(Js,) —
20 diag(Y,,), Py — diag(Py) = Jp, — diag(J3,), and jusodps + Qua = T, By taking
ap = =a0o,1 =0, =1and oy = -+ = a, = 0, P can be taken as P, =

[J2, — diag(J2,)] + C% diag(J;,) — {2 diag(T,,), and a column of @, can be taken as Q;, =
0 0

12



2
(1+ g—%))Tm — b d Js, - Alternatively, we can have three matrices for quadratic moments:

J5 — diag(J2,), diag(an) and diag(Y,,), since P’¥ is a linear combination of these three
matrices; and we can let an IV matrix (), contain T,, and djs as IVs. Note that when
pso = 0, the quadratic matrix diag(Y,,) and the IV d;: are redundant. These combined
moments can avoid the use of more separate moments. But, on the other hand, using the
moments separately avoids the estimation of the third and fourth moments of disturbances.

The (I, + 7)th column of F), for j = 1,...,[,, has a similar form as the first column of F,,,
but with Jy,, and Ty, replaced by, respectively, Kj, and 0,;. Then we have the quadratic

matrix P}

S in = [an—diag(an)]—l—% diag(K7,), and the IV Q3, = dk; . The (ly+ly,+7)th
column of F,, for j = 1,...,[, has a similar form as the first column of F,, but with J;,
and Ty, replaced by, respectively, 0,, and Z_l/QRanﬁ.j. Then we have P* tjn =
diag(X,0*R 2 Xn,j), and a column of @), can be taken as Qf ., ., = Z;&/QRany.j, where
j=1,...,1;. The last [, columns of F,, have similar forms as the (/,, + 1)th column of F},,

L5 ., and a column of (), can

9 . . *S J—
but L;,’s are diagonal matrices, thus we have B, ., . = Lj,

be taken as Q7 oy 4, 4jn = drs, . where j =1,...,1,.
The best P,,,’s and @),, are summarized in the following proposition and the use of separate

moments is presented in its corollary.

Proposition 3. Suppose that Assumptions 1-4 hold. Let P, = [Jj,— dlag(Jjn)]—i— dlag(J )—

K30

%] diag(Yjn) forj=1,... .0y, P, = [Kjn — diag(K;,)] + % diag(Ky,) forj=1,... 1,

‘PltUJrlerj,n dla’g(z 1/2R Xn ]) fOT ,] - 1 . l;c; ‘F)ltu+lm+lz+j,n = L]n fOTj = ]_, ce 7l’Y’ and
Mgo K30 Hgo K30
Q= [(1 + )TM ~ B0 (1 + )len _ By,
203 243 243 2¢§
dKlsn"” 7dKlS n72 1/2R Xn,dLs R ’dLls ni|.

The OGMM estimator with these quadratic matrices and @)}, denoted by Opcam, has the
asymptotic distribution /n(Oseam — 0o) 4 N(0,limy oo (L FLF,) 1Y), where (SFLF,)™t <
(GG, for the asymptotic variance (GLQ-1GL)™" of ocum given in Proposition 2.
When ugo = 0, the quadratic matrices diag(Z;()l/anXm.l), e diag(Zgol/QRnXm.lz) and the

IVsdgs , ..., dKfmn7 drs 5 o) dLlsw are redundant.
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Corollary 1. Suppose that Assumptions 1—4 hold. Let P};’s be the matrices: J,,, —diag(J.,)
forr=1,... 1, K.,—diag(K,,) forr =1,...,1,, diag(J.,) forr =1,... 1, diag(K,,) for
r=1,...,ln, Ly, forr=1,...,1,, diag(T,,) forr=1,... 1y, diag(Egol/ZRan,.r) forr =
L. 1o and denote Q5 = [0 R X, Yondyy oo dye iy o odiy dps oo dp .

lyn

The OGMM estimator Opanme with these P;x’s and QrF satisfies \/ﬁ(éBGMMg — 6o) LN

N(0,limy, oo (L FF,) 1), where (2FF,)7 < (GL0,'G,) ™. When pgo = 0, the quadratic
matrices diag(T1n), ..., diag(Ty,n), diag(S 0 RuXn.1), ..., diag(S"* RuXn.1,) and the IVs

dys 5 o dJlswn, drcs ;oo dKfmn’ drs 5 - dew are redundant.

The P} ’s and @)} in Proposition 3 involve some unknown parameters. In practice, they
can be replaced with their respective consistent estimates, which results in a feasible best
GMM (FBGMM) estimator. The FBGMM estimator with the estimated P} ’s and Q7 will
have the same asymptotic distribution as that in Proposition 3. The same comment applies
to Corollary 1.

When p3p = 0, the best quadratic matrices for quadratic moments reduce to [J., —
diag(J,n)] + % diag(J,p,) for r =1, ..., Ly, [Kn — diag(K,.,)] + % diag(K,,,) for r =1, ..., Ly,
L,, for r =1, ..., [,, and the best IV matrix is [T, E;OI/QRan]. Furthermore, if 4 = 3
also holds, e.g., when v;’s are normal, then (; = 1 and the best quadratic matrices become
Jins oos Jtuny Kiny ooy Kipmy Lin, <oy Ly n. Thus, when pgo = 0 and pig9 = 3, the best GMM

has the moment vector
g8 (0) = [Va(0) 1V (0) = tr(Jin), -+, Va(0) JinVa(0) = t1(Jim),
Vi(O) K1 Vo (0) — tr(Kin), -+, Vi(0) Ko Vi (0) — tr(K,m),
ValO) LinVa(0) = tr(Lun), =+ Vi(O) Ly Va(6) = t1(Layn), Vi (O) s Sg* B Xl
(7)
This best moment vector when psg = 0 and 49 = 3 is similar to that implied by the QML

score of model (1). These can be seen as follows. The quasi log likelihood function of model

