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Abstract

We introduce the notion of a Conditional Hypothesis Testing System
(CHTS) that speci�es the concrete mode of non-Bayesian reactions for
unexpected news in a conditional world. We show that Ortoleva�s (2012)
Hypothesis Testing Model (HTM) gives rise to a CHTS and thus provides
an axiomatic characterization of CHTS. Moreover, we show that the HTM
updating rule is order independent� i.e., the order of receiving informa-
tion does not in�uence the �nal posterior under the non-Bayesian updating
rule. The notion of a CHTS enhances our understanding of HTM in a con-
ditional world: It is formally linked to the conditional-probability-system
expected utility model of Myerson (1986a). JEL Classi�cation: D81, D83.
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1 Introduction

How a decision maker (henceforth DM) updates her beliefs after receiving new information

is a foundational problem in information economics, game theory, and statistical theory.

The standard way to model a DM�s belief in a situation of uncertainty is by means of a

prior� a subjective probability measure over states. Savage�s (1954) subjective expected

utility theory provide an axiomatic justi�cation for the assumption that there exists a prior

and the DM evaluates uncertain propsects or acts by the expected utility representation.

Under subjective expected utility, applying Bayes�rule to the subjective probability is the

standard way to update beliefs. That is, if a DM�s belief is given by a measure �, and

learns that an event A has occurred (i.e., � (A) > 0), then the DM�s updating belief �A� a

probability measure conditional on A� is obtained by Bayes�formula:

�A (A
0) =

� (A \ A0)
� (A)

for any arbitrary event A0.

Throughout this paper, we write BU(�;A) for the Bayesian update of belief �, conditioning

on non-zero probability event A. In a subjective expected utility framework, updating pref-

erences by applying Bayes�rule to the subjective probability are dynamically consistent in

a natural way that ex ante preferences are respected by updated preferences and, moreover,

dynamic consistency implies such conditional measures must be the Bayesian updates (cf.

Ghirardato (2002)).1

Experimental and empirical evidence, however, shows that people often systematically

depart from Bayes�rule when confronted with new information (see, e.g., Benjamin (2019)).

In an interesting paper, Ortoleva (2012) presents a Hypothesis Testing Model (hence-

forth HTM) to model the change in a paradigm in light of (non-)Bayesian reactions to

1Epstein and Le Breton (1993) discuss the general connection between dynamic consistency and
Bayesian updating. They show that if (i) preferences are �based on beliefs� and (ii) admit dynami-
cally consistent updating in response to new information, then Savage�s (1954) axioms except the Sure
Thing Principle guarantee that there exists a unique prior that represents beliefs and conditional beliefs
are obtained using Bayes�rule.
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(un)expected news/events. Ortoleva axiomatically characterizes HTM in which a decision

maker acts like a standard Bayesian DM as long as the information she receives is assigned,

according to a prior belief, a probability above a certain threshold (�). She might react

di¤erently if she receives unexpected information that she assigned a small (no more than

�), and possibly equal to zero, probability. More speci�cally, when the DM changes the par-

adigm upon receiving information that is unlikely or unexpected according to her current

prior, she considers a prior over priors (�), updates it using Bayes�rule for second-order

priors, and selects a new prior that the updated prior over priors assigns the highest likeli-

hood. HTM can be used to explain empirical evidence of the violations of Bayesian updating

beliefs. For instance, investors might have a standard behavior in �business as usual�situ-

ations, but would be likely to change their beliefs in the case of unexpected circumstances.

One important feature of this approach is that the HTM framework can accommodate

non-Bayesian reactions to unexpected events, including zero-probability events, while the

Bayesian paradigm is silent on what should happen on zero-probability events.

Ortoleva (2012, Theorem 1) shows that a novel behavioral postulate, called Dynamic

Coherence (in lieu of Dynamic Consistency), together with other standard postulates, de-

livers a Hypothesis Testing representation (u; �; �), where u is a utility function over conse-

quences; � is a prior over priors on a state space; and � is a threshold between 0 and 1. In

particular, the (non-)Bayesian updating of a prior belief �
, conditional on any arbitrary

event A, can be represented by

�A =

�
BU(�
; A) if �
 (A) > �
BU(��A; A) otherwise

where �
 = ��
 and f��Ag = argmax�2�(
) � (�)� (A).
However, the HTM framework is presented in a parsimonious manner. While Ortol-

eva�s (2012) Hypothesis Testing representation describes how to update a prior when an

unexpected event occurs, it does not state the speci�c mode of new hypothesis testing, if

the current one is rejected, which is an essential component of our framework in this paper.

