
Matrix Factor Analysis: From Least Squares
to Iterative Projection

Abstract

In this article, we study large-dimensional matrix factor models and estimate the
factor loading matrices and factor score matrix by minimizing square loss function.
Interestingly, the resultant estimators coincide with the Projected Estimators (PE) in
Yu et al. (2022), which was proposed from the perspective of simultaneous reduction
of the dimensionality and the magnitudes of the idiosyncratic error matrix. In other
word, we provide a least-square interpretation of the PE for matrix factor model,
which parallels to the least-square interpretation of the PCA for the vector factor
model. We derive the convergence rates of the theoretical minimizers under sub-
Gaussian tails. Considering the robustness to the heavy tails of the idiosyncratic
errors, we extend the least squares to minimizing the Huber loss function, which leads
to a weighted iterative projection approach to compute and learn the parameters.
We also derive the convergence rates of the theoretical minimizers of the Huber loss
function under bounded (2 + ϵ)th moment of the idiosyncratic errors. We conduct
extensive numerical studies to investigate the empirical performance of the proposed
Huber estimators relative to the state-of-the-art ones. The Huber estimators perform
robustly and much better than existing ones when the data are heavy-tailed, and as
a result can be used as a safe replacement in practice. An application to a Fama-
French financial portfolio dataset demonstrates the empirical advantage of the Huber
estimator.

Keywords: Huber loss; Least squares; Matrix factor model; Projection estimation.
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1 Introduction

Large-dimensional factor model has been a powerful tool of summarizing information

from large datasets and draws growing attention in the era of “big-data” when more

and more records of variables are available. The last two decades have seen many s-

tudies on large-dimensional approximate vector factor models, since the seminal work by

Bai & Ng (2002) and Stock & Watson (2002), see for example, the representative works

by Bai (2003),Onatski (2009), Ahn & Horenstein (2013), Fan et al. (2013), and Trapani

(2018), Aı̈t-Sahalia & Xiu (2017), Aı̈t-Sahalia et al. (2020). These works all require the

fourth moments (or even higher moments) of factors and idiosyncratic errors, and there are

some works on relaxing the restrictive moment conditions, see the endeavors by Yu et al.

(2019), Chen et al. (2021) and He et al. (2022).

In the last few years, large-dimensional matrix factor models have drawn much atten-

tion in view of the fact that observations are usually well structured to be an array, such as

in macroeconomics and finance, see Chen & Fan (2021) for further examples of matrix ob-

servations. The seminal work is the one by Wang et al. (2019), who proposed the following

formulation for matrix time series observations {Xt, 1 ≤ t ≤ T}:

Xt︸︷︷︸
p1×p2

= R0︸︷︷︸
p1×k1

× F0t︸︷︷︸
k1×k2

× C⊤
0︸︷︷︸

k2×p2

+ Et︸︷︷︸
p1×p2

, (1.1)

whereR0 is the row factor loading matrix exploiting the variations ofXt across the rows, C0

is the p2 × k2 column factor loading matrix reflecting the differences across the columns of

Xt, F0t is the common factor matrix for all cells inXt and Et is the idiosyncratic component.

Wang et al. (2019) proposed estimators of the factor loading matrices and numbers of the

row and column factors based on an eigen-analysis of the auto-cross-covariance matrix.

Chen & Fan (2021) proposed an α-PCAmethod for inference of (1.1), which conducts eigen-
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analysis of a weighted average of the sample mean and the column (row) sample covariance

matrix; Yu et al. (2022) proposed a projected estimation method which further improved

the estimation efficiency of the factor loading matrices and the numbers of factors. He et al.

(2021b) proposed a strong rule to determine whether there is a factor structure of matrix

time series and a sequential procedure to determine the numbers of factors. Extensions

and applications of the matrix factor model include the dynamic transport network in

the international trade flows by Chen & Chen (2020), the constrained matrix factor model

by Chen, Tsay & Chen (2020), the threshold matrix factor model in Liu & Chen (2019)

and the online change point model by He et al. (2021a). Gao et al. (2021) proposed an

interesting two-way factor model and provided solid theory. Jing et al. (2021) introduced

mixture multilayer stochastic block model and proposed a tensor-based algorithm (TWIST)

to reveal both global/local memberships of nodes, and memberships of layers for worldwide

trading networks. There exist some recent works in the broader context of tensor factor

model, see for example, Han et al. (2022), Chen, Xia, Cai & Fan (2020), Han et al. (2020),

Lam (2021), Chen, Han, Li, Xiao, Yang & Yu (2022), Chang et al. (2021), Chen & Lam

(2022), Chen, Yang & Zhang (2022). In general, the projection-based method would lead

to more accurate estimation of the loading spaces, but would be computationally a bit

demanding (Yu et al. 2022, Han et al. 2020).

A natural competitor of (1.1) is the group (vector) factor model (see e.g. Ando & Bai

2016), however, in such a model only one cross-section exists, which contains variables

of the same nature well-grouped with known or unknown group membership. The model

organizes the common factors into groups, and characterizes the interrelations within and

between groups by such group factors. In contrast, the data Xt in matrix factor model

(1.1) are genuinely matrix-valued, with two cross-sectional dimensions of different nature.

The common components R0F0tC
⊤
0 in (1.1) reflect the interplay between the two different

cross-sections. In the context of recommending systems illustrated in He et al. (2021b),
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ratings are high whenever the purchasers’ consumption preferences (rows in R0) match

the underlying characteristics of items displayed online (rows in C0), thus the matrix

factor model naturally captures the interactive effect between the row and column cross

sections. In this context, matrix factor model (1.1) takes the intrinsic matrix nature of

the data into account and shows advantage over models based on vectorising Xt, where

the presence of groups arises from artificially stacking the columns (rows) of matrix-valued

data. Moreover, the matrix factor model in (1.1) has a more parsimonious factor structure,

thus being statistically and computationally more efficient (Chen & Fan 2021, He et al.

2021b, Yu et al. 2022).

In the current work, we find the equivalence between the least square approach and the

PE method by Yu et al. (2022). In other word, we provide the least squares interpretation

of the PE for matrix factor model, which parallels to the least squares interpretation of

traditional PCA for vector factor models. This finding provides another rationale for the

PE method, which was initially proposed for reducing the magnitudes of the idiosyncratic

error components and thereby increasing the signal-to-noise ratio. Motivated by the least

squares formulation, we further propose a robust method for estimating large-dimensional

matrix factor models, by substituting the least squares loss function with the Huber Loss

function. The resultant estimators of factor loading matrices can be simply viewed as

the eigenvectors of weighted sample covariance matrices of the projected data, which are

easily obtained by an iterative algorithm. As far as we know, this is the first methodology

work, with weighted iterative projection algorithms, on robust analysis of matrix factor

models. As an illustration, we check the sensitivity of the α-PCA method by Chen & Fan

(2021) and the Projected Estimation (PE) method (or least squares minimization method)

in Yu et al. (2022) to the heavy-tailedness of the idiosyncratic errors with a synthetic

dataset. We generate the idiosyncratic errors from matrix-variate normal, matrix-variate

t3 distributions that will be described in detail in Section 5. Figure 1 depicts the boxplots of
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the estimation errors of the factor loading matrices over 1000 replications. It is clearly seen

that the α-PCA and PE methods lead to much bigger biases and higher dispersions as the

distribution tails become heavier. The proposed Robust Matrix Factor Analysis (RMFA)

method still works quite satisfactorily when the idiosyncratic errors are from matrix-variate

t3 distribution.

To do factor analysis, the first step is to determine the number of factors. As for the Ma-

trix Factor Model (MFM), both the row and column factor numbers should be determined

in advance. Wang et al. (2019) proposed an estimation method based on ratios of consecu-

tive eigenvalues of auto-covariance matrices; Chen & Fan (2021) proposed an α-PCA based

eigenvalue-ratio method and Yu et al. (2022) further proposed a projection-based iterative

eigenvalue-ratio method. All the methods above borrowed idea from Ahn & Horenstein

(2013) and, to the best of our knowledge, He et al. (2021b) is the only work that deter-

mines the factor numbers of MFM from the perspective of sequential hypothesis testing

and the authors also provide a strong rule to determine whether there is a row/column

factor structure in the matrix time series. However, none methods mentioned above take

the well-known heavy-tailedness of the data into account (see also Figure 2 in the real data

section). In the current work, we also present a robust iterative eigenvalue-ratio method

to estimate the numbers of factors following the Huber (Huber 1964) loss formulation.

The contributions of the present work lie in the following aspects. Firstly, we formulate

the estimation of MFM from the least squares point of view and find that minimizing the

square loss function under the identifiability conditions naturally leads to the iterative pro-

jection method invented in Yu et al. (2022) and thus enjoys the nice properties of the PE

method. Secondly, we further propose a robust estimation method for MFM by taking the

Huber loss in place of the least squares loss. We also propose an iterative weighted projec-

tion approach to solve the corresponding optimization problem, which in each iteration is

doable by simple PCA solution. Thirdly, we propose an iterative algorithm for estimating
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Figure 1: Boxplot of the distance between the estimated loading
space and the true loading space by RMFA, PCA and PE methods
under different distributions (matrix normal and matrix t3). p1 =
20, p2 = T = 50. The left two plots depict the distances between the
estimated loading space R̂ and true loading space R0, and the right
two plots depict the distances between the estimated loading space
Ĉ and true loading space C0.

the row/column factor number robustly. Lastly, we derive the convergence rates of the the-

oretical minimizers, first time for the matrix factor model. To the best of our knowledge,

this is the first work that derives the convergence rates of the theoretical minimizers of

Huber loss function under bounded (2 + ϵ)th moment condition of the idiosyncratic errors

for the matrix factor model, with the theoretical tool of self-normalized large/moderate

deviations (Shao 1997, Jing et al. 2008).

