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Abstract

We propose a unified procedure for testing the predictability of asset returns based on the

empirical likelihood method. We make novel econometric contributions by allowing the

predictor variable in our unified test to be mildly integrated or mildly explosive in addition

to the usual persistence classes permitted in the literature: stationary, locally integrated,

and unit root cases. Moreover, we extend this robust procedure to study the long-horizon

predictive regression model, which has received much attention as a suitable alternative

to examine return predictability. We report results from an empirical application on the

US stock market, where we found evidence of predictability by the Treasury bills and the

inflation rate. A simulation study confirms our proposed test performs very well in finite

sample, exhibiting much better size properties than the IVX approach of Phillips and Lee

(2013) and Kostakis, Magdalinos, and Stamatogiannis (2023).
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1. Introduction

The predictability of asset returns has been a crucial topic in financial economics, and its

test has been a longstanding subject of research. Indeed, the conditional first moment properties

of financial time series offer an insight into many fundamental issues and the empirical puzzles

in finance. Consequently, there has been a huge demand for robust econometric methods for

the study of return predictability (see, inter alia, Pesaran and Timmermann (1995)).

A standard approach for conducting inference on predictability is to employ a linear uni-

variate predictive regression model, where a response variable Y is predicted by some lagged

predictor X. In most empirical application, Y would typically represent the excess return on

the stock market portfolio, in which case X may be the earnings-price ratio, the dividend yield,

the inflation rate, the interest rates, and so on. The reader is referred to Phillips (2015) for

an excellent survey. Specifically, the one-period liner predictive model stipulates that the true

data generating process (DGP) for the vector of observations tpYt, XtqutPZ is given by:

Yt`1 “ α` βXt ` ut`1, (1)

Xt`1 “ θ ` ρXt ` εt`1 (2)

where ut and εt are some error terms. The object of interest is to test the null hypothesis of no

predictabilityH0 : β “ 0, and/or to construct a confidence interval for β. As an extension of this

one-period model, there has been a great deal of interest in the long-horizon framework, where

the predictability over a multiple-time period is examined, since the seminal work of Campbell

and Shiller (1988), Mishkin (1990), and Boudoukh and Richardson (1993). Prediction over

a long-horizon can be much useful in studies involving the forward premium, dividends, and

stock returns. From an econometric point of view, the importance of long-horizon models also

stems from the fact that many empirical works on short-horizon predictive regression report

rather inconclusive findings and low explanatory power, Phillips and Lee (2013). Perhaps

due to the additional complications involved, which we shall revisit in Section 2.1 below, the

econometric literature on long-horizon predictability has been relatively small, and this is one

of the contributions we aim to add in this paper.

Despite their wide applicability and usefulness, predictive regression models face several

econometric challenges. When the sequence tXtu is stationary (i.e. |ρ| ă 1), one may straight-

forwardly implement the simple least squares estimation method. However, as Stambaugh

(1999) points out, when there is dependence between the two error terms ut and εt the least

squares estimator for β is biased in finite sample and therefore the inference becomes unreli-
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able. See also Amihud and Hurvich (2004), Amihud, Hurvich, and Wang (2009), and Chen

and Deo (2009) for further discussions and the bias-correction methods they propose. On the

other hand, when tXtu is nonstationary (say unit root, nearly integrated, mildly integrated),

which is often the case for macroeconomic predictors, the limiting behavior of the sample means

T´1
řT
t“1X

k
t´1, k “ 1, 2 is completely different from that of the stationary case, see Campbell

and Yogo (2006) and Cai and Wang (2014). Lastly, the asymptotic limit is also heavily affected

by whether the variance of X is finite or infinite.

In practice, it is utterly difficult to know the exact temporal properties of X a priori.

Therefore, it is imperative for the econometrician to have a unified test/estimation theory that

is valid irrespective of whether X is stationary or nonstationary, or has a finite or infinite

variance. Consequently, several groups of work have been proposed to construct inference

procedures robust to different types of persistence. The first ones are the Bonferroni t-test by

Cavanagh, Elliott, and Stock (2009), and the Bonferroni Q-test by Campbell and Yogo (2006).

As Phillips and Lee (2013) point out however, it is difficult for Bonferroni type methods to

allow for multiple number of regressors, and they have undesirable finite sample properties

due to having non-standard limit distribution. Furthermore, they require a joint normality

assumption on the error terms u and ε in (1) and (2), which can be restrictive in practice.

The second strand of research on the unified methods is the instrumental variable estima-

tion (IVX) method by Magdalinos and Phillips (2009). The approach consists of filtering the

predictor to construct an instrumental variable, whose degrees of persistence are explicitly con-

trolled, and this variable is then used in the predictive regression of interest. The test follow

a standard chi-squared limit irrespective of the degree of persistence of the original variable.