In economics, it is important and necessary to take into account zero-probability events
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and require well-de�ned conditional probabilities for them. For example, in game-theoretic

contexts, such an omission is not as innocuous as it may seem: Indeed, if an event were as-

signed zero probability in a Nash equilibrium, then the question of what a player would do

in this event is essential, because the equilibrium should specify strategic behavior for the

player if this event occurred. In sequential games, Kreps and Wilson (1982) show that the

detailed structure of a player�s beliefs and preferences after he observes a zero-probability

event may be crucial in the analysis of a game.2 As Epstein and Le Breton (1993, p. 2)

point out, �a satisfactory treatment of updating is a prerequisite for fruitful application of

models of non-Bayesian beliefs or probabilistically non-sophisticated preferences, whether

to intertemporal problems, game theory, or statistical theory.�Our approach provides a

thorough theory via the comprehensive speci�cation of the (non-)Bayesian updating rule,

including the speci�cation of non-Bayesian reactions for unexpected news in unexpected

circumstances.

In this paper, we introduce a novel notion of a Conditional Hypothesis Testing Sys-

tem (henceforth CHTS) that explicates the mode of non-Bayesian reactions for unexpected

news in all hypothetical circumstances. We show that HTM gives rise to a CHTS represen-

tation (u; �; �), where �=(�A)A2� is a vector of thresholds conditioning on each and every

contingent event A 2 � (see Theorem 2). In spite of violations of Bayes�rule, the mode of

hypothesis testing beliefs in HTM appears to be the same mode in a conditional decision

problem via updating. That is, the (non-)Bayesian belief updating in HTM conforms to a

coherent structure: For any A;A0 2 � and A � A0,

�A =

�
BU(�A0 ; A) if �A0 (A) > �A0
BU(��A; A) otherwise

2Other notable examples, such as backward induction, forward induction, and iterated weak dominance
in games, demonstrate the importance that players think about what would happen on zero-probability
events; cf., e.g., Aumann (1995); Battigallia and Siniscalchi (2002); Samuelson (1992); Börgers (1994);
and Brandenburger et al. (2008). As von Neumann and Morgenstern (1944) put it, �this is even more
fundamental, the rules of rational behavior must provide de�nitely for the possibility of irrational conduct
on the part of others ... description must include rules of conduct for all conceivable situations including
those where �the others�behaved irrationally, in the sense of the standards which the theory will set for
them.�
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where �
 = ��
 and f��Ag = argmax�2�(
) � (�)� (A). In other words, the new belief

updating �A conforms to the same mode of non-Bayesian reactions for unexpected news

in a conditional world A0 (instead of 
). The threshold vector � here is interpreted as a

con�dence-level gauging system the DM adopts for �testing�her prior and �rejecting�the

hypothesis in every contingent situation. The CHTS representation explicitly speci�es the

form of updating rule in all hypothetical circumstances, including those for which the DM

receives unexpected information. As a result, we extend HTM to an enriched framework

for conditional hypothesis testing decisions, which is important for the application of HTM

in dynamic settings. When the threshold vector � = 0, our approach also provides a formal

relation with the conditional-probability-system expected utility model of Myerson (1986a).

Our paper studies the (non-)Bayesian updating rule in the HTM framework of Ortol-

eva (2012) in which the DM is a standard expected utility maximizer. To allow for a

non-Bayesian behavior, the HTM invokes the behavioral postulate of Dynamic Coherence

in place of that of Dynamic Consistency. Despite their di¤erences, Dynamic Coherence

is intimately linked with a strong version of Dynamic Consistency� called �Conditional

Dynamic Consistency�(henceforth CDC)� that requires Dynamic Consistency holds un-

waveringly for all conditioning events including null events. Through CDC, the HTM

framework provides a foundation for the conditional-probability-system expected utility

model of Myerson (1986a) (see Corollary 1). Furthermore, we show that the HTM up-

dating rule satis�es a natural form of order independence� that is, the order of receiving

information never in�uences the �nal posterior under the HTM updating rule, as long as

the information is not logically contradictory (see Theorem 3).