The rest of the article goes as follows. In Section 2, we first formulate the estimation of

factor loading matrices and factor score matrix by minimizing the square loss function and

provide solutions to the optimization problem, from which we can see its equivalence to

the projected estimation method. In Section 3, we investigate the theoretical minimizers

of the least squares under mild conditions. In Section 4, we provide robust estimators by

considering the Huber loss function and present detailed algorithm to obtain the minimizers.

We also propose robust estimators for the pair of factor numbers. In Section 5, we conduct

thorough numerical studies to illustrate the advantages of the RMFA method and the

robust iterative eigenvalue-ratio method over the state-of-the-art methods. In Section 6,
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we analyze a financial dataset to illustrate the empirical usefulness of the proposed methods.

We discuss possible future research direction and conclude the article in Section 7. The

proofs of the main theorems and additional details are collected in the supplementary

materials.

Before ending this section, we introduce the notations used throughout the paper. For

any vector µ = (µ1, . . . , µp)
⊤ ∈ Rp, let ∥µ∥2 = (

∑p
i=1 µ

2
i )

1/2, ∥µ∥∞ = maxi |µi|. For a real

number a, denote [a] as the largest integer smaller than or equal to a, let sgn(a) = 1 if a ≥ 0

and sgn(a) = −1 if a < 0. For a square matrix A whose jth diagonal element is denoted as

Ajj, define sgn(A) as a diagonal matrix whose jth diagonal element is equal to sgn(Ajj).

Let I(·) be the indicator function and diag(a1, . . . , ap) be a p × p diagonal matrix, whose

diagonal entries are a1 . . . , ap. For a matrix A, let Aij (or Ai,j) be the (i, j)-th entry of A,

A⊤ the transpose of A, Tr(A) the trace of A, rank(A) the rank of A and diag(A) a vector

composed of the diagonal elements of A. Denote λj(A) as the j-th largest eigenvalue of a

nonnegative definitive matrix A, and let ∥A∥ be the spectral norm of matrix A and ∥A∥F

be the Frobenius norm of A. For two series of random variables, Xn and Yn, Xn ≍ Yn

means Xn = Op(Yn) and Yn = Op(Xn). For two random variables (vectors) X and Y ,

X
d
= Y means the distributions of X and Y are identical. The constants c, C1, C2 in

different lines can be nonidentical.

2 Least Squares and Projected Estimation

In this section, we establish the equivalence between minimizing the square loss function

under the identifiability conditions and the projection estimation procedure. We show that

both angles coincide in the same iterative algorithm. We assume the matrix factor model

(1.1) and let St = R0F0tC
⊤
0 be the common component matrix. The loading matrices

R0 and C0 in model (1.1) are not separately identifiable. Without loss of generality,
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for identifiability issue, we assume that R⊤
0 R0/p1 = Ik1 and C⊤

0 C0/p2 = Ik2 , see also

Chen & Fan (2021), Yu et al. (2022).

From (1.1), it is a natural idea to estimate R0 and C0 by minimizing the square loss

under the identifiability condition:

min{R,C,Ft} L1(R,C,Ft) =
1

T

∑T
t=1 ∥Xt −RFtC

⊤∥2F ,

s.t.
1

p1
R⊤R = Ik1 ,

1

p2
C⊤C = Ik2 .

(2.1)

The right hand side of (2.1) can be simplified as:

1

T

T∑
t=1

∥Xt −RFtC
⊤∥2F =

1

T

T∑
t=1

[
Tr(Xt

⊤Xt)− 2Tr(Xt
⊤RFtC

⊤) + p1p2Tr(Ft
⊤Ft)

]
.

The optimization is non-convex in {R,C,Ft}, but given the others, the loss function is

convex over the remaining parameter. For instance, given (R,Ft), L1(R,C,Ft) is convex

over C. Then we first assume that (R,C) are given and solve the optimization problem

on Ft. For each t, taking ∂L1(R,C)/∂Ft = 0, we obtain

Ft =
1

p1p2
R⊤XtC.

Thus by substituting Ft = R⊤XtC/(p1p2) in the loss function L1(R,C,Ft), we further

have

min{R,C} L1(R,C) =
1

T

∑T
t=1

[
Tr(Xt

⊤Xt)−
1

p1p2
Tr(Xt

⊤RR⊤XtCC⊤)

]
,

s.t.
1

p1
R⊤R = Ik1 ,

1

p2
C⊤C = Ik2 .

(2.2)

The Lagrangian function is as follows:

min
{R,C}

L1 = L1(R,C) + Tr

[
Θ(

1

p1
R⊤R− Ik1)

]
+ Tr

[
Λ(

1

p2
C⊤C− Ik2)

]
,
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where the Lagrangian multipliers Θ and Λ are symmetric matrices. According to the KKT

condition, let

∂L1

∂R
= − 1

T

T∑
t=1

2

p1p2
XtCC⊤X⊤

t R+
2

p1
RΘ = 0,

∂L1

∂C
= − 1

T

T∑
t=1

2

p1p2
X⊤

t RR⊤XtC+
2

p2
CΛ = 0,

respectively, it holds that


(

1

Tp2

T∑
t=1

XtCC⊤X⊤
t

)
R = RΘ,

(
1

Tp1

T∑
t=1

X⊤
t RR⊤Xt

)
C = CΛ,

or


McR = RΘ,

MrC = CΛ,

(2.3)

where

Mc =
1

Tp2

T∑
t=1

XtCC⊤X⊤
t , Mr =

1

Tp1

T∑
t=1

X⊤
t RR⊤Xt.

We denote the first k1 eigenvectors of Mc as {r(1), . . . , r(k1)} and the corresponding eigen-

values as {θ1, . . . , θk1}. Similarly, we denote the first k2 eigenvectors ofMr as {c(1), . . . , c(k2)}

and the corresponding eigenvalues as {λ1, . . . , λk2}. From (2.3), R =
√
p1(r(1), . . . , r(k1)),

C =
√
p2(c(1), . . . , c(k2)), Θ = diag(θ1, . . . , θk1), Λ = diag(λ1, . . . , λk2) satisfy the KKT

condition. However, Mc relies on the unknown column factor loading C while Mr relies on

the unknown row factor loading R, which motivates us to consider an iterative procedure

to get the estimators, where in each iteration a simple PCA manipulation is enough. This

turns out to be the same as our projected estimation procedure in Yu et al. (2022). We

summarized the algorithm in Algorithm 1, where the initial estimators R̂(0) and Ĉ(0) could

be selected as the α-PCA estimators.

In the following, let’s briefly review the Projection Estimation (PE) method in Yu et al.

(2022). First assume C is known and satisfies the orthogonal condition C⊤C/p2 = Ik2 . In
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Algorithm 1 Least squares (Projection Estimation) for estimating matrix factor spaces

Input: Data matrices {Xt}t≤T , the pair of row and column factor numbers k1 and k2
Output: Factor loading matrices R̃ and C̃

1: obtain the initial estimators R̂(0) and Ĉ(0) by α-PCA with α = 0;
2: project the data matrices to lower dimensions by defining: Ŷt = XtĈ

(0) and Ẑt =
X⊤

t R̂
(0);

3: given Ŷt and Ẑt, define M̂r = (Tp1)
−1

∑T
t=1 ŶtŶ

⊤
t and M̂c = (Tp2)

−1
∑T

t=1 ẐtẐ
⊤
t , and

obtain the the leading k1 eigenvectors of M̂c, denote as {r̂(1), . . . , r̂(k1)} and the the

leading k2 eigenvectors of M̂r, denoted as {ĉ(1), . . . , ĉ(k2)}; Then update R̂ and Ĉ as

R̂(1) =
√
p1(r̂(1), . . . , r̂(k1)) and Ĉ(1) =

√
p2(ĉ(1), . . . , ĉ(k2)).

4: repeat step 2 and 3 until convergence and output the estimators from the last step and
denote them as R̃ and C̃.