Kostakis, Magdalinos, and Stamatogiannis (2015) study the IVX based Wald test in the context

of predictive regression, on which Demetrescu, Georgiev, Rodrigues, and Taylor (2023) make

extensions, and Phillips and Lee (2016) consider the cases of local unit roots in the explosive

direction and mildly explosive roots. Demetrescu and Rodrigues (2022) study the bias correc-

tion analogous to Amihud and Hurvich (2004) in the IVX method. Yang, Long, Peng, and Cai

(2020) investigate a new instrumental variable based Wald test (IVX-AR) which accounts for

serial correlation and heteroscedasticity in the error terms. Recently, Demetrescu, Rodrigues,

and Taylor (2023) develop IVX tests for long-horizon predictability. The IVX method however,

has practical limitations in the sense that a tuning parameter needs to be chosen and the rate

of convergence is rather slow.

An alternative method was proposed by Zhu, Cai, and Peng (2014), who use an empirical

likelihood procedure using some weighted score equations. It is a nonparametric approach based
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on the seminal work by Owen (1988, 1990), and has been proven to be a very effective tool in

this context. The test is extremely useful as it has a chi-squared limit regardless of the degree

of persistence of the predictor Xt, does not need the selection of the tuning parameters, and has

a faster convergence rate than the IVX methods. Some extensions have been made thereafter

within the context of a short horizon predictability. Li, Li, and Peng (2017) allow the error term

ut to follow an AR(p) process, Liu, Yang, Cai, and Peng (2019) include the difference of the

predicting variable in the regression model, and lastly Yang, Liu, Peng, and Cai (2021) permit

the existence of a lagged predicted variable.

Despite the advantages of the empirical likelihood method, to the best of our knowledge,

there is no paper that allows for mildly integrated or mild explosive regressors, which limits the

applicability of the approach. Furthermore, the long-horizon predictive regression model, which

has received much attention as a suitable alternative to examine return predictability, has not

yet been explored. In this paper, we fill this gap by proposing a unified empirical likelihood test

for long-horizon predictability which is valid regardless of whether the predictor is stationary,

nearly stationary, unit root, mildly integrated or mildly explosive, which cover virtually all

possible scenarios the econometrician may face.

Section 2 presents a detailed description of the method and the related asymptotic analysis,

Section 3 reports simulation results, and Section 4 concludes. All proofs are contained in the

Appendix. As for notations, we denote by ùñ and
d
ÝÑ weak convergence in the Skorohod

space Dr0, 1s and convergence in law, respectively, and take the term ‘stationarity’ to mean

strict stationarity. Throughout, C (or C 1, C2) refers to some generic constant that may take

different values in different places unless defined otherwise.

2. Methodological framework and asymptotic results

2.1 Long-horizon predictive regressions

Since Fama and French (1988) and Campbell and Shiller (1988), the return predictability

over a multi-step time horizon has received a considerable interest in finance. Several econo-

metric methods have been proposed in the literature thereafter. Volkanov (2003) studies an

asymptotically valid procedure and asserts that long-horizon regressions always return “signifi-

cant” results.

In the econometric analysis that follows, we assume that the true data generating process

(DGP) for the vector of observations tpYt, XtqutPZ is given by the one-period liner predictive

model given in (1) and (2) above. We make the following very general assumption about ut and
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εt, which allows for a wide range of empirical features that are often encountered in practice.

Assumption 1. (i) The errors ut and εt are characterised as

ut “ φvt ` εt (3)

εt “ b1εt´1 ` ¨ ¨ ¨ ` bp´1εt´p`1 ` vt (4)

where the lag polynomial BpLq :“ 1´ b1L´ ¨ ¨ ¨ ´ bpL
p is invertible;

(ii) pε1, v1q, . . . , pεT , vT q are independent and identically distributed (iid) random vectors and

Epu1q “ 0, Epε1q “ 0, Ep|u1|2`q ` |ε1|2`qq ă 8 for some q ą 0.

To allow for a wide range of possibilities, it is common in the literature to consider the case

where Xt is a scalar and to define the autoregressive coefficient ρ “ ρT in equation (2) as

ρ “ 1`
c

T a
, (5)

where c and a are some constants, with a being non-negative. It is evident that the time series

characteristics of Xt are determined by the values of the pair (c, a).

In this study, we will consider the following five cases:

C1 : c ă 0 and a “ 0; Xt is stationary;

C2 : c ă 0 and a P p0, 1q; Xt is mildly integrated;

C3 : c ‰ 0 and a “ 1; Xt is near integrated;

C4 : c “ 0; Xt is integrated;

C5 : c ą 0 and a P p0, 1q; Xt is mildly explosive;

These cases cover a large spectrum of possible behavior that Xt may exhibit, and therefore, offer

a considerable generality that is useful in both empirical and theoretical work. In particular,

within the context of empirical likelihood method, there has been no study in the literature

that allowed for mildly integrated C2 and mildly explosive C5 cases.

A standard approach in the literature to investigate the predictability of Yt is to conduct

inference about β using a short-horizon (one-period) regression model as the specification in

equation (1). In this paper, we investigate the multiple horizon predictability via a long-run
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predictive regression specification that results from the h-period (h ą 1) temporal aggregation

of (1). That is,

Ytphq “ αh ` βhXt ` et`h, t “ 1, . . . , T ´ h (6)

where Ytphq “
řh
j“1 Yt´h`j . It is important to note that this specification is a fitted regression

and not a DGP (see Hjalmarsson, 2011). The process in equation (1) continues to be the true

DGP for Yt, and Ytphq is simply its h-period accumulation.