(1), as if the disturbances were normal, is

n

In L,(6) =~ In(2m) + 10| Ru(p)Su(0)| ~ I [S2(7)] = SVA(6)Va(0) (®)
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With Y, = S:1(X,.8 + R;'SY2V,), the first order derivatives of In L, (6) at 6 = 6, are

al%;(%) - Vri‘]rnvn —tr(Jrn) + T/rnV”’ forr=1,....1,
In L, (6
9n L (6o) _ VKV — tr(K,), forr=1,... 1,
opr
Oln L, (o) /o —1/2
L VAN ' by
85 n*'n“=n0 Vn’
In L, (6
ana—n(()) = VyiLrnVn - tr(Lrn)a for r = 17 Tt l'y'
Vr

Thus, for the case with pzo = 0 and py = 3, the best moment vector g#(f) in (7) is
similar to that implied by the QML score. In the derivative of In L,,(#) with respect to A, a
quadratic moment and a linear one are combined with equal weights, while g7 () uses them
separately. However, in the case with pgp = 0 and pg = 3, which includes the case with
normal disturbances, the QML estimator can be shown to be asymptotically as efficient as
our best GMM estimator. Debarsy et al. (2015) provide a proof for the case of the matrix
exponential spatial specification model. If uszg # 0 or pyg # 3, the OGMM estimator with
g7 (0) can be asymptotically more efficient than the QML estimator due to its use of optimal
weighting. Nevertheless, in general, this OGMM estimator is asymptotically less efficient
relative to the best GMM estimator in Proposition 3 or its corollary when disturbances are

not normally distributed.

2.2 Normality tests

In this section, we derive two normality tests for the SARAR model in Section 2: one
employs the Lagrangian multiplier principle and the Pearson distribution as in Jarque and
Bera (1980), and the other directly uses the vector of estimated skewness and excess kurtosis
coefficients, as in Bera, Dogan and Tagpmar (2021, 2022).

The Pearson distribution has the probability density function:

h(:v a) _ exp(— f azIQﬁ-J;??B—l-ao dx) _ eXp(_hl (:L‘, a))
’ f_oooo exp(—f@xﬁiﬁdx) dx ffooo exp(—hy(z,a))dx’
where ag, a; and ay are constants, a = [ag, a1, as)’, and hy(z,a) = [ % dx. Suppose

that v; in model (1) has the density function h(x,a). As v; has unit variance, a satisfies
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the restriction 0?(a) = 1, where 02(a) = [*_2?h(z,a)dz — [[°2 zh(z,a)dz]?. The null
hypothesis for the normality test is Hy: a3 = as = 0. Under the null, ay = 1. The log
likelihood function of the SARAR model (1) is

In L, ( th (0(0), a) + In|S,(N)| + In [ Ry (p)| — In [S2 ()],

where § = [¢',d']', and v;(0) = e;iEﬁlﬂ(’y)Rn(p)[Sn()\)Yn — X,,f] with e,; being the ith
column of I,,. Denote a3 = [a1,as]’. The Lagrangian function for the restricted estimation
with a;s = 0 imposed is In L, (8) — by[o%(a) — 1] — bhaso, where by is a scalar, and by is

a 2 x 1 vector. Let a = [1,0,0], and & = [#',@] be the restricted MLE with a;, = 0

Aln Ly, (8)

. . .y _n OlmL,(d) j 90%(a) __
imposed. Then we have the following first order conditions =57~ = 0, o~ by o =
0, and 81?)51’;( — ag;(:) b, = 0. Solving for the Lagrangian multiplier by yields by =
811551’“‘2(5) - 8ga1(;l)(dgaga))*lalnai’g(g). Our test is on the basis of the asymptotic distribution
of by, Since 22fal® - 5 MDD o [ e, ) 2422 dr,
where 2458 — [ 152 0 153 1a4)and 8” 9709 — [1,0,3]', we have

3 1 n ) n 5 1 n s 3 n . !

b= 13 >0l = vi), 1 > i) = 3] - 3 > i) -1 . (9)

i=1 i=1 i=1 i=1

Since 6 is the QMLE of model (1) as if the disturbances were normally distributed, as in
Lee (2004), we can show that v/n(f — 6) = O,(1) under regularity conditions. Then by the

mean value theorem, we have

VLI [ SUED SN BUELEE S DE SR

under the null hypothesis, i.e., using the efficient estimator @ of 6 does not affect the asymp-

totic distribution of b. By the Lindeberg-Lévy central limit theorem, \/Lﬁlv)g follows the asymp-
2 v

totic distribution N (O ( o 2)), where the two components of \/LﬁbQ are asymptotically in-

dependent. Therefore, we have the test statistic

n n

by = 6171[2 é—szw }+ﬁ[§;[q};‘(é)—3}—62[1;3(@)—1]}2, (10)

=1

which is asymptotically chi-squared distributed with two degrees of freedom.
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We also construct a normality test based on estimated skewness and excess kurtosis
coefficients with the QMLE @, following Bera et al. (2021, 2022). Denote ©; = v;(0) for
simplicity. As v; has unit variance, the skewness and excess kurtosis coefficient estimates
of v; with § are, respectively, 23" o and 23" (v} — 3). A normality test can be

based the asymptotic distribution of S, [ = >0, le (0} = 3)". By the mean
value theorem, S, = S, + EDIHTS: (9)8”’@ a5 03 (h)2uld) 9)] V(0 — 6), where S, =

i=1 Y% 90 ' n 00

[ 507 0, L 507 (vf—3)), and 6 lies between 6 and 6, elementwise. As in Lee (2004), we

NZD =171 \/n
can show that /n(6 —6,) = AE}\%M+OP(1) where Ay, = —+ E(%) = 1AIA,
with
LW, L0, 0 <0,
A, = | VA VBT V3 an

T, 0 . ?R.X, O

Under the null hypothesis of normal disturbances, [2 " | v2 (0) 8”555),% () 8”56()5)]’ =