Yu et al. (2022), we projected the data matrix to a lower dimensional space by setting

Yt =
1

p2
XtC =

1

p2
RFtC

⊤C+
1

p2
EtC := RFt + Ẽt. (2.4)

After projection, Yt lies in a much lower column space than Xt, and Ft and Ẽt are

deemed as factors and idiosyncratic errors for Yt, respectively. For the ith row of Ẽt, de-

noted as ẽt,i·, E∥ẽt,i·∥2 ≤ cp−1
2 as long as the original errors {et,ij}p2j=1 are weakly dependent

column-wise. Thus Yt can be viewed as satisfying a nearly noise-free factor model when

p2 is large. In other word, projecting the observation matrix onto the column factor space

would not only simplify factor analysis for matrix sequences to that of a lower-dimensional

tensor, but also reduce the magnitudes of the idiosyncratic error components, thereby in-

creasing the signal-to-noise ratio. The next step of the PE method is to construct the row

sample covariance matrix with {Yt}, which is exactly Mc up to a constant. Once Mc is

constructed, the following steps of the PE method are exactly the same as stated in Algo-

rithm 1. Surprisingly, we find that two totally different angles, least squares and projection

approach coincide in matrix factor analysis.
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3 Theoretical results

Though not computationally reachable, we establish the convergence rate of the theoretical

minimizers of (2.1) under sub-Gaussian tails of idiosyncratic errors, instead of the two-

step iteration estimators in Algorithm 1 by Yu et al. (2022). For optimization problem

(2.1), let θ = (R,F1, · · · ,FT ,C) and θ0 = (R0,F01, · · · ,F0T ,C0) be the true parameters,

where R = (r1, · · · , rp1)⊤,C = (c1, · · · , cp2)⊤. In this section, we present the asymptotic

properties of the theoretical minimizers θ̂, defined as

θ̂ = (R̂, F̂1, · · · , F̂T , Ĉ) = arg min
θ∈Θ

1

T

T∑
t=1

∥Xt −RFtC
⊤∥2F ,

where

Θ =
{
θ : R ∈ A ⊂ Rp1×k1 ,C ∈ B ⊂ Rp2×k2 ,Ft ∈ F ⊂ Rk1×k2 for all t,

1

p1
R⊤R = Ik1 ,

1

p2
C⊤C = Ik2

}
.

To obtain the theoretical properties of θ̂, we assume that the following three assumptions

hold.

Assumption 1: A,B and F are compact sets and θ0 ∈ Θ. ∥R0∥F/
√
p1 and ∥C0∥F/

√
p2

are bounded. The factor matrix satisfies

1

T

T∑
t=1

F0tF
⊤
0t → Σ1 and

1

T

T∑
t=1

F⊤
0tF0t → Σ2, as T → ∞,

where Σi, i = 1, 2 is a ki×ki positive diagonal matrix with bounded distinctive eigenvalues.

Assumption 2: Given {F0t, t = 1, · · · , T}, {eij,t} are independent across i, j and t.

Assumption 3: For some K > 0, E(|eij,t|p|{F0t}) ≤ Kppp/2 for all p > 1, and

E(eij,t|{F0t}) = 0.
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Assumption 1 is standard in large factor models, Σ1,Σ2 are assumed to be diagonal

matrices with distinctive diagonal elements for further identifiability issue, and we refer,

for example, to Bai & Ng (2013), Chen & Fan (2021) and He et al. (2021b). Assumption 2

assumes that the error terms are i.i.d conditional on the matrix factors, but they may not be

i.i.d unconditionally. Although this condition seems to be restrictive, it is an exchange for

simplicity, see for example Chen et al. (2021). Assumption 3 assumes that the idiosyncratic

errors have sub-Gaussian tails given {F0t}, i.e., there are positive constants C, ν such that

for every t > 0, P (|eij,t| > t|{F0t}) ≤ C exp(−νt2). The sub-Gaussian condition is for

simplicity of theoretical proof, which is common in high-dimensional statistical inference,

see for example Wainwright (2019).

The following theorem presents the asymptotic property of R̂, Ĉ and F̂t, t = 1, · · · , T

in terms of both Frobenius norm and spectral norm.

Theorem 3.1. Let Ŝ1 = sgn
( 1

T

T∑
t=1

(F̂tF
⊤
0t)

)
and Ŝ2 = sgn

( 1

T

T∑
t=1

(F̂⊤
t F0t)

)
. Then, under

Assumptions 1-3,

1

p1
∥R̂−R0Ŝ1∥2F +

1

p2
∥Ĉ−C0Ŝ2∥2F +

1

T 2
∥

T∑
t=1

(F̂t − Ŝ1F0tŜ2)∥2F = Op

(
1

L

)
,

where L = min{p1p2, Tp2, Tp1}. In particular,

1

p1
∥R̂−R0Ŝ1∥2 +

1

p2
∥Ĉ−C0Ŝ2∥2 +

1

T 2
∥

T∑
t=1

(F̂t − Ŝ1F0tŜ2)∥2 = Op

(
1

L

)
.

In Theorem 3.1, the sign matrices Ŝ1, Ŝ2 appear due to the intrinsic sign indeterminacy

of factors and loadings, i.e., the factor structure remains the same when a factor and its

loading are both multiplied by -1. Theorem 3.1 shows that the convergence rate of the least

square estimator of θ is no slower than that of the α-PCA estimator in Chen & Fan (2021).

In particular, when p1 ≪ Tp2, the theoretical minimizer converges at rate Op((Tp1)
−1 +
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(p1p2)
−1), much faster than Op(p

−1
1 ) of the α-PCA estimator. In terms of the summed

errors of θ̂, i.e.,

1

p1
∥R̂−R0Ŝ1∥2F +

1

p2
∥Ĉ−C0Ŝ2∥2F +

1

T 2
∥

T∑
t=1

(F̂t − Ŝ1F0tŜ2)∥2F ,

the least square estimate in Theorem 3.1 (also in Theorem 4.1) has the same convergence

rate as the PE estimate given in Yu et al. (2022): both are Op(L
−1). However, the conver-

gence rate of the least square estimator derived in Theorem 3.1 is generally slower than that

of the PE estimator in Yu et al. (2022), except that one of ((Tp1)
−1, (Tp2)

−1, (p1p2)
−1) dom-

inates the others. The reason is that (R0,C0) are estimated jointly with {F0t, t = 1, . . . , T}

as the theoretical minimizers of the empirical square loss in the current work, while the

two-step PE approach estimates R0 or C0 without knowing {F0t} first. For example, the

PE estimate of R0 converges at rate Op((Tp2)
−1+(Tp1)

−2+(p1p2)
−2). When (Tp2)

−1 dom-

inates (Tp1)
−1 and (p1p2)

−1, the PE estimate converges at the same rate as that derived in

Theorem 3.1. The reason is that the two-step estimate of R0 of the PE method depends

on C0 in only one step and does not rely on {F0t, t = 1, . . . , T}, and thus can be estimated

individually, while the least square minimizes the empirical loss function jointly in θ.

4 Robust Extension with the Huber Loss

To account for the possible heavy-tailedness of the data distribution, we extend the above

work by replacing the square loss by the Huber loss, and provide an efficient algorithm

to solve the optimization problem. It turns out that the algorithm is simply a weighted

version of Algorithm 1. We also provide an iterative algorithm to determine the numbers

of the column/row factors.
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4.1 Algorithm

Standard statistical procedures that are based on the method of least squares often behave

poorly in the presence of heavy-tailed data. The observed data are often heavy-tailed in

areas such as finance and macroeconomics. To deal with heavy-tailed data, a natural idea

is to replace the least squares loss function with the Huber loss function, i.e., we consider

the following optimization problem:

min{R,C,Ft} L2(R,C,Ft) =
1

T

T∑
t=1

Hτ

(√
∥Xt −RFtC⊤∥2F

)
,

s.t.
1

p1
R⊤R = Ik1 ,

1

p2
C⊤C = Ik2 .

(4.1)

where the Huber loss Hτ (x) is defined as

Hτ (x) =


x2, |x| ≤ τ ,

2τ |x| − τ 2, |x| > τ.

By similar arguments as for the least squares case (see details in the supplementary

material), we have

RΘ = Mw
c R and CΛ = Mw

r C, where

Mw
c =

1

Tp2

T∑
t=1

wtXtCC⊤X⊤
t , Mw

r =
1

Tp1

T∑
t=1

wtX
⊤
t RR⊤Xt,

(4.2)

where Θ and Λ are diagonal Lagrangian multipliers matrices and the weights are

wt =


1,

√
∥Xt −RFtCT∥2F ≤ τ,

τ
1√

Tr(X⊤
t Xt)−

1

p1p2
Tr(X⊤

t RR⊤XtCC⊤)

,
√
∥Xt −RFtCT∥2F > τ.
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By (4.2), we see that the Mw
c and Mw

r are weighted versions of the Mc and Mr,

respectively. We denote the first k1 eigenvectors of Mw
c as {rw(1), . . . , rw(k1)} and the

corresponding eigenvalues as {θw1 , . . . , θwk1}. Similarly, we denote the first k2 eigenvectors

of Mw
r as {cw(1), . . . , cw(k2)} and the corresponding eigenvalues as {λw1 , . . . , λwk2}. From

(4.2), we clearly see that Rw =
√
p1(r

w(1), . . . , rw(k1)), Cw =
√
p2(c

w(1), . . . , cw(k2)),

Θw = diag(θw1 , . . . , θ
w
k1
), Λw = diag(λw1 , . . . , λ

w
k2
) satisfy the KKT condition. Both Mw

c and

Mw
r rely on the unknown row/column factor loadings (see the weights wt).

We propose an iterative procedure to get the estimators, which turns out to be slightly

different from the iterative procedure in the last section, as we need to update Rw and

Cw simultaneously to update the weights wt. We summarized the algorithm in Algorithm

2 and the initial estimators R̂ and Ĉ can also be chosen as the estimators by α-PCA.