If Yt is unpredictable and the true value of β is zero, then βh “ 0 for every h. Similarly,

βh ‰ 0 for every h whenever β ‰ 0. The regression specification in equation (3) is therefore

empirically useful, since a statistically significant estimate of bh can be interpreted as evidence

of long horizon predictability. Also, notice that if we set h “ 1, equation (3) becomes a short-

horizon predictive regression specification. We shall impose the following condition for the

asymptotic derivation.

Assumption 2. The horizon h “ hT Ñ8 satisfies h{T q{2 Ñ 0 as T Ñ8.

As aforementioned in the introduction, there are several statistical obstacles in (6) that affect

the asymptotic inference for the presence of predictability. First, the time series characteristics

of Xt is unknown and it is often difficult in practice to determine the exact type of persistence

class that it belongs to. In fact, when Xt belongs to class C2, C3, C4, or C5, standard inference

methods are not valid, since the limit theory of the regression parameter estimators depends on

the localizing constant c, which is not consistently estimable (see, e.g., Phillips, 2015). Second,

when the innovations in equation (2) are highly correlated with the innovations in equation (1),

the least squares estimator of β based on the short-horizon predictive regression is biased. This

bias disappears asymptotically when Xt belongs to class C1 but is present even in the limit

when Xt is non-stationary. Moreover, when Xt belongs to either class C2 or class C3, the bias

cannot be corrected, since it is a function of the localizing constant c (Phillips and Lee, 2013).

Finally, in the long horizon predictive regressions, the presence of overlapping observations due

to the accumulation of Yt generates a serial correlation in the innovations, which is not present

in the short-horizon specification, and it causes the estimator of βh to be inconsistent (Kostakis,

Magdalinos, and Stamatogiannis, 2023).

Various econometric methods have been proposed in the literature to overcome the afore-

mentioned issues. In this paper, we adopt and extend the method proposed by Zhu, Cai, and

Peng (2014), who used an empirical likelihood procedure based on some weighted score equa-

tions to develop a test of short-horizon predictability. The test has a chi-squared limit regardless

of the degree of persistence of the predicting variable Xt. We show that a unified inference can
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be extended even when Xt belongs to C2 or C5, and also within the context of long-horizon

predictability. A detailed description of the method and the related asymptotic analysis is

provided in the following section.

2.2 Empirical likelihood: Test description and asymptotic results

To fix ideas, let h “ 1 in the regression model (6) and consider the following estimating equa-

tions:
T´h
ÿ

t“1

pYt`hphq ´ αh ´ βhXtq “ 0 (7)

and
T´h
ÿ

t“1

pYt`hphq ´ αh ´ βhXtqw pXtq “ 0 (8)

where wp¨q is some weight function. Following Zhu, Cai, and Peng (2014), we specify wpXtq “

Xt{
a

1`X2
t , since in this case T´1

řT
t“1|wpXtq|

p
ÝÑ 1 as T Ñ 8 for Xt being both stationary

and non-stationary. When Xt belongs to class C1 (i.e. when it is stationary), solving these

equations yields the weighted OLS estimates of αh and βh. However, when Xt is mildly in-

tegrated, near integrated, unit root, or mildly explosive (i.e., cases C2-C5), the joint limit of

pT ´hq´1
řT´h
t“1 pYt`hphq´αh´βhXtq and pT ´hq´1

řT´h
t“1 pYt`hphq´αh´βhXtqwpXtq does not

follow a bivariate normal distribution, since pT´hq´1
řT´h
t“1 et`hwpXtq converges in distribution

to a random variable as T Ñ 8 because of the constant (see, e.g., Chan, Li, and Peng, 2012).

Thus, Wilks’ theorem1 in this case does not hold.

To overcome this issue, Zhu, Cai, and Peng (2014) proposed to split the sample and to

difference the data with a large lag. In particular, let m “ tT {2u, where t¨u denotes the floor

function, and define rYt “ Yt`m ´ Yt, rXt “ Xt`m ´ Xt, and ret “ et`m ´ et, for t “ 1, . . . ,m.

Then, the regression model in equation (6) can be rewritten as

rYt`hphq “ βh rXt ` ret`h, for t “ 1, . . . ,m´ h, (9)

where rYt`hphq “
řh
j“1

rYt`j . Based on this model and under the conditions in Assumption 1, it

can be shown that Wilks’ theorem holds for the empirical likelihood method regardless of the

degree of persistence of Xt when h “ 1. If however h ą 1, then the dynamics of ret`h would

change and they would no longer be independent. To address this difficulty, we instead apply

1Wilk’s theorem states that the logarithm of the empirical liklihood ratio has an asymptotic chi-squared
distribuion (see, for example, Hall and La Scala, 1990)
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the empirical likelihood method, where h ě 1, based on the following regression specification:

rYt`h “ βrevh
rXtphq ` rut`h, (10)

where rXtphq “
řh´1
j“0

rXt`j . This specification is a reverse regression of the h-period value of

the dependent variable on the h-period sum of the regressor and has been used in the context

of long-horizon predictability by Phillips and Lee (2013) and Wei and Wright (2013), among

others. Note that the error term rut`h is independent, which is necessary to ensure that Wilks’

theorem holds.