0 I

n

2v/2vec' (I,) 0

0p(1). Under the null hypothesis, the variance of S,, is A = (1 &), and the variance of

Apn. Then 8, = S, + Ao, A7 = 9lnLn() |

Agp~+0,(1), where Ay, = —% " m 58

\/Lﬁ%g(eo) is equal to Ay, by the information matrix equality. As E(S, - \/Lﬁ%&(eo)) =

—A,,, the variance of S, + AgnAl_nl\/iﬁal%gwo) is A, = Az — AZnAl_nlA’Qn. By the central

limit theorem for general linear quadratic forms in Lemma 6 of Yang and Lee (2017), S, 4

N(0,lim, 00 A,,). Let Ajn be the estimate of A, for j = 1,2. The Ajn can be derived by
replacing the unknown 6y in A;,, with 6. Denote An = A3 — AgnAl_nlA;n Then we have the
test statistic

'S, (11)

for the normality of v;, which is asymptotically chi-squared distributed with two degrees
of freedom under the null. The test statistic ¢1,, has a simple form, and it is locally most
powerful if the true disturbance distribution is a Pearson distribution, which might not be
the case for other disturbance distributions, while ¢,, follows a simple principle to jointly

test the skewness and excess kurtosis.
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2.3 Monte Carlo experiments

In this section, we report some Monte Carlo results on the finite sample performance of
GMM estimators with best linear and quadratic moments for the SARAR model (1).7

We consider a SARAR model with two spatial lags of the dependent variable and one
spatial lag of disturbances. We specify the spatial weight matrix W7y, for the first spatial lag
as a block diagonal matrix with each diagonal block matrix being the matrix for the study of
crimes across 49 districts in Columbus, Ohio, in Anselin (1988). The spatial weight matrix
W, for the second spatial lag is based on the queen criterion. The spatial weight matrix
M, for disturbances is set to be the same as Ws,,. The W, Ws, and M, are normalized
to have row sums equal to 1. The exogenous variable matrix X,, contains three variables,
where the first one is an intercept term and the other two are randomly drawn from N(0,1).
The heteroskedasticity function f(z,,i1, Tni2, Tni3,7) 1S set to exp(@n 171 + TnjizV2 + TnisVs)-
The true parameter values of A, Ao, p, B = [B1,02,03) and v = [y1,72,73]" are set to,
respectively, 0.3, 0.3, 0.3, [1,1, 1], and [lnf), \/@, \/@]’. With these parameter values,

the unconditional variance of f(x;1, %2, 70)v; is equal to 2. The sample size is either 196 or
392, and the number of Monte Carlo repetitions is 2, 000.

We consider the following estimators: the QML estimator, an OGMM estimator with
some simple linear and quadratic moments (denoted as SGMM), an OGMM estimator with
theoretically best linear and quadratic moments (BGMM),® an OGMM estimator with es-
timated best linear and quadratic moments (feasible BGMM, i.e., FBGMM), an OGMM
estimator robust to heteroskedasticity in Lin and Lee (2010) (denoted as RGMM), and the
generalized spatial two-stage least squares estimator robust to heteroskedasticity in Kelejian
and Prucha (2010) (denoted as GS2SLS). While SGMM, BGMM and FBGMM are based on
moments of the form in (2), which takes into account heteroskedastic variances in estimation,
RGMM is based on the moment vector [€¢,(0)Prnen(d), - - - ,e%(é)ﬁlwen(é),e’n(é)Qn]’, where

n

€n(0) = Ro(p)[Sn(N)Y, — X, 8] with 6 = [N, p, f'] and ]-g’jn’s have zero diagonals. For SGMM,

"The empirical sizes and powers of the proposed normality tests of disturbances are reported in the
supplementary file.
8The optimal weighting matrix is also computed using the true parameters.
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the IVs for linear moments are [X,,, Wi, X1, Wo, X1,|, where X, excludes the intercept term
in X,, to avoid multicollinearity, and the square matrices for quadratic moments are I,,, Wy,
Wan, Wi, W3, diag(zn11, "+, Tnm) and diag(z, 19, , Tnn2), where the last two matri-
ces are included since the heteroskedasticity function involves X,. For RGMM, the IVs for
linear moments are [X,,, W1, X1, Wo, X1,], and the square matrices for quadratic moments
are Wy, Wa,, Wi, — diag(W3,) and W3, — diag(W3,). The SGMM estimator is used as the
initial estimate to estimate theoretically best linear and quadratic moments for FBGMM.
Recall that BGMM and FBGMM are asymptotically equivalent, and they are asymptotically
more efficient than QML when disturbances are non-normal. As there are a few outliers for
SGMM, RGMM, BGMM and FBGMM, we report the following robust measures of bias and
dispersion for various estimators: the median bias (MB), median absolute deviation (MAD),
and interdecile range (IDR), which is the difference between the 0.9 and 0.1 quantiles of data
points.

Table 1 reports the estimation results for the case with gamma(1, 1)-distributed distur-
bances, which have been adjusted to have mean zero.? All estimators have a relatively small
MB. FBGMM generally performs similarly to BGMM, and neither FBGMM nor BGMM
dominates each other. FBGMM and BGMM have smaller MADs and IDRs than other es-
timators, except those for [y in the case of the smaller sample size n = 196. For example,
for Ay, the MAD and IDR of FBGMM are about 20% smaller than those of QML. The
MAD and IDR of SGMM are significantly larger than those of FBGMM and QML. RGMM
and GS2SLS have larger MADs and IDRs than SGMM. The MAD and IDR of RGMM are
smaller than those of G2SLS for all parameters except p. As n increases from 196 to 392,

the MB, MAD and IDR of various estimators decrease.