Once the factor loading matrices are estimated, the factor matrix Ft can be estimated by

F̃w
t = R̃w⊤XtC̃

w/(p1p2) and thus the common component matrix S can be estimated

by S̃w = R̃wF̃w
t C̃

w⊤. As in each step, we need to update the weights, it is hard to

derive the asymptotic theory for the estimators in Algorithm 2 and we demonstrate its

superiority by extensive numerical experiments. We develop the asymptotic theory for the

theoretical minimizers in the following and leave the asymptotic theory of the estimators

from Algorithm 2 to our future work.

Algorithm 2 Robust Matrix Factor Analysis

Input: Data matrices {Xt}t≤T , the row factor number k1, the column factor number k2
Output: Factor loading matrices R̃w and C̃w

1: Obtain the initial estimators R̂(0) and Ĉ(0) by α-PCA;
2: Compute the weights {wt}, t = 1, . . . , T ;

3: Using {wt} and R̂(0) and Ĉ(0) to computeMw
c and its corresponding first k1 eigenvectors

{rw(1), . . . , rw(k1)}. Update R̂(1) as
√
p1(r

w(1), . . . , rw(k1)).

4: Using {wt} and R̂(0) and Ĉ(0) to computeMw
r and its corresponding first k2 eigenvectors

{cw(1), . . . , cw(k2)}. Update Ĉ(1) as
√
p2(c

w(1), . . . , cw(k2)).
5: Repeat steps 2-4 until convergence and output the estimators from the last step and

denoted as R̃w and C̃w.
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In (2.4), when there exist outliers in observations {Yt}, we naturally would consider a

weighted sample covariance matrix to decrease the impact of outliers, and Mw
c would be

an ideal choice. This turns out to be the estimators by minimizing the Huber loss function,

which is exactly a weighted version of the projection technique. The weighted projection

technique not only reduces the magnitudes of the idiosyncratic error components and thus

increases the signal-to-noise ratio, but also neglects the impact of outliers by putting very

small weights on them. As far as we know, this is the first time that the weighted projection

technique is proposed in matrix/tensor-valued data analysis.

In the following, we derive the convergence rates of the theoretical minimizers of the

Huber loss function in (4.1), denoted by (R̂h, F̂th, Ĉh). To this end, we introduce the

following Assumption 3′, parallel to the Assumption 3 in Section 3.

Assumption 3′: The distribution functions of eij,t|{F0t} have a common support

covering an open neighborhood of the origin, T log T/(p1p2) = o(1), E(eij,t|{F0t}) = 0 and

E((eij,t)
2+ϵ|{F0t}) ≤ C for some constant C and any arbitrarily small number ϵ > 0.

Assumption 3′ relaxes the sub-Gaussian tail constraint of the idiosyncratic errors and

only requires the boundedness of the (2+ϵ)th moment, though with a mild scaling condition

on (p1, p2, T ). Similar to Theorem 3.1, we obtain the following theorem which establishes

the same convergence rates either under Assumption 3 or Assumption 3′.

Theorem 4.1. Let Ŝ1h = sgn
( 1

T

T∑
t=1

(F̂thF
⊤
0t)

)
and Ŝ2h = sgn

( 1

T

T∑
t=1

(F̂⊤
thF0t)

)
. Further

let τ = τ ′
√
p1p2 for some constant τ ′ > 0, then either under Assumptions 1,2,3, or under

Assumptions 1, 2, 3′, we have

1

p1
∥R̂h −R0Ŝ1h∥2F +

1

p2
∥Ĉh −C0Ŝ2h∥2F +

1

T 2
∥

T∑
t=1

(F̂th − Ŝ1hF0tŜ2h)∥2F = Op

(
1

L

)
,

where L = min{p1p2, Tp2, Tp1}.
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The convergence rates in Theorem 4.1 are still correct for the spectral norm which is

upper bounded by the Frobenius norm. The constant τ ′ in the theorem serves as a tuning

parameter that controls the fraction of data to be winsorized. As in Huang & Ding (2008),

we suggest to set τ ′ so that a half of the data matrices {Xt, t = 1, . . . , T} are winsorized,

which is justified by extensive simulation studies later.

4.2 Determining the Pair of Factor Numbers

It’s well known that accurate estimation of the numbers of factors is of great importance

to do matrix factor analysis (Yu et al. 2022). We borrow the eigenvalue-ratio idea from

Ahn & Horenstein (2013). In detail, k1 and k2 are estimated by

k̂1 = arg max
j≤kmax

λj(M
w
c )

λj+1(Mw
c )
, k̂2 = arg max

j≤kmax

λj(M
w
r )

λj+1(Mw
r )

(4.3)

where kmax is a predetermined value larger than k1 and k2.

Algorithm 3 Robust iterative algorithm to estimate the numbers of factors

Input: Data Xt, maximum number kmax, maximum iteration steps m
Output: Numbers of row and column factors k̂1 and k̂2

1: initialization: k̂
(0)
1 = kmax, k̂

(0)
2 = kmax;

2: estimate R and C by α-PCA and denote the estimators as R̂(0) and Ĉ(0), respectively.
3: for t = 1, 2, · · · ,m, given k̂

(t−1)
2 , calculate M

w(t)
c using R̂(t−1) and Ĉ(t−1), then obtain

k̂
(t)
1 by (4.3) ;

4: given k̂
(t)
1 , update R̂(t) by (4.2), and calculate M

w(t)
r using R̂(t) and Ĉ(t−1), then obtain

k̂
(t)
2 by (4.3);

5: given k̂
(t)
2 , update Ĉ(t) by (4.2).

6: repeat steps 3-5 until k̂
(t)
1 = k̂

(t−1)
1 and k̂

(t)
2 = k̂

(t−1)
2 or reach the maximum iteration

steps.

If the common factors are sufficiently strong, the leading k1 eigenvalues of Mw
c (Mw

r )

are well separated from the others, and the eigenvalue ratios in equation (4.3) will be

asymptotically maximized exactly at j = k1 ( j = k2). To avoid vanishing denominators,
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we can add an asymptotically negligible term to the denominator of equation (4.3). The

remaining problem is that to calculate Mw
c or Mw

r , both R and C must be predetermined,

which further indicates that k1, k2 must be given in advance. However, both k1 and k2

are unknown empirically. To circumvent the problem, we propose an iterative algorithm

to determine the pair of factor numbers, see Algorithm 3. Thus our method is an Robust

iterative Eigenvalue-Ratio (Rit-ER) based procedure.

5 Simulation Study

5.1 Data Generation

In this section, we introduce the data generating mechanism of the synthetic dataset in

order to verify the performance of the proposed Robust-Matrix-Factor-Analysis (RMFA)

method in Algorithm 2.

We set k1 = k2 = 3, draw the entries of R0 and C0 independently from the uniform

distribution U(−1, 1), and let

Vec(F0t) = ϕ× Vec(F0,t−1) +
√
1− ϕ2 × ϵt, ϵt

i.i.d∼ N (0, Ik1×k2),

Vec(Et) = ψ × Vec(Et−1) +
√
1− ψ2 × Vec(Ut),

where ϕ and ψ control the temporal and cross-sectional correlations, and Ut is generated

either from the matrix normal distribution or matrix t-distribution respectively. In detail,

when Ut is from a matrix normal distribution MN (0,UE,VE), then Vec(Ut)
i.i.d∼ N (0, VE

⊗ UE). When Ut is from a matrix t-distribution tp1,p2(ν,M,UE,VE), Ut has probability

density function

f(Ut; ν,M,UE,VE) = K ×
∣∣∣Ip1U−1

E (Ut −M)V−1
E (Ut −M)⊤

∣∣∣−ν + p1 + p2 − 1

2 ,
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where K is the regularization parameter. In our simulation study, we set M = 0 and let

UE and VE be matrices with ones on the diagonal, and the off-diagonal entries are 1/p1

and 1/p2, respectively. For matrix t-distribution, we resort to the R package “MixMatrix”

to generate random samples. The pair of factor numbers is given except in Section 5.4. We

also investigate in the supplement the performance of various methods in reconstructing

the common components with the factor numbers estimated by Algorithm 3, and we find no

big difference with the case where k1 and k2 are known. All the simulation results reported

hereafter are based on 1000 replications. As in Huang & Ding (2008), the parameter τ

is set as the median of
{
∥Xt − R̂F̂tĈ

⊤∥F , t = 1 . . . , T
}
, where R̂ and Ĉ are the initial

estimators by the α-PCA method with α = 0 and F̂t = R̂⊤XtĈ/(p1p2).

In the supplement, we also present the computation time of various methods in terms

of estimating the loading spaces and the factor numbers. The computational burden of our

RMFA method is sort of in the middle in all procedures given below.

5.2 Estimation Error for the Loading Spaces

In this section, we compare the RMFA method in Algorithm 2, the α-PCA method by

Chen & Fan (2021), the PE method by Yu et al. (2022) in Algorithm 1, the Time series

Outer-Product Unfolding Procedure (TOPUP), the Time series Inner-Product Unfolding

Procedure (TIPUP) both by Chen, Yang & Zhang (2022), and the corresponding iterative

version of TOPUP/TIPUP (denoted by iTOPUP/iTIPUP) by Han et al. (2020), in terms

of estimating the factor loading spaces. We consider the following two settings:

• Setting A: p1 = 20, T = p2 ∈ {20, 50, 100, 150, 200}, ϕ = ψ = 0.1.