Based on the regression in equation (10), we define the empirical likelihood function for βrevh

as

rLT pβ
rev
h q “ sup

#

m´h
ź

t“1

ppm´ hqπtq : π1 ě 0, . . . , πm´h ě 0,
m´h
ÿ

t“1

πt “ 1,
m´h
ÿ

t´1

πt rZt pβ
rev
h q “ 0

+

,

(11)

where rZtpβ
rev
h q “ rrYt`h´β

rev
h

rXtphqs rXtphq{

b

1` rXtphq2. By the Lagrange multiplier technique,

we have

˜̀
T pβ

rev
h q “ ´2 log rLT pβ

rev
h q “ 2

m
ÿ

t“1

log
!

1` λ rZt pβ
rev
h q

)

, (12)

where λ “ λpβrevh q satisfies
m
ÿ

t“1

rZt pβ
rev
h q

1` λ rZt
`

βrevh
˘
“ 0.

The following result shows that Wilks’ theorem holds for the proposed empirical likelihood

method.

Theorem 1. Suppose that (i) the data is generated according to the process in equations (1)-

(2), (ii) Assumption 1 is satisfied, and (iii) the predictive variable belongs to either class C1,

C2, C3, C4, or C5. Then,

˜̀
T pβ

rev
h,0q

d
ÝÑ χ2

1 (13)

as T Ñ8, where βrevh,0 denotes the true value of βrevh .

As a consequence of Theorem 1, we would reject the hypothesis H0 : βrevh,0 “ 0 at some

significance level % if ˜̀
T pβ

rev
h q ą χ2

1,1´%. Alternatively, an empirical likelihood confidence interval

for βrevh,0 with level % can be obtained as in Zhu, Cai, and Peng (2014).
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3. Simulation results

3.1 Simulation design

In this section, we use Monte Carlo simulations to investigate the finite sample behaviour of the

empirical likelihood method discussed above. For all reported experiments, we generate the data

from the process in equations (1) and (2), with α “ 1, θ “ 1´ ρ, and c P t´50,´20,´10, 0, 1u.

The autoregressive process in equation (2) was initialized at x0 “ 0. The vector pε1t, v
1
tq
1 is

drawn from a bivariate standard normal distribution and we set εt “ vt and ut “ φvt` εt, with

φ P t´0.95,´0.5, 0u. All tests considered are for the null hypothesis of no long run predictability

and are run at the 5% nominal level of significance. To investigate their finite sample properties,

we set β “ b{
?
T , where b is allowed to increase from 0 to 10 in increments of 2. For b “ 0

(b ‰ 0), the results represent the finite sample size (power) of the tests. We report result for

samples of length T P t250, 500, 1000u and prediction horizons h P t1, 4, 12, 60u, using 10,000

Monte Carlo replications.

Kostakis, Magdalinos, and Stamatogiannis (2023) point out that the Stambaugh bias is

primarily determined by the interaction between the regressor’s degree of persistance and its

endogeneity. Note that we are able to examine the effect of this bias on the finite sample

properties of the proposed test statistics at different predictive horizons, since we consider in

the simulation set up various combinations of values for the parameters c, φ, and h.2 Also,

as a base for comparison, we report results from a Monte Carlo study for the long-horizon

predictability tests of Phillips and Lee (2013) and Kostakis, Magdalinos, and Stamatogiannis

(2023), which we will denote as PL and KMS, respectively.

3.2 Size properties

First, we examine the size properties of the empirical likelihood test described in Section

2, with the α in equation (1) treated as either known or unknown, and the IVX-based tests

of Phillips and Lee (2013) and Kostakis, Magdalinos, and Stamatogiannis (2023). Rejection

probabilities are summarized in Table 1. We can draw few interesting conclusions from these

simulated results. PL and KMS tests exhibit similar performance. This is not surprising

given that both tests share a common modelling framework. Both tests appear to be slightly

undersized in small samples when there is a correlation between the innovations of the predictor

and the predicted variables (i.e., for φ P t´0.95,´0.5u) but their size properties tend to improve

as the sample size increases. In contrast, the empirical likelihood test that treats the α as known

2We have also considered φ P t0.95, 0.5u but the results are qualitatively similar to φ P t´0.95,´0.5u, so for
the sake of brevity we do not report them here. These results are available on request though.
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(EL1) exhibits correct size properties even for T “ 250 and regardless of (i) the presence of

correlation between the innovations of the predictor and the predicted variables and (ii) degree

of predictor’s persistence. Similar conclusion can be drawn for the empirical likelihood test that

treats the α as unknown (EL2), except that for φ “ ´0.95 and c “ 1, the EL2 test appears to

be slightly oversized. In general, however, both EL1 and EL2 tests show reliable size properties

at all prediction horizons that we consider, which suggests that their performance is robust to

the overlapping nature of observations in long horizons.