9The disturbances have unit variance, skewness 2 and excess kurtosis 6. Results for other disturbance
distributions including the normal distribution are in the supplementary file.
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Table 1: Performances of various estimators for the SARAR model

QML BGMM FBGMM SGMM RGMM GS2SLS

n=196 XA, MB  -0.007 0.001 0.000  -0.001  -0.006 0.006
MAD  0.039 0.034 0.033 0.044 0.049 0.085

IDR 0.148 0.135 0.130 0.171 0.194 0.338

A2 MB  -0.010 0.003 0.002 0.006  -0.009 0.026

MAD  0.075 0.060 0.060 0.091 0.118 0.118

IDR 0.300 0.243 0.235 0.353 0.459 0.454

p MB  -0.006 0.011 0.009  -0.005 0.003 -0.057

MAD 0.105 0.098 0.098 0.122 0.158 0.153

IDR 0.410 0.367 0.386 0.470 0.597 0.559

£ MB 0.003 0.072 0.075 0.041  -0.074 -0.070

MAD  0.199 0.174 0.177 0.232 0.281 0.300
IDR 0.790 0.719 0.706 0.975 1.092 1.172

B2 MB  -0.009 0.004 -0.001 0.004  -0.045 -0.014

MAD  0.049 0.051 0.049 0.061 0.075 0.078

IDR 0.189 0.196 0.190 0.227 0.281 0.288

n=392 X\ MB -0.004  -0.001 -0.001  -0.001  -0.004 0.006
MAD 0.027 0.023 0.022 0.029 0.035 0.062

IDR 0.100 0.086 0.084 0.112 0.135 0.232

A2 MB -0.007  -0.001 -0.003 0.001  -0.007 0.011

MAD  0.053 0.042 0.042 0.063 0.083 0.084

IDR 0.214 0.157 0.154 0.238 0.314 0.317

p MB 0.001 0.004 0.005  -0.001  -0.001 -0.027
MAD  0.076 0.064 0.063 0.084 0.108 0.105
IDR 0.288 0.254 0.255 0.313 0.414 0.402

B MB 0.005 0.041 0.048 0.021  -0.022 -0.052
MAD 0.132 0.117 0.115 0.157 0.194 0.212
IDR 0.544 0.446 0.443 0.614 0.769 0.795

B2 MB -0.004 0.002 0.000 0.001  -0.024 -0.008
MAD  0.035 0.033 0.033 0.040 0.055 0.055
IDR 0.135 0.127 0.126 0.157 0.210 0.215

Notes: The true value of [\, A9, p, 81, B2, B3] is [0.3,0.3,0.3,1,1,1]. The statistics
for B3 are similar to those for s, thus they are omitted to save space. The number
of Monte Carlo repetitions is 2,000. MB, MAD and IDR stand for, respectively,
median bias, median absolute deviation, and interdecile range.
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3 Spatial interdependence patterns of employment growth

in US counties

Regional urban expansion and employment growth in the United States and worldwide
has attracted much attention in urban economics and regional science. Numerous studies in
general interest and economic journals (for instance, Combes, 2000; Wheeler, 2001; Burch-
field et al., 2006; Duranton and Turner, 2012; Bettencourt, 2013; Reia et al., 2022; Peters,
2022, among others) focus on social, economic, industrial, and infrastructural causes and
consequences of regional growth. As these social and economic factors could be spatially
interdependent, certain questions on regional growth remain unanswered: does a county’s
growth resemble its spatially or economically neighboring counties? What are the spatial
interdependence patterns of regional employment growth?

We study the degree to which employment growth disseminates through different chan-
nels by investigating the spatial interdependence patterns of growth on employments and
other economic variables in US counties using a high order SARAR model with spatial errors
and heteroskedasticity. It is documented in previous studies that local economic activities
could propagate spatially. For example, Wheeler (2001) estimates spatial correlograms of
population, employment, income and earnings of US counties and shows the spatial correla-
tion structure of county-level growth. Gebremariam et al. (2010) find strong agglomerative
effects using employment growth and median household income growth in the Appalachia
region in the 1990s. Feyrer et al. (2017) and James and Smith (2020) examine how eco-
nomic shocks propagate geographically using the recent boom in oil and gas production in
US. Economic linkage, technological spillover, and suburbanization due to transportation
can be explanations of spatial interdependence in economic growth (Ertur and Koch, 2007;
Baum-Snow, 2007).

We characterize different neighbors of a county by geographic adjacency and distance,
industrial proximity, and political tendency. The spatial autoregressive effects through these

channels are estimated together by putting them in the high order SARAR model, which
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allows us to compare the spatial correlations of a county to its neighbors defined differ-
ently. Extending the literature, we could characterize the spatial interdependence patterns
of regional economic growth in various angels. Such an empirical model usually have larger
standard deviations as more spatial lags are simultaneously estimated. Thus an efficient
estimator is beneficial by reducing the standard deviations and narrowing the confidence
interval as shown below.

Moreover, the results provide evidence on conditional convergence of local economic
growth in spatial viewpoints. Employment growth in a county is not only conditional on
initial conditions but also is conditional upon growth in neighboring counties. A county’s em-
ployment growth has a larger spatial correlation with its neighbours which are geographically

adjacent or with a higher degree of industrial proximity.