• Setting B: p2 = 20, T = p1 ∈ {20, 50, 100, 150, 200}, ϕ = ψ = 0.1.

We first introduce a metric between two factor spaces as the factor loading matrices R

andC are not identifiable. For two column-wise orthogonal matrices (Q1)p×q1 and (Q2)p×q2 ,
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Table 1: Averaged estimation errors and standard errors of D(R̂,R)

and D(Ĉ,C) for Settings A and B under Matrix Normal distribu-
tion and Matrix t3 distribution over 1000 replications. “RMFA”:
proposed robust matrix factor analysis method. “α-PCA”: α-PCA
with α = 0. “PE”: projection estimation method. “TOPUP”: Time
series Outer-Product Unfolding Procedure. “TIPUP”: Time series
Inner-Product Unfolding Procedure. “iTOPUP”: iterative proce-
dure based on the TOPUP. “iTIPUP”: iterative procedure based on
the TIPUP.

Evaluation T p1 p2 RMFA α-PCA PE TOPUP TIPUP iTOPUP iTIPUP

Matrix Normal Distribution

D(R̂,R) 20 20 20 0.0915(0.0160) 0.1117(0.0314) 0.0919(0.0164) 0.1488(0.0398) 0.4649(0.1000) 0.1727(0.0390) 0.4318(0.1020)
50 50 0.0356(0.0052) 0.0594(0.0233) 0.0356(0.0052) 0.0814(0.0275) 0.3845(0.1219) 0.0974(0.0180) 0.3442(0.1115)
100 100 0.0176(0.0024) 0.0467(0.0193) 0.0176(0.0023) 0.0605(0.0207) 0.3133(0.1583) 0.0658(0.0122) 0.2505(0.1074)
150 150 0.0117(0.0016) 0.0432(0.0196) 0.0116(0.0016) 0.0527(0.0206) 0.2367(0.1632) 0.0516(0.0091) 0.1858(0.0995)
200 200 0.0088(0.0012) 0.0421(0.0201) 0.0088(0.0012) 0.0489(0.0209) 0.2023(0.1664) 0.0435(0.0080) 0.1491(0.0952)

D(Ĉ,C) 20 20 20 0.0930(0.0162) 0.1140(0.0313) 0.0935(0.0167) 0.1501(0.0401) 0.4652(0.1016) 0.1731(0.0375) 0.4351(0.1055)
50 50 0.0567(0.0060) 0.0590(0.0066) 0.0569(0.0061) 0.0956(0.0093) 0.4131(0.0891) 0.1409(0.0173) 0.4073(0.0925)
100 100 0.0398(0.0032) 0.0404(0.0034) 0.0399(0.0033) 0.0823(0.0055) 0.3689(0.0820) 0.1301(0.0129) 0.3682(0.0827)
150 150 0.0323(0.0025) 0.0325(0.0025) 0.0324(0.0025) 0.0772(0.0045) 0.3362(0.0815) 0.1240(0.0114) 0.3367(0.0820)
200 200 0.0281(0.0021) 0.0282(0.0021) 0.0282(0.0022) 0.0750(0.0038) 0.3060(0.0789) 0.1204(0.0111) 0.3071(0.0792)

D(R̂,R) 20 20 20 0.0915(0.0160) 0.1117(0.0314) 0.0919(0.0164) 0.1488(0.0398) 0.4649(0.1000) 0.1727(0.0390) 0.4318(0.1020)
50 50 0.0567(0.0061) 0.0591(0.0069) 0.0569(0.0063) 0.0955(0.0095) 0.4162(0.0937) 0.1411(0.0176) 0.4114(0.0948)
100 100 0.0399(0.0034) 0.0405(0.0036) 0.0400(0.0035) 0.0823(0.0056) 0.3698(0.0821) 0.1306(0.0135) 0.3698(0.0847)
150 150 0.0323(0.0024) 0.0325(0.0025) 0.0324(0.0025) 0.0771(0.0045) 0.3353(0.0829) 0.1239(0.0116) 0.3345(0.0815)
200 200 0.0280(0.0020) 0.0281(0.0020) 0.0281(0.0021) 0.0752(0.0041) 0.3068(0.0781) 0.1208(0.0114) 0.3081(0.0796)

D(Ĉ,C) 20 20 20 0.0930(0.0162) 0.1140(0.0313) 0.0935(0.0167) 0.1501(0.0401) 0.4652(0.1016) 0.1731(0.0375) 0.4351(0.1055)
50 50 0.0356(0.0053) 0.0589(0.0225) 0.0356(0.0053) 0.0802(0.0241) 0.3854(0.1225) 0.0970(0.0178) 0.3378(0.1100)
100 100 0.0177(0.0025) 0.0479(0.0216) 0.0177(0.0025) 0.0606(0.0222) 0.3148(0.1588) 0.0658(0.0123) 0.2551(0.1105)
150 150 0.0118(0.0017) 0.0437(0.0246) 0.0118(0.0017) 0.0537(0.0277) 0.2462(0.1711) 0.0516(0.0099) 0.1900(0.1042)
200 200 0.0088(0.0012) 0.0428(0.0204) 0.0088(0.0012) 0.0487(0.0212) 0.1891(0.1555) 0.0435(0.0084) 0.1443(0.0933)

Matrix t3 Distribution

D(R̂,R) 20 20 20 0.1454(0.1416) 0.3752(0.1713) 0.2830(0.2004) 0.4109(0.1694) 0.5368(0.1118) 0.3340(0.2049) 0.5004(0.1282)
50 50 0.0433(0.0738) 0.2959(0.1716) 0.1437(0.1943) 0.3285(0.1768) 0.4860(0.1383) 0.1956(0.1941) 0.4044(0.1416)
100 100 0.0171(0.0315) 0.2657(0.1620) 0.0830(0.1630) 0.2921(0.1736) 0.4451(0.1649) 0.1397(0.1817) 0.3307(0.1554)
150 150 0.0111(0.0179) 0.2488(0.1575) 0.0684(0.1571) 0.2728(0.1700) 0.4128(0.1740) 0.1137(0.1672) 0.2727(0.1612)
200 200 0.0088(0.0226) 0.2382(0.1513) 0.0581(0.1475) 0.2621(0.1662) 0.3754(0.1799) 0.1006(0.1625) 0.2300(0.1655)

D(Ĉ,C) 20 20 20 0.1439(0.1407) 0.3709(0.1733) 0.2783(0.2008) 0.4040(0.1667) 0.5327(0.1158) 0.3302(0.2026) 0.5002(0.1278)
50 50 0.0613(0.0732) 0.2154(0.1853) 0.1740(0.1941) 0.2696(0.1911) 0.4876(0.1291) 0.2348(0.1880) 0.4581(0.1305)
100 100 0.0362(0.0347) 0.1387(0.1651) 0.1197(0.1720) 0.2025(0.1831) 0.4464(0.1368) 0.1989(0.1755) 0.4161(0.1293)
150 150 0.0288(0.0166) 0.1125(0.1588) 0.0986(0.1621) 0.1749(0.1719) 0.4056(0.1374) 0.1812(0.1588) 0.3867(0.1279)
200 200 0.0253(0.0242) 0.0992(0.1535) 0.0892(0.1581) 0.1608(0.1657) 0.3713(0.1413) 0.1726(0.1538) 0.3538(0.1308)

D(R̂,R) 20 20 20 0.1454(0.1416) 0.3752(0.1713) 0.2830(0.2004) 0.4109(0.1694) 0.5368(0.1118) 0.3340(0.2049) 0.5004(0.1282)
50 50 0.0598(0.0660) 0.2143(0.1837) 0.1734(0.1925) 0.2618(0.1896) 0.4902(0.1254) 0.2324(0.1876) 0.4577(0.1266)
100 100 0.0359(0.0237) 0.1362(0.1578) 0.1142(0.1621) 0.1995(0.1760) 0.4467(0.1315) 0.2014(0.1695) 0.4225(0.1266)
150 150 0.0293(0.0231) 0.1120(0.1539) 0.0972(0.1572) 0.1784(0.1756) 0.4109(0.1430) 0.1887(0.1666) 0.3858(0.1320)
200 200 0.0247(0.0176) 0.0923(0.1447) 0.0815(0.1473) 0.1625(0.1724) 0.3697(0.1418) 0.1760(0.1570) 0.3524(0.1302)

D(Ĉ,C) 20 20 20 0.1439(0.1407) 0.3709(0.1733) 0.2783(0.2008) 0.4040(0.1667) 0.5327(0.1158) 0.3302(0.2026) 0.5002(0.1278)
50 50 0.0418(0.0669) 0.2992(0.1742) 0.1442(0.1922) 0.3258(0.1773) 0.4872(0.1329) 0.1933(0.1913) 0.4072(0.1388)
100 50 0.0168(0.0231) 0.2644(0.1584) 0.0802(0.1578) 0.2908(0.1678) 0.4473(0.1608) 0.1424(0.1774) 0.3307(0.1530)
150 150 0.0115(0.0252) 0.2572(0.1571) 0.0652(0.1518) 0.2803(0.1687) 0.4068(0.1752) 0.1211(0.1768) 0.2704(0.1635)
200 200 0.0082(0.0153) 0.2459(0.1559) 0.0521(0.1408) 0.2685(0.1703) 0.3865(0.1813) 0.1055(0.1674) 0.2254(0.1618)

we define

D(Q1,Q2) =

(
1− 1

max (q1, q2)
Tr

(
Q1Q

⊤
1 Q2Q

⊤
2

))1/2

.