3.3 Power properties

We next compare the finite sample power properties of the proposed tests. Figures 1–3

contain power curves for T “ 250 and φ P t´0.95,´0.5, 0u, Figures 4–6 contain power curves

for T “ 500 and φ P t´0.95,´0.5, 0u, and Figures 7–9 contain power curves for T “ 1000 and

φ P t´0.95,´0.5, 0u. All figures consist of subplots that correspond to the different combination

of values that we assume for the persistence parameter c and the prediction horizon h. Overall,

we can conclude that all four tests display comparable performance, especially for T “ 1000.

The power of the tests increases with the increase in the value of the localizing coefficient b,

which is to be expected, since for small values of b, the departures from the null are too small

to be detected. For T ă 1000 and c ă 0, the EL1 test tends to exhibit better power properties

than the PL and KMS tests, especially when k ą 4. However, for c ě 0 the PL and KMS tests

tend to perform slightly better. Also, the EL1 test that treats α as known is more powerful

than the EL2 test. This is mainly due to the data splitting technique that we adopt for the

EL2 test and is consistent with the analysis of Zhu, Cai, and Peng (2014), Chan, Li, and Peng

(2012), Li, Li, and Peng (2017), and Liu, Yang, Cai, and Peng (2019).

In summary, the simulation results suggest that the proposed empirical likelihood method for

testing long-horizon predictability can deliver an accurate size and nontrivial power. This holds

regardless of the endogeneity issues, the overlapping nature of observations in long horizons,

and the uncertainty regarding the exact type of predictor’s persistence that econometritians

usually face in practice.

4. Empirical application

This section revisits the evidence on the ability of financial and macroeconomic variables to

predict stock market returns. Despite the voluminous literature on this subject, there is still

a debate as to whether future stock returns are predictable or not. On one hand, studies like

Lettau and Ludvigson (2001) argue that “. . . excess returns are predictable by variables such as

9



dividend-price ratios, earnings-price ratios, dividend-earnings ratios, and an assortment of other

financial indicators”. On the other hand, however, studies like Welch and Goyal (2008) suggest

that “. . . a healthy skepticism is appropriate when it comes to predicting the equity premium”.

We aim to shed some light on this debate by conducting a battery of short- and long-horizon

predictability tests that we developed in this paper. We collect monthly data on the following

eleven variables that are commonly used in the literature as predictors of the aggregate market:

the dividend payout ratio; the long-term yield; the dividend yield; the dividend-price ratio; the

Treasury bill rate; the earnings-price ratio; the book-to-market value; the default yield spread;

the net equity expansion; the term spread; and the inflation rate. The data is obtained from

Amit Goyal’s website3 and covers the period from January 1952 to December 2022. The tests

are performed for h P t1, 4, 12, 60u and the dependent variable in all predictive regressions is the

continuously compounded return of the CRSP value weighted index4 in excess of the one-month

Treasury bill rate.

The p-values of the proposed robust empirical likelihood tests are summarized in Table

2. We can see that the Treasury bill rate is the only significant predictor at the 5% level of

significance and this is just for h “ 1. There is also some weak evidence of predictability from

the Treasury bill rate for h “ 4, from the long term yield for h “ 1, and the term spred for

for h “ t12, 60u. All other p-values are higher than conventional levels of significance. These

conclusions are to a large extend consistent with the findings of Kostakis, Magdalinos, and

Stamatogiannis (2015) and Kostakis, Magdalinos, and Stamatogiannis (2023). They also find

evidence that the Treasury bill rate and the term spread have some predictive ability.

3See https://sites.google.com/view/agoyal145.
4The data for the CRSP index is obtained from Kenneth French’s wensite: https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/index.html
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Table 1
Finite-sample sizes

The table reports the probability of rejecting a true null hypothesis for the empirical likelihood test of long-horizon
predictability under the scenario that the intercept in the predictive regression model (1) is either known (EL1)
or unknown (EL2). As a base for comparison, the table also reports rejection probabilities for the tests of long-
horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos, and Stamatogiannis
(2023) (KMS). Rejection rates for each test correspond to a 5% nominal level and are based on 10,000 Monte
Carlo simulations (see section 3.1 for detailed description of the simulation design). Results are reported for
samples of length T P t250, 500, 1000u, forecast horizons h P t1, 4, 12, 60u, degree of correlation between the
innovations of models (1) and (2) φ P t´0.95,´0.5, 0u, and localizing constant c P t´50,´20,´10, 0, 1u.