3.1 Empirical model specification

The key focus is on the spatial dependence of employment growth in county-level, where
the dependence materializes in various ways which are captured by four different spatial
or network weight matrices. The first matrix, W,,, which is named as an adjacent matrix
in the literature, represents spatial interdependence between counties which share borders.
Specifically, its (7, j)th element equals to one when the ith and jth counties are adjacent to
each other. Numerous studies on economics and regional science adopt this spatial weight
matrix. The second matrix, Wy, is a distance-based matrix. Wheeler (2001) shows that
a county’s growth rate is correlated to its neighbors within 200 miles and the correlations
decline at a substantially higher rate when distances are beyond 40 miles. Feyrer et al. (2017)
and James and Smith (2020) examine how economic shocks propagate geographically and
find the outward spillover is limited to within 100 to 200 miles depending on measures for
economic variables. Therefore, we construct the entries of W; being inversely proportional
to the square of distances between two counties ¢ and j, i.e., 1/ d?j with d;; being the distance,
which is similar to specifications in the literature (Ertur and Koch, 2007). The third spatial
weight matrix, W, is constructed by the “difference” of industrial structures among counties

(“ec” stands for economic structure). As economic and industrial structures influence local

22



employment growth (Combes, 2000), a county’s growth pattern might resemble its neighbors
which have similar industrial structures. In the benchmark model, we use the squared
differences of employments in 7 sectors between two counties within D miles to construct
the weights in W,., i.e., 1(d;; < Dy) x 1/[(Secy; — Sec1;)? + - -+ + (Secy; — Secr;)?], where
the 7 sectors are natural resources and mining, construction, manufacturing, transportation,
educational and health services, other services, and governments, and the classification is
similar to that in Feyrer et al. (2017). Secy; is the number of workers in sector k of county ¢
on the initial year 2000. The fourth matrix, W,,, captures the neighbors that share similar
political tendency. Its (i, j)th entry is calculated as the inverse of the squared difference of
democratic and republican shares of voting in the 2000 presidential elections between two
counties within Dy miles, i.e., 1(d;; < D) x 1/[(Dem; — Dem;)* + (Rep; — Rep;)?], where
Dem, (or Rep;) represents county ¢’s average share of voting for a democratic (or republican)
candidate in these three presidential elections. For matrices We. and W,,,, the neighbors are
limited to counties up to 200 miles away, which is consistent with the findings in Wheeler
(2001) and Feyrer et al. (2017). Other distance limits are also considered for robustness
analysis.

We employ a county’s employment growth rate, Gg,,, that is the difference between
logged employment in 2000 and 2005, as the dependent variable in the benchmark model.
We also study the county-level economic growth that can be measured in a variety of ways
in order to keep the empirical investigation broad. Other measures are the growth rate of
establishments, the growth rate of income per capita, and the growth rates of employment,
establishments, and income per capita in good-producing sectors: natural resources and
mining, construction, and manufacturing.

The explanatory variables include variables at the initial period which can reflect the
initial economic conditions: employment in 2000; and variables at the initial period which
have effects on economic growth: population, establishment spatial density (defined as the
ratio between establishment and area), female householders density (ratio between female

householders and population), owner-occupied house units density, percentages of employed
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in manufacturing and service sectors, percentage of adults (larger than 25 years old) with
high school/college degrees and above in 2000. Variables reflecting the changes of economic
conditions during the investigated period such as growth rate of population are also included.
Denote them as X, and the empirical model is
Gemp,i :>\co Z Wij,coGemp,j + )\di Z I/I/vij,dicgemp,j + )\ec Z VVij,ecGemp,j
j=1 j=1 j=1

-+ >\p0 Z I/I/ij,poCTYeWLp,j + Xzﬁ + Uj, and (12)

j=1

i =p Z i+ E ? (poP2000,i Vs

The proposed GMM estimator with best moments is more efficient than other methods such
as QML, which allows multiple spatial lags, spatial errors and heteroskedastic disturbances
to be estimated simultaneously. We also consider heteroskedasticity and spatial errors in the
model. The disturbance u; could be heteroskedastic for counties with different population
sizes in the initial year and we consider a linear form such that o,; = v + 71 In(pop2ooo.:)
where o,,; is the ith diagonal entry of Eil /2 (pop200o,i). We use a distance-based matrix M, as
the spatial weight matrix for spatial errors, where M,, captures the spatial interdependence
from neighbors which are within 200 to 500 miles of a county in order to avoid any missing

spillover from others.

3.2 Data

We employ census-type data on counties’ economic performance in 2000 and 2005 in
the United States. The data are from the US Census Bureau and the US Bureau of Labor
Statistics, and cover all the counties in the contiguous US. The variable list is in Table 2,
with description, mean, standard deviations, minimum, and maximum being provided. We
use data for 3074 counties in estimation. The growth rates of employments during 2000-
2005 vary from -32.6% to 37.8% with a mean growth rate of 1.30%. The counties with faster
growth rates are located mainly in the east coast states and western states while counties

in great lakes states mostly have the slowest growth rates. All the spatial weight matrices
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Table 2: Variable descriptions and summary statistics

Variable Description Mean Std Min Max
Gemp Growth rate of employment 1.30%  9.80% -32.60% = 37.80%
pop Growth rate of population 1.50%  7.40% -20.50%  49.50%

POP2000 Population in 2000 (in thousands) 90.507 294.986 0.356 9519.338

emp2000 Employment in 2000 (in thousands) 40.977 147.784 0.06 4110.915

estap00 Establishment in 2000 (in thousands) 2.408 8.593 0.015  297.191

pop$ . Spatial density of population in 2000 0.241  1.632 0 64.157

popeny ™ Percentage of population in ages 25-54 41.067  3.534  23.057  61.207

UMP2000 Unemployment rate in 2000 4.328 1.644 1.3 17.4

fhhoooo female householder density 0.04 0.014 0.006 0.107
in 2000

hmwaggo Owner-occupied house units 0.284 0.038 0.053 0.394
density in 2000

mmn fagoo Percentage of employed in 15.7 12.8 0 70.4
manufacturing in 2000

$€v9000 Percentage of employed in professional, 20.8 9.8 0 89.9
financial, information and other
services (excluding health and education)

estsh) | Spatial density of establishment in 2000 0.007  0.085 0 4.498

col2000 Percentage of adults (>25) with 16.483 7.746 4.9 63.7
college degrees and above in 2000