Our approach relates to the literature on non-Bayesian updating. A few recent papers

study various models of non-Bayesian updating in a Bayesian environment. Epstein (2006)

and Epstein, Noor, and Sandroni (2008) study a multi-period setting in which an agent

does not update according to Bayes�rule: the agent might be tempted to use a posterior

that is di¤erent from the Bayesian update of their prior. Zhao (2018; 2022) investigates the
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similarity-based and Pseudo-Bayesian updating rules in a framework in which information

takes a qualitative form �event A is similar to event B�or �event A is more likely than event

B.�These papers do not deal with non-Bayesian updating rules on zero-probability events.

By contrast, our paper allows to study non-Bayesian updating rules on zero-probability

events, through the lens of CHTS, the main objective of this paper. In a closely related

paper, Basu (2019) studies Bayesian updating rules and AGM belief revision, which can

be used to de�ne posteriors after all events, including zero probability events. By contrast,

our paper focuses on non-Bayesian updating rules (see Section 5 for more discussion).

Deviations from Bayesian updating may also arise under ambiguity. There is a large lit-

erature on ambiguity. In the literature, ambiguity is usually modeled by relaxing Savage�s

(1954) Sure-Thing Principle while keeping other aspects of the standard Bayesian model

intact. For instance, Gilboa and Schmeidler (1989) axiomatize the model of multiple-

priors preferences that can accommodate ambiguity aversion; among others, Gilboa and

Schmeidler (1993), Pires (2002), and Epstein and Schneider (2003) study updating rules

for multiple priors. In the setting of dynamic choice under ambiguity, ambiguity-sensitive

preferences must either relax Dynamic Consistency or other behavioral postulate(s); cf.

Hanany and Klibano¤ (2007); Siniscalchi (2009); and Galanis (2021) for a related discus-

sion. The major di¤erence in this paper is that our analysis of the (non-)Bayesian updating

rule is conducted in the standard case that satis�es the Sure-Thing Principle, but allows

for violations of Dynamic Consistency under the circumstances. As emphasized before, we

focus mainly on violations of Bayes�rule in the HTM framework in which the DM is a

Bayesian agent who is however open to fundamentally shifting her worldview.3

The rest of the paper is organized as follows. Section 2 provides an illustrative example,

Section 3 brie�y describes the HTM framework, notation, and de�nitions, Section 4 presents

3Dominiak et al. (2021) o¤er a systematic way�namely �minimum distance belief updating�� to extend
Bayesian updating to general information and zero-probability events. They provide a behavioral charac-
terization of �extended Bayesian updating�by a key axiom of �Informational Dynamic Consistency.�They
also show that the minimum-distance belief-updating approach is applicable to the HTM updating rule.
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our CHTS Representation Theorem, Section 5 studies order independence of the HTM

updating rule, and Section 6 concludes. All proofs are relegated to the Appendix.

2 An illustrative example

We provide an example to explain the main features in the frameworks of Ortoleva�s (2012)

HTM and our CHTS. We focus on the question: how to update beliefs upon the arrival of

new information, with special attention to non-Bayesian reactions to (latent) information

in hypothetical circumstances. Let 
 = f!1; !2; !3; !4; !5g be a state space. Consider an

HTM with a threshold � = 0:02 and a prior over priors � 2 �(� (
)) such that8>>>><>>>>:
� = 0:70�0 + 0:11�1 + 0:10�2 + 0:09�3

�0 = 0:01!2 + 0:01!3 + 0:48!4 + 0:50!5

�1 = 0:10!1 + 0:40!2 + 0:50!3

�2 = 1!2

�3 = 1!3

.

In this model, the DM selects the highest likelihood prior �0. For any contingent event

A 2 �, she determines a conditional belief �A using Bayes� rule whenever �0 (A) > �.

However, if the information is �unexpected�(i.e., �0 (A) � �), the DM updates her prior

over priors using Bayes�rule and picks the new maximum likelihood prior as her conditional

belief �A. More speci�cally,

�A =

8>>>><>>>>:
BU (�0; A) if A \ f!4; !5g 6= ;
�1 if A = f!1; !2; !3g
�2 if A = f!1; !2g
�3 if A = f!1; !3g
BU (�1; A) if A = f!2; !3g

where BU(�; A) 2 �(
) denotes Bayesian update using A.