φ c h T “ 250 T “ 500 T “ 1000

EL1 EL2 KMS PL EL1 EL2 KMS PL EL1 EL2 KMS PL

-0.95 -50 1 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05
4 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05

12 0.05 0.06 0.03 0.03 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04
60 0.05 0.05 0.02 0.02 0.05 0.05 0.03 0.03 0.05 0.05 0.04 0.04

-20 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.05 0.03 0.03 0.05 0.05 0.03 0.04 0.05 0.05 0.05 0.05

-10 1 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.06
4 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.06

12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05
60 0.05 0.04 0.03 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05

0 1 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06
4 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06

12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.06 0.02 0.03 0.05 0.05 0.03 0.04 0.05 0.05 0.04 0.05

1 1 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0.05
4 0.05 0.06 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0.05

12 0.05 0.06 0.04 0.05 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0.05
60 0.05 0.06 0.02 0.03 0.05 0.06 0.03 0.04 0.05 0.06 0.04 0.04

-0.50 -50 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.06 0.03 0.03 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.05

-20 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.05 0.04 0.03 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05

-10 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.05 0.03 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05

0 1 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.06 0.06
4 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.06

12 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.06
60 0.05 0.05 0.03 0.03 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05

1 1 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05
60 0.06 0.06 0.03 0.03 0.05 0.05 0.03 0.04 0.05 0.05 0.04 0.04

14



Table 1 – Continued

φ c h T “ 250 T “ 500 T “ 1000

EL1 EL2 KMS PL EL1 EL2 KMS PL EL1 EL2 KMS PL

0.00 -50 1 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05
60 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05

-20 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

-10 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.06 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05

0 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05

1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05
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Table 2
Empirical Results

The table reports p-values from the univariate empirical likelihood test of predictability at horizons h “

t1, 4, 12, 60u. The dependent variable is the continuously compounded return of the CRSP value weighted index
in excess of the one-month Treasury bill rate. The sample period is January 1952 - December 2022.

Variable h “ 1 h “ 4 h “ 12 h “ 60

Dividend price ratio 0.70 0.91 0.91 0.53
Dividend yield 0.62 0.85 0.89 0.53
Earnings price ratio 0.98 0.80 0.60 0.53
Dividend payout ratio 0.20 0.25 0.48 0.60
Book-to-market ratio 0.93 0.83 0.79 0.53
Net equity expansion 0.61 0.45 0.23 0.37
Treasury bills 0.03 0.07 0.13 0.35
Long term yield 0.08 0.19 0.29 0.61
The term spread 0.21 0.13 0.08 0.08
Default yield spread 0.54 0.34 0.16 0.30
Inflation 0.05 0.04 0.01 0.14
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Figure 1
Finite-sample power plots for a sample of length T “ 250

and degree of endogeneity φ “ ´0.95

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size

of the test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based

on 10,000 Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results

are reported for a sample of length T “ 250, forecast horizons h P t1, 4, 12, 60u, degree of correlation between

the innovations of models (1) and (2) φ “ ´0.95, and a localizing constant for the autoregressive coefficient

c P t´50,´20,´10, 0, 1u.
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Figure 2
Finite-sample power plots for a sample of length T “ 250

and degree of endogeneity φ “ ´0.50

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size

of the test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based

on 10,000 Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results

are reported for a sample of length T “ 250, forecast horizons h P t1, 4, 12, 60u, degree of correlation between

the innovations of models (1) and (2) φ “ ´0.50, and a localizing constant for the autoregressive coefficient

c P t´50,´20,´10, 0, 1u.
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Figure 3
Finite-sample power plots for a sample of length T “ 250

and degree of endogeneity φ “ 0

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size of the

test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based on 10,000

Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results are reported

for a sample of length T “ 250, forecast horizons h P t1, 4, 12, 60u, degree of correlation between the innovations

of models (1) and (2) φ “ 0, and a localizing constant for the autoregressive coefficient c P t´50,´20,´10, 0, 1u.
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Figure 4
Finite-sample power plots for a sample of length T “ 500

and degree of correlation φ “ ´0.95

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size

of the test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based

on 10,000 Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results

are reported for a sample of length T “ 500, forecast horizons h P t1, 4, 12, 60u, degree of correlation between

the innovations of models (1) and (2) φ “ ´0.95, and a localizing constant for the autoregressive coefficient

c P t´50,´20,´10, 0, 1u.
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Figure 5
Finite-sample power plots for a sample of length T “ 500

and degree of correlation φ “ ´0.50

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size

of the test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based

on 10,000 Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results

are reported for a sample of length T “ 500, forecast horizons h P t1, 4, 12, 60u, degree of correlation between

the innovations of models (1) and (2) φ “ ´0.50, and a localizing constant for the autoregressive coefficient

c P t´50,´20,´10, 0, 1u.
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Figure 6
Finite-sample power plots for a sample of length T “ 500

and degree of correlation φ “ 0

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size of the

test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based on 10,000

Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results are reported

for a sample of length T “ 500, forecast horizons h P t1, 4, 12, 60u, degree of correlation between the innovations

of models (1) and (2) φ “ 0, and a localizing constant for the autoregressive coefficient c P t´50,´20,´10, 0, 1u.
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Figure 7
Finite-sample power plots for a sample of length T “ 1000

and degree of correlation φ “ ´0.95

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size

of the test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based

on 10,000 Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results

are reported for a sample of length T “ 1000, forecast horizons h P t1, 4, 12, 60u, degree of correlation between

the innovations of models (1) and (2) φ “ ´0.95, and a localizing constant for the autoregressive coefficient

c P t´50,´20,´10, 0, 1u.
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Figure 8
Finite-sample power plots for a sample of length T “ 1000

and degree of correlation φ “ ´0.50

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities for

the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos, and

Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. Rejection rates for each test

correspond to a 5% nominal level (the red dashed line) and are based on 10,000 Monte Carlo simulations (see