hig2000 Percentage of adults (>25) with 77.31 8.71 34.7 96.3

high school diplomas and above

Notes: the descriptive statistics summarize employment, establishment, income and other variables of eco-
nomic performance for 3074 counties in contiguous US with around 1% being excluded to avoid outliers as
the estimation results are sensitive to their inclusion. The spatial density of population (establishments)
are calculated as the ratio between population (number of establishments) and the area of any county. The
density of female householders (owner-occupied house units) is calculated as the ratio between the number
of female householders (owner-occupied house units) and the population of any county.
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are row-normalized. W,, is constructed by the information of adjacency among counties as
described in the last subsection. Counties have 5.56 adjacent neighbors on average, with
a maximum of 13 adjacent neighbors and a minimum of 1 adjacent neighbor. We include
counties which are within 200-miles around each county in Wy; and the adjacent neighbors
are excluded.!'® The entries in Wy, are constructed by the inverse of squared distances.
Thus, W,, and Wy; together capture the geographic neighbors, while W,, mainly captures
the spatial interdependence among closest counties which share borders and Wy; captures
spatial interdependence between relatively farther counties. W, captures industrial structure
proximate neighbors and W), captures political tendency proximate neighbors. We also set
the distance limit Dy = 200 miles for them in the benchmark model. Therefore, three
different kinds of channels of spatial interdependence in geographical, industrial structure and
political tendency proximity, are considered simultaneously. As all the four matrices capture
spatial effects within 200 miles, the spatial weight matrix M,, in spatial errors captures all
neighbors’ other potential spillovers within 500 miles.

Table 2 also presents descriptive statistics for independent variables, which are consistent
with those employed in local growth studies (for example, Schmitt and Henry, 2000; Wheeler,
2003; Gebremariam et al., 2010). Total population, population density and the percentage of
population between the ages of 25-54 control for the agglomeration effects. Unemployment
rate and female householders density (defined as the ratio between the number of female
householders and population) could measure counties’ economic distress as a high unem-
ployment rate reflects poor business environments and a high female householders density is
associated with low median household incomes. The two indicators are also relative to weak
demand in local markets. Establishment spatial density, the ratio of the number of estab-
lishment and area, is associated with severity of competition in a county. Owner-occupied
house units density, which is the ratio between owner-occupied house units and population,

is related to availability of financing resources and at the same time mortgage as the cost of

10The 200-miles setup is consistent with findings in the literature that growth of a county is correlated
with its neighbors in 200 miles or that shocks in a county can propagate up to 200 miles (e.g., Wheeler,
2001; Feyrer et al., 2017; James and Smith, 2020).
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owning housing units might result in deterioration of economic environment. Percentages of
adults with high school diploma and college degree or above measures human capital in a

county.

3.3 Estimation results

We present the estimation results for the high order SAR models with spatial error and
heteroskedasticity in Table 3, employing the proposed FBGMM and traditional QML esti-
mation methods. The simple GMM estimates with X, WX, W]-QX for each j = co, di, se, po
as IVs and W;, Wf,M ,M? as quadratic matrices are used as the initial estimates for
FBGMM. Following LeSage and Pace (2009), we calculate the average direct impact (ADI)
and average indirect impact (AII) for each explanatory variable. The model is stable
as || 22— codicepo A Winllse s 0.5279 (FBGMM), 0.5287 (QML), or 0.5449 (GS2SLS). The
FBGMM estimates has smaller standard deviation than QML and GS2SLS estimates for
all \’s and most impact coefficients, which is consistent with the theoretical superiority of
FBGMM in the Section 2. Specifically, in the estimation results for model (12), the FBGMM
estimates’ standard deviations of \'s are 14%-42% smaller than those of QML’s and 57%-66%
smaller than those of GS2SLS’s. The reduction of standard deviations for impact estimates
are up to 80%. The advantage of FBGMM can be further elucidated when the complexity
of a model increases or the sample size becomes smaller as FBGMM demonstrates a more
efficient exploitation of information. For instance, upon examining heterogeneous in-state
and out-of-state spatial interdependence in Table S7 in the supplementary file, certain QML
estimates lose their significance or experience a decrease in their level of significance.

The spatial interdependence among neighbors with industrial proximity, measured by
the estimate of A.. in Table 3, is the strongest, followed by the interdependence among
the neighbors that share borders. For relatively farther neighbors, their estimated spatial
interdependence is only -2.47% and insignificant, i.e., one percentage point of employment
growth in neighbors only results in -2.47 percentage point of reduction for a county. The
spatial interdependence among neighbors with political tendency proximity is relatively small

with an estimate 8.40%.
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Table 3: Empirical results of model (12) for growth rates of employment