Now consider an �unexpected� event A = f!1; !2; !3g. We identify a (minimal)

threshold �A = 0:6 that disciplines the reaction to all hypothetical events, conditioning
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on unexpected event A. Notably, the conditional belief �A displays a consistent pattern

of non-Bayesian reactions to hypothetical unexpected news by replacing � = 0:02 with

�A = 0:6. In the same vein, we spot a (minimal) threshold �A = 0:04 for an �expected�

event A = f!1; !2; !3; !4g. As a consequence, we have a vector of thresholds � = (�A)A2�
such that

�A =

8<:
0:02 if A = 

0:04 if A = f!1; !2; !3; !4g
0:6 if A = f!1; !2; !3g

.

That is, we extend the HTM framework to a CHTS framework. The main result of this

paper shows that the existence of the CHTS representation (u; �; �), where �=(�A)A2�, can

be fully characterized by Dynamic Coherence in Ortoleva (2012), along with other standard

behavioral postulates (see CHTS Representation Theorem in Section 4).

The (minimal) threshold vector � = (�A)A2� in CHTS can be interpreted as a con�dence-

level gauging system the DM adopts for testing her prior and rejecting the hypothesis

in all hypothetical scenarios� that is, threshold �A measures the degree of violation of

Bayes�rule conditioning on any arbitrary event A. Observe that for a non-zero probability

event A = f!2; !3g, �A is not the Bayesian update of �0, but rather the Bayesian update

of �1 because �A =BU(�1; A). Put another way, �A is dynamically consistent with �A0

(conditioning on A0 = f!1; !2; !3g), although it is not dynamically consistent with �

(conditioning on 
). The thresholds �
 = 0:02 and �A0 = 0:6 signify distinct gauges for the

violations of Bayes�rule conditional on 
 and A0, respectively. We show that CHTS (�= 0)

is formally related to the conditional-probability-system expected utility model of Myerson

(1986a) through a strong form of �Dynamic Consistency�(see Corollary 1 in Section 3).

Our study sheds light on the dynamic structure of HTM.
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3 The HTM framework: Notation and de�nitions

We adopt the notation and de�nitions of Ortoleva (2012) and list the necessary symbols,

with very brief explanations, as follows:

Notation Terminology

 �nite state space, with typical state ! 2 

X (nonempty) set of consequences, with typical x; y 2 X

�(
) set of all probability measures (beliefs) on 
, with typical � 2 �(
)
� (� (
)) set of all priors over priors on 
, with typical � 2 �(� (
))

� set of all nonempty subsets (events) of 
, with typical A 2 �
F set of all functions (acts) from 
 to X, with typical acts f; g 2 F
�A a (complete, nondegenerate) preference relation over F conditional on A

fAg fAg �
�
f (!) if ! 2 A
g (!) if ! 2 
nA

BU(�;A) Bayesian update of belief � conditioning on A
BU (�;A) Bayesian update of a prior over priors � conditioning on A

AXIOM 1 (Well-Behaved Standard Preferences (WbP)): For any A 2 � and

f; g; h 2 F :

(i) (Continuity): the sets f� 2 [0; 1] : �f + (1� �) g �A hg and f� 2 [0; 1] : h �A �f + (1� �) gg

are closed.

(ii) (Independence): for any � 2 (0; 1)

f �A g , �f + (1� �)h �A �g + (1� �)h.

(iii) (Monotonicity): if f (!) �A g (!) for all ! 2 
, then f �A g.

(iv) (Constant Preference Invariance): for any x; y 2 X, x �A y , x �
 y.
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WbP guarantees a standard expected utility representation (cf. Anscombe and Aumann

(1963)): There exist a nonconstant a¢ ne function u : X ! R and �A 2 �(
) for each

A 2 � such that for any f; g 2 F

f �A g ,
X
!2


�A (!)u (f (!)) �
X
!2


�A (!)u (g (!)) .

AXIOM 2 (Consequentialism): For any A 2 �, and f; g 2 F , if f (!) = g (!) for all

! 2 A, then f �A g.

Consequentialism is a basic requirement on conditional preferences that requires the

complement of the conditioning event to be irrelevant for the conditional preference: If the

DM is told that the true state lies inside some A 2 �, then she is indi¤erent between two

acts that di¤er only outside of A. That is, Consequentialism requires the complement of A

to be �A-null.4

AXIOM 3 (Dynamic Consistency): For any A 2 �, A not �
-null, and for any

f; g 2 F , we have

f �A g , fAg �
 g.