section 3.1 for detailed description of the simulation design). Results are reported for a sample of length T “ 1000,

forecast horizons h P t1, 4, 12, 60u, degree of correlation between the innovations of models (1) and (2) φ “ ´0.50,

and a localizing constant for the autoregressive coefficient c P t´50,´20,´10, 0, 1u.
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Figure 9
Finite-sample power plots for a sample of length T “ 1000

and degree of correlation φ “ 0

The figure summarizes the probability of rejecting a false null hypothesis (y-axis) for the empirical likelihood

test of long-horizon predictability under the scenario that the intercept in the predictive regression model (1) is

either known (EL1) or unknown (EL2). As a base for comparison, the table also reports rejection probabilities

for the tests of long-horizon predictability proposed by Phillips and Lee (2013) (PL) and Kostakis, Magdalinos,

and Stamatogiannis (2023) (KMS). The predictive regression coefficient is set equal to b{
?
T , where the localizing

coefficient b (x-axis) takes values that increase from 0 to 10 in increments of 2. b “ 0 corresponds to the size of the

test. Rejection rates for each test correspond to a 5% nominal level (the red dashed line) and are based on 10,000

Monte Carlo simulations (see section 3.1 for detailed description of the simulation design). Results are reported

for a sample of length T “ 1000, forecast horizons h P t1, 4, 12, 60u, degree of correlation between the innovations

of models (1) and (2) φ “ 0, and a localizing constant for the autoregressive coefficient c P t´50,´20,´10, 0, 1u.
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Appendix for Hong and Tsvetanov (2023)

Proofs of the main results: Version 6 September 2023

Proof of Theorem 1. For the sake of simplicity, we prove under the assumption that φ “ 0

and bk “ 0 for all k “ 1, . . . , p´ 1 in equations (2) and (3), because the same argument used in

e.g. Zhu, Cai, and Peng (2014) in the early part of the proof of Theorem 2 can be employed to

deal with the moving average structure in the error terms.

In deriving the asymptotic distribution via the martingale central limit theorem, the first

step concerns with the derivation of the limiting variance, that is, the probability limit of the

martingale conditional variance, Lévy (1937), Billingsley (1961).

On noting conditional homogeneity and the moment condition of the process rUt, we see

that, with respect to the natural filtration FTt “ σpX0, U0, U1, . . . , Utq, the conditional variance

of the martingale array ZTt is given by

1

T

T
ÿ

t“1

E
`

Z2
Tt|FT,t`h´1

˘

“
1

T

T
ÿ

t“1

E

¨

˝

»

–

prYt`h ´ β
rev
h

rXtphqq rXtphq
b

1` rXtphq2

fi

fl

2 ˇ
ˇ

ˇ

ˇ

ˇ

FT,t`h´1

˛

‚

“
1

T

T
ÿ

t“1

E

˜

rU2
t`h

rXtphq
2

1` rXtphq2

ˇ

ˇ

ˇ

ˇ

ˇ

FT,t`h´1

¸

“
1

T

T
ÿ

t“1

E

˜

rU2
t`hpXt `Xt`1 ` ¨ ¨ ¨ `Xt`h´1q

2

1` pXt `Xt`1 ` ¨ ¨ ¨ `Xt`h´1q
2

ˇ

ˇ

ˇ

ˇ

ˇ

FT,t`h´1

¸

“ EprU2
t`h|FT,t`h´1q ¨

1

T

T
ÿ

t“1

rXtphq
2

1` rXtphq2

“ σ2u ¨

#

1

T

T
ÿ

t“1

rXtphq
2

1` rXtphq2

+

“: η2. (14)

We note that in the mildly integrated case, i.e., ρ “ ρT “ 1 ` c{T a with 0 ă a ă 1 and c ă 0,

quoting an earlier version of Phillips and Magdalinos (2007), Phillips and Magdalinos (2005,

Theorem 2.1) showed that

T´a{2XtTa tu ùñ

ż t

0
ecpt´rqdW prq, (15)

where W is Brownian motion with variance σ2 “ Epε2t q and ùñ refers to weak convergence

in the Skorohod space Dr0, `s (i.e. the space of the collection of R-valued càdlàg functions on

r0, 1s), see e.g. Pollard (1984). The initial condition X0 “ oppT
a{2q is imposed, and a finite

moment strictly higher than 2 is required for the i.i.d. error term, which are consistent with

what we assume. Giraitis and Phillips (2004) has a relevant result when the error is a martingale
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difference.

Further, in the mildly explosive case, i.e., ρ “ ρT “ 1` c{T a with 0 ă a ă 1 and c ą 0, the

proof of Aue and Horváth (2007) suggests that for any fixed constant ` ą 0 we have

1

ξ
´1{2
T pEpε21qq

1{2

r`{ξT s
ÿ

t“1

ρ´tεt

“
1

ξ
´1{2
T pEpε21qq

1{2
ρ´r`{ξT sXr`{ξT s ùñ e´`Wα,βp`q `

ż `

0
Wα,βpxqdx, (16)

where ξT “ log ρ “ log ρT “ logp1 ` c{T aq Ñ 0 as T Ñ 8, and Wα,β is a strictly α-stable

random variable, Petrov (1975).