By the definition of D(Q1,Q2), we can easily see that its value lies in the interval [0, 1],

which measures the distance between the column spaces spanned by Q1 and Q2. The col-

umn spaces spanned by Q1 and Q2 are the same when D(Q1,Q2) = 0, and are orthogonal

20



when D(Q1,Q2) = 1. The Gram-Schmidt orthonormal transformation can be used when

Q1 and Q2 are not column-orthogonal matrices.

Table 1 shows the averaged estimation errors with standard errors in parentheses un-

der Settings A and B for matrix normal distribution and matrix-variate t3 distribution.

Yu et al. (2022)’s simulation study showed that for the α-PCA method, the performances

for α ∈ {−1, 0, 1} are comparable, thus we only report the simulation results for the α-PCA

with α = 0. The TOPUP/TIPUP by Chen, Yang & Zhang (2022) and iTOPUP/iTIPUP

by Han et al. (2020) all performed worse than the other three methods, as these methods

all rely on the strong persistency of the factors. All methods benefit from large dimension-

s, and when p1 is small, RMFA and PE methods always show advantage over α-PCA in

terms of estimating R. When p2 is small, RMFA and PE methods always show advantage

over α-PCA in terms of estimating C, which is consistent with the findings by Yu et al.

(2022). What we want to emphasize is that the RMFA and PE method perform compa-

rably under the normal idiosyncratic error case, which is also clearly seen from Figure 1

in the Introduction section. When the idiosyncratic errors are from heavy-tailed matrix t3

distribution, the RMFA method is superior over the α-PCA and PE methods in all scenar-

ios. The estimation errors by the PE and α-PCA methods are at least twice of those by

the RMFA method, which indicates that the weights of the sample covariance matrix of

the projected data involved in RMFA method play an important role when outliers exist.

The simulation results for matrix t4 distribution are put in Table 1 in the supplement and

similar conclusions are drawn as for matrix t3 distribution. As a result, the RMFA can be

used as a safe replacement of the α-PCA and PE methods.

5.3 Estimation Error for Common Components

In this section, we compare the performances of the RMFA method with those of the α-PCA

and PE methods in terms of estimating the common component matrices. We evaluate the
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performance of different methods by the Mean Squared Error, i.e.,

MSE =
1

Tp1p2

T∑
t=1

∥Ŝt − St∥2F ,

where Ŝt refers to an arbitrary estimate and St is the true common component matrix at

time point t.

Table 2 shows the averaged MSEs with standard errors in parentheses under Settings A

and B for matrix normal distribution and matrix-variate t3 and t4 distributions. From Table

2, we see that the RMFA and PE methods perform comparably under the normal case, and

both perform better than the α-PCA method. This attributes to the projection technique

of both the RMFA and PE methods. In contrast, under the heavy-tailed t3 and t4 cases, the

RMFA performs much better than both PE and α-PCA methods. The TOPUP/TIPUP

and iTOPUP/iTIPUP all performed worse than the RMFA, PE and α-PCA methods.

5.4 Estimating the Numbers of Factors

In this subsection, we compare the empirical performances of the proposed Rit-ER method

with those of the α-PCA based ER method (α-PCA-ER) by Chen & Fan (2021), the IterER

method by Yu et al. (2022), the information-criterion methods iTOP-IC/iTIP-IC based

on iTOPUP/iTIPUP by Han et al. (2022), the eigenvalue-ratio methods iTOP-ER/iTIP-

ER based on iTOPUP/iTIPUP by Han et al. (2022) and the Total mode-k Correlation

Thresholding method (TCorTh) by Lam (2021) in terms of estimating the numbers of

factors.

Table 3 presents the frequencies of exact estimation and underestimation over 1000

replications under Setting A and Setting B. We set kmax = 10 for IterER, α-PCA-ER, Rit-

ER, iTOP-IC/iTIP-IC, iTOP-ER/iTIP-ER. Under the normal case, the IterER and Rit-ER

perform comparably, but both perform better than all other methods. The information-
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Table 2: Mean squared error and its standard deviation of the
common component under Settings A and B over 1000 replica-
tions. “RMFA”: proposed robust matrix factor analysis method.
“α-PCA”: α-PCA with α = 0. “PE”: projection estimation
method. “TOPUP”: Time series Outer-Product Unfolding Proce-
dure. “TIPUP”: Time series Inner-Product Unfolding Procedure.
“iTOPUP”: iterative procedure based on the TOPUP. “iTIPUP”:
iterative procedure based on the TIPUP.

Distribution T RMFA α-PCA PE TOPUP TIPUP iTOPUP iTIPUP

Setting A: p1 = 20, T = p2

normal 20 0.0136(0.0021) 0.0188(0.0042) 0.0137(0.0022) 0.0333(0.0085) 0.3346(0.1026) 0.0475(0.0123) 0.2931(0.1047)
50 0.0040(0.0004) 0.0058(0.0014) 0.0040(0.0004) 0.0135(0.0027) 0.2774(0.1049) 0.0261(0.0049) 0.2508(0.0977)
100 0.0018(0.0001) 0.0032(0.0010) 0.0018(0.0002) 0.0094(0.0018) 0.2250(0.1141) 0.0199(0.0033) 0.1887(0.0814)
150 0.0011(0.0001) 0.0025(0.0009) 0.0011(0.0001) 0.0080(0.0015) 0.1774(0.1146) 0.0172(0.0027) 0.1491(0.0764)
200 0.0008(0.0001) 0.0022(0.0009) 0.0008(0.0001) 0.0074(0.0014) 0.1472(0.1096) 0.0157(0.0025) 0.1200(0.0675)

t4 20 0.0102(0.0250) 0.0519(0.0631) 0.0270(0.0589) 0.0835(0.0835) 0.3104(0.1251) 0.0582(0.0930) 0.2664(0.1209)
50 0.0019(0.0004) 0.0219(0.0499) 0.0101(0.0444) 0.0363(0.0629) 0.2619(0.1279) 0.0275(0.0650) 0.2162(0.1121)
100 0.0008(0.0001) 0.0098(0.0264) 0.0028(0.0229) 0.0201(0.0420) 0.2145(0.1349) 0.0163(0.0429) 0.1603(0.1014)
150 0.0005(0.0001) 0.0083(0.0273) 0.0023(0.0257) 0.0161(0.0373) 0.1667(0.1275) 0.0134(0.0380) 0.1195(0.0844)
200 0.0004(0.0001) 0.0070(0.0228) 0.0018(0.0216) 0.0151(0.0364) 0.1333(0.1212) 0.0127(0.0413) 0.0936(0.0781)

t3 20 0.0408(0.0743) 0.1762(0.1242) 0.1228(0.1354) 0.2197(0.1426) 0.4219(0.1344) 0.1815(0.1849) 0.3736(0.1490)
50 0.0100(0.0500) 0.1181(0.1371) 0.0745(0.1403) 0.1591(0.1654) 0.3909(0.1520) 0.1137(0.1858) 0.3204(0.1520)
100 0.0030(0.0389) 0.0890(0.1232) 0.0499(0.1269) 0.1268(0.1607) 0.3526(0.1675) 0.0902(0.1836) 0.2672(0.1580)
150 0.0013(0.0124) 0.0766(0.1152) 0.0420(0.1177) 0.1081(0.1474) 0.3052(0.1655) 0.0729(0.1604) 0.2221(0.1520)
200 0.0014(0.0179) 0.0708(0.1127) 0.0381(0.1136) 0.1002(0.1446) 0.2658(0.1649) 0.0672(0.1574) 0.1880(0.1524)