| FBGMM | QML | GS2SLS
Hfbgmm Stde ‘gqml Stda ‘9g525ls Stde
Aco 0.0937%%*  (0.0220) | 0.0936%**  (0.0255) | 0.0594 (0.0535)
Adi -0.0247 (0.0224) | -0.0249 (0.0281) | -0.0508 (0.0523)
Ase 0.3202%%%  (0.0296) | 0.3293%**  (0.0511) | 0.3586***  (0.0883)
Apo 0.084*%%%  (0.0188) | 0.0846%**  (0.0240) | 0.0813%  (0.0442)
Constant 0.0239 (0.0350) | 0.0236 (0.0358) | 0.0190 (0.0401)
Gopop ADI | 0.6015%%*  (0.0239) | 0.6018***  (0.0271) | 0.6196***  (0.0269)
AIL | 0.5502%%%  (0.0233) | 0.5512%%*  (0.0861) | 0.4957%%*  (0.1141)
In(popaooo) ADI | 0.0438%**  (0.0062) | 0.0448%**  (0.0063) | 0.0442%**  (0.0072)
AIT | 0.04%%%  (0.0057) | 0.041%%*  (0.0087) | 0.0354***  (0.0102)
pops), ADI | -0.0016 (0.0011) | -0.0028 (0.0019) | -0.0028 (0.0017)
AIL | -0.0015 (0.0010) | -0.0026 (0.0018) | -0.0023 (0.0015)
popSie s ADI | -0.0015 (0.0012) | -0.0004 (0.0011) | -0.0005 (0.0011)
AII | -0.0013 (0.0011) | -0.0004 (0.0011) | -0.0004 (0.0009)
umpagoo  ADI | -0.0011%*  (0.0005) | -0.0011**  (0.0005) | -0.001**  (0.0005)
AIL | -0.001%*  (0.0005) | -0.001**  (0.0005) | -0.0008**  (0.0004)
fhhaooo ~ ADI | -0.5081%%% (0.1431) | -0.5081%** (0.1453) | -0.5413%** (0.1584)
ATT | -0.4648%%*F  (0.1289) | -0.4654***  (0.1465) | -0.4331%** (0.1517)
hmwspeo  ADI | -0.0859%  (0.0509) | -0.0858*  (0.0516) | -0.0876 (0.0534)
AIL | -0.0786%  (0.0462) | -0.0786 (0.0479) | -0.0701 (0.0449)
mnfaoo  ADI | -0.1076%%*  (0.0159) | -0.1078*** (0.0163) | -0.1017*** (0.0206)
AIL | -0.0984%** (0.0143) | -0.0987***  (0.0184) | -0.0814***  (0.0188)
S€2000 ADI | 0.0093 (0.0261) | 0.0096 (0.0255) | 0.0140 (0.0312)
AIL | 0.0085 (0.0238) | 0.0088 (0.0232) | 0.0112 (0.0246)
estl®) ADI | 0.0286 (0.0204) | 0.0285 (0.0353) | 0.0287 (0.0257)
AIT | 0.0262 (0.0186) | 0.0261 (0.0326) | 0.0230 (0.0213)
colagoo ADI | -0.0001 (0.0003) | 0.0005*  (0.0003) | 0.0005*  (0.0003)
AIL | -0.0001 (0.0003) | 0.0005*  (0.0003) | 0.0004 (0.0003)
hig2000 ADI | 0.0008%**  (0.0003) | 0.0005*  (0.0003) | 0.0005%  (0.0003)
AIL | 0.0007%*  (0.0003) | 0.0005%  (0.0003) | 0.0004 (0.0003)
empaoge  ADI | -0.0467%%%  (0.0060) | -0.0469%**  (0.0060) | -0.0462%** (0.0067)
AIL | -0.0427%%%  (0.0055) | -0.0429%** (0.0088) | -0.037***  (0.0104)
p 0.0051 (0.0568) | 0.0051 (0.0596) | 0.0302 (0.0627)
Constant 0.1762%%*  (0.0000) | 0.0874***  (0.0088)
In(popa0oo) -0.0092%**  (0.0001) | -0.0005 (0.0009)
tin 125.348 %+ 300664
ton 9.2885% %+ 41.2012%%%

Notes: The dependent variable is the growth rate of employment in 3074 counties (n = 3074).
We use FBGMM, QML, and GS2SLS in estimation with spatial errors and heteroskedasticity being
considered. All X’s in the first part are corresponding spatial effects in model (12). The second part
presents estimates for average direct effect (ADI) and average indirect effect (AII) for each X using
LeSage and Pace (2009). The third part presents results of the second equation in (12) for errors: p
is the coefficient for spatial error while constant and In(popagoo) are coefficients in the heteroskedastic
function for o,;. The last part presents ti, and t5, which are test statistics for the normality of
disturbances, where ty,, is in (10) and %3, is in (11). Both test statistics are asymptotically chi-

squared distributed with 2 degrees of freedom. The numbers in parentheses are standard errors. *,
** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

28



The significant estimates for explanatory variables are mostly consistent with predic-
tions in theory. The positive estimates for logged population (In(popageo)) and population
growth (Gpep) provide evidence that agglomeration economies are significant determinants
for a county’s employment growth. Unemployment rate (umpsgpo) and female household-
ers density (fhhaogo) in the initial year have negative effects on local employment growth.
Poor economic environment provides inadequate incentives for new business establishment or
business expansion and insufficient demand due to unemployment and relatively low house-
hold income could shrink local markets. Owner-occupied house units density (hmwsang)
has negative coefficients, which is not in favor of the hypothesis of loosening financial con-
straint when business owners can use houses as collateral. On the other hand, high density
of owner-occupied house units might also increase economic pressure during recessions due
to mortgage and deteriorated aggregate demand in local markets. The employment in the
initial year and percentage of employees in the manufacturing sector are negatively related
to growth, which suggests that rapid growth occurs more likely in less developed areas.

We apply our tests for the normality of disturbances and the null hypothesis that dis-
turbances are normal are rejected. Take the FBGMM estimation as an example, the test
statistic that employs the Lagrangian multiplier principle as in Jarque and Bera (1980) is
125.3 and the test statistic that uses the vector of estimated skewness and excess kurtosis
coefficients is 9.3, while the critical value at 1% significance level for both tests is 9.2. Our
data does not exhibits significant spatial error dependence, indicated by the last part of
Table 3. We also conduct FBGMM without spatial errors in column (4) of Table 4, where
the estimates for A’s do not depart much from those in Table 3.

Table 4 provides additional estimates with other estimation methods and model spec-
ifications. They show that (i) the empirical findings in the benchmark model are robust
to estimation methods and restrictions on the spatial error parameter; (ii) the proposed
FBGMM estimation outperforms other estimation methods in efficiency by substantially re-
ducing standard errors;(iii) the estimation results are robust when we estimate a high order

SAR model; (iv) the estimation results are robust when we take the endogeneity of spatial
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weight matrices W, and W), in column (5) of Table 4. We adopt Qu and Lee (2015)’s

control function method to handle possible endogeneity problem. We use the each counties’

historical industrial structure and political tendency data - the employments in 7 sectors

on 1990 and share of voting for democratic or republican candidates on 1988 and 1992 - as

the instrumental variables for entries of W,. and W,,. The estimates are almost similar in

magnitudes with these in Table 3.