Dynamic Consistency requires that the arrival of some information A should not modify

the ranking of two acts that coincide outside of A. Dynamic Consistency is the primary

justi�cation for Bayesian updating in the Bayesian model (cf. Ghirardato (2002)).

AXIOM 4 (Dynamic Coherence): For any A1; : : : ; An 2 �, if (
nAi+1) is �Ai-null for

i = 1; : : : ; n� 1, and (
nA1) is �An-null, then �A1=�An.
4We say A0 is �A-null if fA0g �A g for any f; g 2 F . In the Bayesian framework, A0 is not �A-null i¤

it is not a zero-probability event under the preference �A.
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Dynamic Coherence captures an idea of �cycles in beliefs�: If the informational content

is the same in an information loop, then the DM�s preferences should be the same after

each piece of information� for example, in the Bayesian framework, the DM�s posterior

beliefs must be the same under the circumstances.

De�nition 1: A class of preferences relations f�AgA2� admits a Hypothesis Testing (HT)

representation (u; �; �) if there exist a nonconstant a¢ ne function u : X ! R; a prior over

priors � 2 �(� (
)) with �nite-and-full support;5 and a threshold � 2 [0; 1) such that for

any A 2 �, there exists �A 2 �(
) such that

(i) for any f; g 2 F ,

f �A g ,
X
!2


�A (!)u (f (!)) �
X
!2


�A (!)u (g (!)) ;

(ii) f��
g = argmax�2�(
) � (�).

(iii)

�A =

�
BU(�
; A) if �
 (A) > �
BU(��A; A) if �
 (A) � �

where f��Ag = argmax�2�(
)BU(�;A) (�).6

In De�nition 1, an HT representation (u; �; �) is said to be minimal if there is no

0 � �0 < � such that (u; �; �0) is an HT representation of the same preferences f�AgA2�.

Ortoleva (2012) shows the following Hypothesis Testing representation theorem.

Theorem 1 (Ortoleva�s (2012) HT Representation Theorem): A class of preference

relations f�AgA2� satis�es Well-Behaved Standard Preferences (WbP), Consequentialism,
5� has �nite-and-full support if (i) supp(�) is �nite; and (ii) 
 = [�2supp(�)supp(�).
6BU(�;A) 2 �(� (
)) is de�ned as BU (�;A) (�) = �(A)�(�)P

�02s u p p (�) �
0(A)�(�) 8� 2 �(
), provided �

0 (A) > 0

for some �0 2 supp (�).
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and Dynamic Coherence if and only if it admits a minimal HT representation (u; �; �).

Moreover, � = 0 if and only if f�AgA2� also satis�es Dynamic Consistency.

4 CHTS Representation Theorem

We introduce the notion of a Conditional Hypothesis Testing System.

De�nition 2: A class of preferences relations f�AgA2� admits a Conditional Hypothesis

Testing System (CHTS) representation (u; �; �) if there exist a nonconstant a¢ ne function

u : X ! R; a prior over priors � 2 �(� (
)) with �nite-and-full support; and a vector of

thresholds �=(�A)A2� (where �A 2 [0; 1)) such that for any A 2 �, there exists �A 2 �(
)

such that

(i) for any f; g 2 F ,

f �A g ,
X
!2


�A (!)u (f (!)) �
X
!2


�A (!)u (g (!)) ;

(ii) for any A0 2 � with A0 � A,

�A =

�
BU(�A0 ; A) if �A0 (A) > �A0
BU(��A; A) if �A0 (A) � �A0

where �
 = ��
 and f��Ag = argmax�2�(
)BU(�;A) (�).

We call such a class f�AgA2� aHypothesis-Testing Conditional Probability System (HTCPS).

In De�nition 2, a CHTS representation (u; �; �) is said to be minimal if there is no

0 ��0�� such that (u; �; �0) is a CHTS representation of the same preferences f�AgA2�.

Obviously, if Condition (ii) is required only for A0 = 
, then a CHTS representation (u; �; �)

is essentially a Hypothesis Testing representation (u; �; �) in Ortoleva (2012).
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For the purpose of this paper, we introduce a conditional version of Dynamic Consis-

tency as follows.