Setting B: p2 = 20, T = p1

normal 20 0.0136(0.0021) 0.0188(0.0042) 0.0137(0.0022) 0.0333(0.0085) 0.3346(0.1026) 0.0475(0.0123) 0.2931(0.1047)
50 0.0040(0.0004) 0.0058(0.0014) 0.0040(0.0004) 0.0133(0.0026) 0.2807(0.1075) 0.0260(0.0049) 0.2490(0.0955)
100 0.0018(0.0002) 0.0033(0.0011) 0.0018(0.0002) 0.0093(0.0018) 0.2247(0.1144) 0.0198(0.0033) 0.1906(0.0848)
150 0.0011(0.0001) 0.0025(0.0013) 0.0011(0.0001) 0.0081(0.0020) 0.1826(0.1195) 0.0172(0.0027) 0.1497(0.0784)
200 0.0008(0.0001) 0.0022(0.0009) 0.0008(0.0001) 0.0074(0.0015) 0.1413(0.1052) 0.0158(0.0027) 0.1200(0.0698)

t4 20 0.0102(0.0250) 0.0519(0.0631) 0.0270(0.0589) 0.0835(0.0835) 0.3104(0.1251) 0.0582(0.0930) 0.2664(0.1209)
50 0.0020(0.0005) 0.0187(0.0394) 0.0077(0.0344) 0.0342(0.0546) 0.2561(0.1251) 0.0260(0.0589) 0.2155(0.1140)
100 0.0008(0.0001) 0.0112(0.0328) 0.0041(0.0300) 0.0208(0.0428) 0.2107(0.1348) 0.0160(0.0403) 0.1616(0.1005)
150 0.0005(0.0001) 0.0092(0.0299) 0.0029(0.0269) 0.0180(0.0453) 0.1736(0.1353) 0.0161(0.0482) 0.1256(0.0944)
200 0.0004(0.0001) 0.0072(0.0241) 0.0017(0.0216) 0.0149(0.0377) 0.1401(0.1203) 0.0129(0.0377) 0.0968(0.0751)

t3 20 0.0408(0.0743) 0.1762(0.1242) 0.1228(0.1354) 0.2197(0.1426) 0.4219(0.1344) 0.1815(0.1849) 0.3736(0.1490)
50 0.0087(0.0418) 0.1160(0.1291) 0.0723(0.1341) 0.1520(0.1564) 0.3916(0.1440) 0.1097(0.1774) 0.3198(0.1501)
100 0.0021(0.0163) 0.0843(0.1121) 0.0447(0.1136) 0.1195(0.1428) 0.3457(0.1557) 0.0875(0.1647) 0.2656(0.1488)
150 0.0017(0.0178) 0.0776(0.1137) 0.0392(0.1139) 0.1117(0.1482) 0.3015(0.1655) 0.0778(0.1630) 0.2185(0.1531)
200 0.0010(0.0120) 0.0707(0.1129) 0.0349(0.1149) 0.1043(0.1513) 0.2653(0.1661) 0.0710(0.1609) 0.1828(0.1531)

criterion methods iTOP-IC/iTIP-IC perform the worst in all cases. As the tails of the

idiosyncratic errors become heavier (from normal to t4, t3), all estimates deteriorate, espe-

cially for the α-PCA-ER and TCorTh methods. The proposed Rit-ER method is the most

robust and always performs the best for heavy-tailed data. As the sample size T grows,

the proportion of exact estimation by Rit-ER raises towards one.
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Table 3: The frequencies of exact estimation and underestimation of
the numbers of factors under Settings A and B over 1000 replication-
s. “Rit-ER”: the proposed robust iterative eigenvalue-ration based
method. “α-PCA-ER”: α-PCA based eigenvalue-ratio method with
α = 0. “IterER”: iterative eigenvalue-ration based method. “iTOP-
IC”/“iTIP-IC”: information-criterion method based on iTOPUP/
iTIPUP. “iTOP-ER”/“iTIP-ER”: eigenvalue-ratio method based on
iTOPUP/iTIPUP. “TCorTh”: Total mode-k Correlation Threshold-
ing method.

Distribution T Rit-ER α-PCA-ER IterER iTOP-IC iTIP-IC iTOP-ER iTIP-ER TCorTh

Setting A: p1 = 20, T = p2

normal 20 0.992(0.008) 0.647(0.353) 0.992(0.008) 0.000(1.000) 0.000(1.000) 0.758(0.242) 0.093(0.907) 0.672(0.328)
50 1.000(0.000) 0.891(0.109) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.973(0.027) 0.196(0.804) 0.982(0.018)
100 1.000(0.000) 0.880(0.120) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.994(0.006) 0.371(0.629) 0.997(0.003)
150 1.000(0.000) 0.912(0.088) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.998(0.002) 0.525(0.475) 0.999(0.001)
200 1.000(0.000) 0.901(0.099) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.996(0.004) 0.648(0.352) 0.999(0.001)

t4 20 0.774(0.226) 0.310(0.690) 0.720(0.280) 0.000(1.000) 0.000(1.000) 0.565(0.435) 0.112(0.888) 0.765(0.235)
50 0.937(0.063) 0.622(0.378) 0.864(0.136) 0.000(1.000) 0.000(1.000) 0.795(0.205) 0.224(0.776) 0.414(0.586)
100 0.986(0.014) 0.665(0.335) 0.933(0.067) 0.000(1.000) 0.000(1.000) 0.888(0.112) 0.402(0.598) 0.148(0.852)
150 0.992(0.008) 0.655(0.345) 0.955(0.045) 0.000(1.000) 0.000(1.000) 0.879(0.121) 0.581(0.419) 0.065(0.935)
200 0.991(0.009) 0.651(0.349) 0.953(0.047) 0.000(1.000) 0.000(1.000) 0.879(0.121) 0.685(0.315) 0.034(0.966)

t3 20 0.360(0.640) 0.097(0.903) 0.307(0.693) 0.001(0.999) 0.000(1.000) 0.263(0.737) 0.050(0.950) 0.479(0.521)
50 0.704(0.296) 0.249(0.751) 0.579(0.421) 0.001(0.999) 0.000(1.000) 0.496(0.504) 0.155(0.845) 0.022(0.978)
100 0.810(0.190) 0.264(0.736) 0.643(0.357) 0.000(1.000) 0.000(1.000) 0.555(0.445) 0.266(0.734) 0.000(1.000)
150 0.855(0.145) 0.276(0.724) 0.691(0.309) 0.000(1.000) 0.000(1.000) 0.611(0.389) 0.391(0.609) 0.000(1.000)
200 0.873(0.127) 0.260(0.740) 0.695(0.305) 0.000(1.000) 0.000(1.000) 0.609(0.391) 0.470(0.530) 0.000(1.000)

Setting B: p2 = 20, T = p1

normal 20 0.992(0.008) 0.647(0.353) 0.992(0.008) 0.000(1.000) 0.000(1.000) 0.758(0.242) 0.093(0.907) 0.672(0.328)
50 1.000(0.000) 0.895(0.105) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.988(0.012) 0.187(0.813) 0.978(0.022)
100 1.000(0.000) 0.907(0.093) 1.000(0.000) 0.000(1.000) 0.000(1.000) 1.000(0.000) 0.343(0.657) 0.995(0.005)
150 1.000(0.000) 0.909(0.091) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.998(0.002) 0.534(0.466) 0.999(0.001)
200 1.000(0.000) 0.903(0.097) 1.000(0.000) 0.000(1.000) 0.000(1.000) 0.999(0.001) 0.646(0.354) 0.997(0.003)

t4 20 0.774(0.226) 0.310(0.690) 0.720(0.280) 0.000(1.000) 0.000(1.000) 0.565(0.435) 0.112(0.888) 0.765(0.235)
50 0.926(0.074) 0.643(0.357) 0.871(0.129) 0.000(1.000) 0.000(1.000) 0.826(0.174) 0.248(0.752) 0.403(0.597)
100 0.950(0.050) 0.672(0.328) 0.913(0.087) 0.000(1.000) 0.000(1.000) 0.884(0.116) 0.416(0.584) 0.171(0.829)
150 0.963(0.037) 0.652(0.348) 0.928(0.072) 0.000(1.000) 0.000(1.000) 0.908(0.092) 0.532(0.468) 0.049(0.951)
200 0.968(0.032) 0.650(0.350) 0.937(0.063) 0.000(1.000) 0.000(1.000) 0.927(0.073) 0.655(0.345) 0.030(0.970)

t3 20 0.360(0.640) 0.097(0.903) 0.307(0.693) 0.001(0.999) 0.000(1.000) 0.263(0.737) 0.050(0.950) 0.479(0.521)
50 0.624(0.376) 0.223(0.777) 0.551(0.449) 0.000(1.000) 0.000(1.000) 0.515(0.485) 0.131(0.869) 0.025(0.975)
100 0.716(0.284) 0.277(0.723) 0.631(0.369) 0.000(1.000) 0.000(1.000) 0.569(0.431) 0.272(0.728) 0.000(1.000)
150 0.723(0.277) 0.270(0.730) 0.640(0.360) 0.001(0.999) 0.000(1.000) 0.584(0.416) 0.376(0.624) 0.000(1.000)
200 0.775(0.225) 0.268(0.732) 0.703(0.297) 0.000(1.000) 0.000(1.000) 0.642(0.358) 0.487(0.513) 0.000(1.000)

6 Real data example

In this section, we illustrate the empirical performance of our proposed methods by ana-

lyzing a financial portfolio dataset, which was studied by Wang et al. (2019) and Yu et al.

(2022). The financial portfolio dataset is composed of monthly returns of 100 portfolios,

well structured into a 10×10 matrix at each time point, with rows corresponding to 10 levels

of market capital size (denoted as S1-S10) and columns corresponding to 10 levels of book-

to-equity ratio (denoted as BE1-BE10). The dataset collects monthly returns from January
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1964 to December 2019 covering totally 672 months. The details are available at the website

http://mba.tuck.dartmouth.edu/pages /faculty/ken.french/data_library.html.
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Figure 2: Histogram of the sample kurtosis for 100 portfolios and
the red dashed line is the theoretical kurtosis of t5 distribution.

Following the same preprocessing strategy by Wang et al. (2019) and Yu et al. (2022),

we first subtract monthly market excess returns from the original return series and then

standardize each of the series. We impute the missing values with the factor-model-based

method by Xiong & Pelger (2022). The result of the augmented Dickey-Fuller test indicates

the stationarity of the return series. The histogram of the sample kurtosis for 100 portfolios

in Figure 2 demonstrates that the data are possibly heavy-tailed. The strong rule in

He et al. (2021b) is implemented to diagnose the matrix factor structure in this dataset.