In the near integrated case where a “ 1 and c ‰ 0, we know from Phillips (1987) that (see

also Liu, Yang, Cai and Peng (2019))

1
?
T
XrTrs ùñ

ż r

0
e´pr´sqρdW psq. (17)

as T Ñ8.

In all three cases, the denominators of the “multiplier” to X all tend to infinity in LHS of

(15), (16) and (17). Therefore, via Skorokhod representation theorem and Lebesgue’s dominated

convergence theorem we can readily see that for each h,

rXtphq
2

1` rXtphq2
“

p
řh´1
j“0 Xt`jq

2

1` p
řh´1
j“0 Xt`jq

2

L1
ÝÑ 1 (18)

as tÑ8. An alternative way to see this is to notice that we have |Xt|
p
Ñ `85, from which we

can easily show (18) holds.

Consequently, the stochastic convergence of Cesàro means of random variables, see e.g.

Schilling (2017), Bibaut, Luedtke, van der Laan (2020), yields

1

T

T
ÿ

t“1

rXtphq
2

1` rXtphq2
L1
ÝÑ 1 (19)

as T Ñ8, which implies convergence in probability to 1.

Therefore, we finally have

1

T

T
ÿ

t“1

E

¨

˝

»

–

prYt`h ´ β
rev
h

rXtphqq rXtphq
b

1` rXtphq2

fi

fl

2 ˇ
ˇ

ˇ

ˇ

ˇ

FT,t`h´1

˛

‚

p
ÝÑ 2EpU2

t q. (20)

5which is taken to mean P pXt ą rq Ñ 1 for every r ą 0, see for example Kallenberg (1997).
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Meanwhile, in the stationary case, we have, as T Ñ8

rXtphq
2

1` rXtphq2
“

p
řh´1
j“0 Xt`jq

2

1` p
řh´1
j“0 Xt`jq

2

“

`
řh´1
j“0

řt
i“1 ρ

t`j´iεi
˘2

1`
`
řh´1
j“0

řt
i“1 ρ

t`j´iεi
˘2

“ lim
tÑ8

E

#
`
řt
i“1

řh´1
j“0 ρ

t`j´iεi
˘2

1`
`
řt
i“1

řh´1
j“0 ρ

t`j´iεi
˘2

+

` opp1q

“: θ20 ` opp1q (21)

because the series converges absolutely almost surely, which can be easily checked using standard

arguments, e.g. van de Vaart (2013).

Following the same aforementioned argument that led to (19), we can immediately see that

1

T

T
ÿ

t“1

E

¨

˝

»

–

prYt`h ´ β
rev
h

rXtphqq rXtphq
b

1` rXtphq2

fi

fl

2 ˇ
ˇ

ˇ

ˇ

ˇ

FT,t`h´1

˛

‚

p
ÝÑ 2EpU2

t q ¨ θ
2
0. (22)

as T Ñ8.

It now remains to check the set of requirements for establishing the martingale central

limit theorem, e.g. Hall and Heyde (1980, Corollary 3.1). Specifically, we check the uniform

negligibility condition, see for example Lai and Wei (1982).

With q ą 0 in the moment condition for rUt, we see that for all ε ą 0,

max
1ďjďh

T
ÿ

t“1

E

˜

1

T

rU2
t`j

rXtpjq
2

1` rXtpjq2
¨ 1

#

1

T

rU2
t`j

rXtpjq
2

1` rXtpjq2
ą ε

+

ˇ

ˇ

ˇ

ˇ

FT,t`j´1

¸

ď max
1ďjďh

T
ÿ

t“1

1

εq
E

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
T

rUt`j rXtpjq
b

1` rXtpjq2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2`q
ˇ

ˇ

ˇ

ˇ

FT,t`j´1

˛

‚

“
1

εqT 1`q{2
max
1ďjďh

T
ÿ

t“1

E

˜ˇ

ˇ

ˇ

ˇ

ˇ

rU2`q
t`j

rXtpjq
2`q

`

1` rXtpjq2
˘p2`qq{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

FT,t`j´1

¸

“
max1ďjďh E

ˇ

ˇ rUt`j
ˇ

ˇ

2`q

εqT q{2
¨

#

max
1ďjďh

1

T

T
ÿ

t“1

ˇ

ˇ rXtpjq
ˇ

ˇ

2`q

`

1` rXtpjq2
˘p2`qq{2

+

“ O p1q ¨
1

T q{2
¨Opphq (23)

which converges in probability to 0 in large samples provided h{T q{2 Ñ 0.

Now that the conditional Lindeberg condition is met, we see that
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1
?
T

T
ÿ

t“1

prYt`h ´ β
rev
h

rXtphqq rXtphq
b

1` rXtphq2
“

1
?
T

T
ÿ

t“1

ZTtpβ0q ùñ N
`

0, η2
˘

, (24)

where η2 is as in (14).

Consequently, the desired result follows from the standard arguments in proving the empir-

ical likelihood method, Owen (1990), Qin and Lawless (1994), Zhu et al. (2014). �
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