AXIOM 3* (Conditional Dynamic Consistency (CDC)): For any A;A0 2 � and for

any f; g 2 F , if A � A0 is not �A0-null, we have

f �A g , fAg �A0 g.

CDC requires that the arrival of new information A should not change a preference �A0

over two acts that coincide outside of A, provided that A � A0 is not �A0-null. By contrast,

Dynamic Consistency requires that the property holds merely for the ex ante preference

relation �
, rather than all preference relations �A0 . In the subjective expected utility

model, Dynamic Consistency requires that Bayes�rule holds for nonzero-probability events:

It allows for violations of Bayes�rule for zero-probability events, whereas CDC requires full

Bayesian behavior in the sense that Bayes�rule holds in all conditioning events, including

zero-probability events. Evidently, it is a stronger form of Dynamic Consistency.

Dynamic Coherence (Axiom 4) is a key behavioral postulate for HTM. Dynamic Coher-

ence appears to be a fairly natural condition: It looks weaker than Dynamic Consistency in

the sense that the latter allows for violations of Dynamic Consistency in small-probability

events or null events w.r.t. the ex ante preference relation. Our CHTS representation the-

orem reveals that Dynamic Coherence has an inherently consistent characteristic attribute:

In every contingent event, Dynamic Coherence is indeed weaker than Dynamic Consistency

in the same manner� that is, CDC implies Dynamic Coherence in HTM.7

7Ortoleva (2012, p. 2419) states �Dynamic Coherence is neither stronger nor weaker than Dynamic
Consistency: while it is does allow for violations of Dynamic Consistency, albeit regulating them, it also
disciplines the reaction to null events, on which Dynamic Consistency has no bite.� Lemma (ii) in the
Appendix asserts that Dynamic Coherence is unequivocally weaker than CDC under Consequentialism.
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Theorem 2 (CHTSRepresentation Theorem): A class of preference relations f�AgA2�
satis�es Well-Behaved Standard Preferences (WbP), Consequentialism, and Dynamic Co-

herence if and only if it admits a minimal CHTS representation (u; �; �). Moreover, � = 0

if and only if f�AgA2� also satis�es Conditional Dynamic Consistency (CDC).

Once we realize that the behavioral axioms of WbP, Consequentialism, and Dynamic

Coherence are valid for any subclass of conditional preference relations (see Lemma 1 in

the Appendix), then for any A 2 � there is a Hypothesis Testing representation (u; �; �A)

for f�A0gA02�A, where �A denotes the set of nonempty subsets of A. As a result, CHTS

Representation Theorem follows from Ortoleva�s (2012) proof.

The CHTS representation manifests that HTM displays a consistent pattern of behav-

ior even if the DM has non-Bayesian reactions to unexpected news. From a normative

point of view, this feature of HTM is desirable in analyzing complex models, possibly with

non-Bayesian updating; an analyst can technically reduce the framework to a simple one

by representing and analyzing the DM�s dynamic choice problem as that of choosing a

contingent act in a consistent manner. The second part of CHTS Representation Theo-

rem shows that if Dynamic Coherence is further strengthened by CDC, the DM follows

Bayes�rule whenever it applies in every conditioning event, but reconsiders which prior

to use whenever she faces zero-conditional-probability events. Corollary 1 below makes a

connection between HTM and the conditional-probability-system expected utility model in

Myerson (1986a). Consequently, our approach provides an alternative foundation for the

conditional-probability-system expected utility model.

De�nition 3: A collection of probability measures f�AgA2� over 
 is a conditional

This result o¤ers additional insight into why Dynamic Coherence is not enough to guarantee the full
Bayesian behavior, despite the fact that it �imposes a coherence between beliefs across di¤erent pieces of
information, independently of the belief before information�in a Bayesian framework.
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probability system (CPS) if for any A 2 �, (i) �A (A) = 1 and (ii) [Bayes�formula] �B (C) =

�B (A)�A (C) 8C � A � B � 
.

Corollary 1: A class of preference relations f�AgA2� satis�es WbP, Consequentialism,

and CDC if and only if it admits a conditional-probability-system expected utility represen-

tation: There exist a nonconstant a¢ ne function u : X ! R and a CPS f�AgA2� such

that for any f; g 2 F

f �A g ,
X
!2


�A (!)u (f (!)) �
X
!2


�A (!)u (g (!)) .