For the parameters involved in the test, we set α = 0.01,M = 100, S ∈ {200, 300, 400},

f1(S) = 1−α−
√

2 lnS/S, f2(S) = 1−α−S−1/3, f3(S) = 1−α−S−1/4, f4(S) = 1−α−S−1/5,

f5(S) = (1 − α)/2. The results for all test specifications show that there is overwhelming

evidence in favour of a matrix structure in the dataset.

The IterER method suggests that (k1, k2) = (2, 1), the Rit-ER suggests that (k1, k2) =
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Table 4: Loading matrices for Fama–French data set, after varimax
rotation and scaling by 30. “RMFA”: the robust matrix factor anal-
ysis method, “PE”: the projected estimation method by Yu et al.
(2022), α-PCA: the method in Chen & Fan (2021) with α = 0, “AC-
CE”: the approach proposed by Wang et al. (2019), “TOPUP” and
“TIPUP”: the methods proposed by Chen, Yang & Zhang (2022),
“iTOPUP” and “iTIPUP” : the methods proposed by Han et al.
(2020).

Size

Method Factor S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

RMFA 1 -16 -15 -13 -11 -8 -6 -3 0 4 6
2 -6 -2 2 5 8 10 12 14 15 10

PE 1 -16 -15 -12 -10 -8 -5 -3 -1 4 7
2 -6 -1 3 5 8 10 12 13 15 11

α-PCA 1 -14 -14 -13 -11 -9 -7 -4 -2 3 7
2 -4 -2 1 3 6 9 12 13 16 14

ACCE 1 -12 -14 -12 -13 -10 -6 -3 -1 4 9
2 -1 -1 -1 2 5 10 11 18 15 11

TOPUP 1 -12 -14 -12 -13 -10 -6 -3 -1 4 9
2 -1 -1 -1 2 5 10 11 18 15 11

TIPUP 1 0 0 0 -4 -8 -11 -10 -18 -13 -11
2 -13 -14 -13 -11 -7 -5 -4 1 5 11

iTOPUP 1 1 -1 1 -2 -6 -11 -10 -19 -13 -11
2 -13 -13 -12 -13 -10 -6 -3 0 4 10

iTIPUP 1 1 0 1 -4 -7 -11 -11 -17 -13 -10
2 -14 -14 -13 -11 -8 -6 -2 0 5 9

Book-to-Equity

Method Factor BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10

RMFA 1 6 1 -3 -6 -9 -11 -12 -13 -12 -11
2 19 17 12 9 5 3 0 -1 -1 0

PE 1 6 1 -4 -7 -10 -11 -12 -12 -12 -10
2 20 17 11 8 4 2 0 -1 -1 0

α-PCA 1 6 2 -4 -7 -10 -11 -12 -13 -12 -11
2 19 18 12 8 4 2 0 -1 -1 -1

ACCE 1 6 -1 -4 -8 -8 -9 -10 -13 -15 -12
2 21 15 11 6 5 2 1 -2 -3 1

TOPUP 1 6 -1 -4 -8 -8 -9 -10 -13 -15 -12
2 -21 -15 -11 -6 -5 -2 -1 2 3 -1

TIPUP 1 -18 -14 -13 -10 -7 -6 -4 0 2 -1
2 -8 0 0 5 8 4 5 12 16 17

iTOPUP 1 6 0 -4 -8 -7 -9 -9 -13 -15 -13
2 -21 -16 -11 -7 -6 -3 -1 2 4 -3

iTIPUP 1 5 0 -1 -5 -9 -7 -7 -13 -15 -17
2 -17 -17 -12 -10 -7 -3 -3 3 4 0

(1, 2), the α-PCA-ER, iTOP-IC and iTIP-IC all suggest (k1, k2) = (1, 1), while iTOP-ER,

iTIP-ER and TCorTh all suggest (k1, k2) = (2, 2).

The estimated row and column loading matrices after varimax rotation and scaling are

reported in Table 4. From the table, we observe two different loading patterns across the

rows (sizes). For the RMFA, PE, α-PCA, ACCE, and TOPUP, the small size portfolios
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Table 5: Rolling validation for the Fama–French portfolios. 12n is
the sample size of the training set. k1 = k2 = k is the number of fac-
tors. MSE, ρ̄, v̄ are the mean pricing error, mean unexplained pro-
portion of total variances and mean variation of the estimated loading
space. “RMFA”, “PE”, “ACCE”, “α-PCA”, “TOPUP”, “TIPUP”,
“iTOPUP” and “iTIPUP” are the same as in Table 4.

n k RMFA PE α-PCA ACCE TOPUP TIPUP iTOPUP iTIPUP

MSE

5 1 0.860 0.870 0.862 0.885 0.885 0.960 0.943 0.943
10 1 0.849 0.855 0.860 0.880 0.880 0.950 0.937 0.943
15 1 0.850 0.853 0.860 0.884 0.884 0.933 0.928 0.933
5 2 0.594 0.596 0.601 0.667 0.667 0.704 0.706 0.703
10 2 0.600 0.601 0.611 0.655 0.655 0.716 0.671 0.698
15 2 0.602 0.603 0.612 0.637 0.637 0.695 0.655 0.686
5 3 0.518 0.522 0.529 0.564 0.564 0.632 0.584 0.615
10 3 0.516 0.519 0.526 0.573 0.573 0.616 0.583 0.600
15 3 0.515 0.517 0.522 0.560 0.560 0.612 0.577 0.591

ρ̄

5 1 0.793 0.802 0.796 0.828 0.828 0.943 0.933 0.935
10 1 0.776 0.784 0.791 0.815 0.815 0.921 0.914 0.923
15 1 0.778 0.782 0.792 0.812 0.812 0.890 0.907 0.914
5 2 0.618 0.625 0.628 0.673 0.673 0.740 0.719 0.733
10 2 0.623 0.628 0.636 0.668 0.668 0.738 0.687 0.728
15 2 0.622 0.626 0.630 0.652 0.652 0.714 0.677 0.711
5 3 0.545 0.550 0.556 0.590 0.590 0.664 0.610 0.637
10 3 0.544 0.548 0.555 0.594 0.594 0.645 0.604 0.624
15 3 0.541 0.545 0.544 0.582 0.582 0.637 0.601 0.614

v̄

5 1 0.144 0.176 0.241 0.303 0.303 0.622 0.602 0.585
10 1 0.062 0.085 0.203 0.165 0.165 0.354 0.385 0.389
15 1 0.045 0.064 0.234 0.152 0.152 0.291 0.347 0.345
5 2 0.163 0.239 0.350 0.460 0.460 0.579 0.620 0.635
10 2 0.080 0.092 0.261 0.257 0.257 0.427 0.419 0.429
15 2 0.050 0.057 0.173 0.189 0.189 0.302 0.304 0.303
5 3 0.241 0.286 0.432 0.497 0.497 0.628 0.556 0.599
10 3 0.110 0.114 0.353 0.303 0.303 0.402 0.344 0.390
15 3 0.072 0.084 0.308 0.299 0.299 0.384 0.330 0.353

load heavily on the first factor while large size portfolios on the second factor, but for the

TIPUP, iTOPUP and iTIPUP, the pattern reverses. We also find two distinct patterns

across the columns (Book-to-Equity).

To further compare these methods, we use a rolling-validation procedure as inWang et al.

(2019). For each year t from 1996 to 2019, we repeatedly use n (bandwidth) years before

t to fit the matrix-variate factor model. The fitted loadings are then used to estimate the

monthly factors and idiosyncratic errors in the current year t. Let Yi
t and Ŷi

t be the ob-

served and estimated price matrix of month i in year t, and Ȳt be the mean price matrix.
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Define

MSEt =
1

12× 10× 10

12∑
i=1

∥Ŷi
t −Yi

t∥2F , ρt =

∑12
i=1 ∥Ŷi

t −Yi
t∥2F∑12

i=1 ∥Yi
t − Ȳt∥2F

,

as the mean squared pricing error and unexplained proportion of total variances, respec-

tively. In the rolling-validation procedure, the variation of loading space is measured by

vt := D(Ĉt ⊗ R̂t, Ĉt−1 ⊗ R̂t−1).

We tried diverse combinations of n and numbers of factors (k1 = k2 = k). We report

the means of MSEt, ρt and vt in Table 5. The RMFA method has the lowest pricing errors

across the board.

7 Discussion

The current work studies the large-dimensional matrix factor model from the least squares

and Huber Loss points of view. The KKT condition of minimizing the residual sum of

squares under the identifiability condition naturally motivates one to adopt the iterative

projection estimation algorithm by Yu et al. (2022). For the Huber loss, the corresponding

KKT condition motivates us to do PCA on weighted sample covariance matrix of the

projected data. We investigate the properties of theoretical minimizers of the squared loss

and the Huber loss under the identifiability condition. We also propose robust estimators of

the pair of factor numbers. The limitation of the current work lies in that we do not provide

a theoretical guarantee of the estimators in the solution path of the iterative algorithm,

which involves both statistical and computational accuracy. We leave it as a future research

direction.
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