Table 4: Empirical results for growth rates of employment: additional specifications

2SLS RGMM GMM FBGMM with FBGMM with
alternative M endogenous W
@) (2) (3) (4) (5)
Ao 0.0842* 0.113***  0.0936***  (0.1159*** 0.1183***
(0.0507) (0.0263) (0.0237) (0.0092) (0.0250)
Ndi -0.0372 0.0007 -0.0249 0.0102 -0.0219
(0.0521) (0.0278) (0.0255) (0.0071) (0.0270)
Ase 0.3268***  (0.3411*** (0.3293***  (.3334*** 0.3609***
(0.0837) (0.0553) (0.0347) (0.0116) (0.0488)
Apo 0.0978**  0.0349 0.0846***  (0.0438*** 0.0847***
p 0.1226* 0.0051 0.0001
(0.0642) (0.0599) (0.0570)
Full set of covariants | Yes Yes Yes Yes Yes
tin 300.664***  111.6399*** 111.6399***
ton 41.2012%%% 48 5543%% 48.5543%%*

Notes: The dependent variable is the growth rate of employment in 3074 counties (n = 3074). Column
(1) presents 2SLS estimates; column (2) presents RGMM estimates proposed by Lee and Liu (2010) with
X, WX, and W2X asIVs and W, M, W2 —diag(W?) and M?—diag(M?) as the quadratic matrices in the
quadratic moments; column (3) presents GMM estimates with X, WX, and W2X as IVs and W, M, W?2
and M? as the quadratic matrices in the quadratic moments; column (4) presents FBGMM estimates for
a modified model of (12) which does not consider spatial errors ;column (5) presents FBGMM estimates
for a modified model of (12) which allows endogenous spatial weight matrices. t,, and ts,, which are test
statistics for the normality of disturbances, where t;,, is in (10) and 2, is in (11). Both test statistics
are asymptotically chi-squared distributed with 2 degrees of freedom. The numbers in parentheses are

standard errors.

4 Conclusion

*,** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

This paper proposes a novel analytic procedure to derive best linear and quadratic mo-

ments for a large class of spatial econometric models with heteroskedasticity. The resulting

best GMM estimator is asymptotically more efficient than the QML estimator when distur-

bances are non-normal. The consideration of heteroskedasticity in our models also provides
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a useful modeling approach for empirical studies, which can yield estimates more robust to
heteroskedasticity and improve estimation efficiency relative to existing robust estimation
methods. We derive the best linear and quadratic moments in detail for a high order SARAR
model with heteroskedasticity. In the appendix, we derive two normality tests on the nor-
mality of disturbances for the SARAR model and derive best moments for a general high
order SESAR model with MSARMA disturbances which nest many models in the literature,
with details in the supplementary file.

We apply the high order SARAR model with heteroskedastic errors and the best GMM
estimator to county-level census data on local employment growth in the contiguous United
States. We investigate the spatial interdependence patterns and channels of regional eco-
nomics growth. Estimation results show heterogeneous magnitudes of spatial interdepen-
dence among neighboring counties with geographic proximity, industrial proximity, and po-
litical tendency proximity, with the interdependence between counties with similar industrial
structure being the strongest. Classic SAR models with single parameter for spatial inter-
dependence tends to overestimate the spatial effect through the specified channel as other
channels are omitted. The results are robust to model specifications and estimation methods.

The best GMM estimator for a larger class of network and spatial econometric models
might be studied in future research. Furthermore, it might be difficult to search for best
moments for nonlinear spatial models while they have potentials in empirical studies. In
addition, the search for best moments is confined to linear and quadratic moments in this

paper as it is motivated by the score of QML estimators, which can be extended.
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Appendix A Efficiency implications of using quadratic

matrices with zero traces

For our SARAR model with heteroskedasticity, we estimate the unknown parameter 7,
in the assumed function f(x, 1, -, Tni,, ) for heteroskedasticity together with [N, o', 5]/,
while Lee (2007) considers the homoskedastic case and does not estimate the variance pa-
rameter together with other parameters. In the homoskedastic case of Lee (2007) where the
variance parameter is not estimated together with other parameters, P,.,’s can be required
to have zero traces without losing any efficiency (Liu et al., 2010), but doing so in our case
can lead to an efficiency loss. We investigate this problem in this section. We shall see that a
quadratic moment [V!(0)V,,(0) —n| corresponding to the variance of v; can help improve the
estimation efficiency in the heteroskedastic case, while it only contributes to the estimation
of a joint variance parameter in the homoskedastic case. Even for the homoskedastic case, a

special case with f(-) being a constant, we see from the main text that not requiring P,,’s
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to have zero traces simplifies the analysis on searching for the best moments, since there is

no need to make sure that the quadratic matrices for the best moments have zero traces.
Note that the derivative 31%:(90) of the quasi log likelihood function In L, (€) in (12) of

J

the main text for the SARAR can be written as
! 1 1 !
Vil K — =L tr(Kjn) | Vi + =(V Vi, — n) tr(Kj,),
n n

of which the first term has a quadratic matrix with a zero trace, but the second term has
a quadratic matrix equal to the identity matrix with a nonzero trace, which corresponds to
the variance of v;. The derivative 61%;].(60) can be similarly decomposed. Each 61%’;;(60) is
quadratic in V;,, where the quadratic matrix L, is diagonal but generally not proportional to
an identity matrix. Thus restricting P,,,’s to have zero traces would lead to an efficiency loss.
In particular, the case with Y/ 2(7) = ~1, for a scalar v corresponds to the homoskedastic
case and %ﬂ reduces to %[VA(Q)VH(Q) —n]. In this case, the moment V! (0)V,,(6) —n only

contributes to the estimation of v and P,,’s can be restricted to have zero traces without

losing efficiency for the estimation of other parameters.
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