Myerson (1986b) shows that any CPS can be characterized by the limit of a sequence of

conditional probability systems generated by full-support probability distributions over 
.

The notion of CHTS o¤ers an alternative characterization of CPS by disciplining Hypothesis

Testing updating in each and every conditioning event.

Corollary 2: An HTCPS f�AgA2� is a CPS on 
 i¤ there exists a �partitional�prior over

priors � in the underlying CHTS representation� i.e., fsupp (�)g�2supp(�) is a partition of


� such that for any pair A;A0 2 � and A � A0,

�A =

�
BU(�A0 ; A) if �A0 (A) > 0
BU(��A; A) if �A0 (A) = 0

where �
 = ��
 and f��Ag = argmax�2�(
) � (�)� (A).

Remark 1. The induced �partitional�priors (�)�2supp(�) in Corollary 2 can be viewed as

a lexicographic conditional probability system (LCPS) in Blume et al. (1991) (cf. also

Halpern (2007) for related discussions). Thus, a CHTS is also related to an LCPS.

Ortoleva (2012) shows that, if add Dynamic Consistency to the Hypothesis Testing

Model, we obtain a characterization of a Bayesian model, in which the DM not only follows
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Bayes�rule when it applies, but also the DM�s beliefs are disciplined by Dynamic Coherence

when Bayes� rule does not apply in null events. Our CHTS Representation Theorem

immediately implies the following.

Corollary 3: Consider a class of preference relations f�AgA2�. The following statements

are equivalent:

(1) The class f�AgA2� satis�es WbP, Consequentialism, Dynamic Coherence, and

Dynamic Consistency.

(2) The class f�AgA2� admits a Hypothesis Testing representation (u; �; �) with � = 0.

(3) The class f�AgA2� admits a CHTS representation (u; �; �) that satis�es �
 = 0.

5 The HTM updating rule: Order independence

Our analytical framework can be used for the study of sequential information processing in

a dynamic setting. In the actual situation, the belief updating problem is a recurring one

of revising the current belief to a new belief after arrival of new information in the sequel.

A good update rule should satisfy a �non-manipulability�property� order independence�

that the order of receiving information does not change the �nal posterior belief (cf. Basu

(2019); Sadler (2021)). Evidently, when restricted to a prior positive probability events, the

Bayesian updating rule does satisfy this desirable property. Observe that Consequentialism

implies fact-based updating that, in turn, implies the violation of invariant if the receiving

information were to be contradictory (e.g., a pair of disjoint events); thus, order indepen-

dence should be required only for the uncontradictory information under Consequentialism.

Basu (2019, Claim 1) shows that no Bayesian updating rules satisfy a so-called �strong path
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independence�when the cardinality of state space is greater than two. He provides a com-

plete characterization of a class of lexicographic updating rules by a weak form of path

independence. Sadler (2021) studies a practical guide to updating beliefs from contradic-

tory evidence in complex information environments. Sadler provides a general framework

of belief formation, along with several updating axioms, that helps us identify tradeo¤s

inherent in the way we form beliefs.8

In this section, we show an order independence result about the HTM updating rule.

More speci�cally, we de�ne the HTM updating rule as a function that determines, condi-

tioning on every event, a new belief for a prior belief and new information, regardless of

unexpected or contradictory information. We show that the HTM updating rule satis�es

the property that the update rule is invariant with respect to the order in which the new

information arrives, provided the information is not logically contradictory.

An important feature of HTM is the decomposition of preferences into tastes and beliefs

like the one in the standard Bayesian model. Consider an HTM that has a CHTS represen-

tation (u; �; �), where � = (�A)A2�, with the associated HTCPS � = f�AgA2�. The belief

part of the HTM can be represented by a belief-HTM (�; �;�).

De�nition 4: An updating rule ' = f'AgA2� on state space 
 is de�ned as follow: For

any event A 2 �,

'A : � (
)� �! �(
)

8When information is qualitative, Zhao (2022) provides an axiom of Exchangeability, a variant form
of order independence, which requires that the order in which the information arrives does not matter if
the di¤erent pieces of information neither reinforce nor contradict each other. Zhao axiomatizes a class
of Pseudo-Bayesian updating rules by Exchangeability, together with other axioms. In a learning context
of recommendations, Ke, Wu, and Zhao (2022) study the contraction rule for belief updating, which is
sensitive to the order in which recommendations arrive (e.g., recency bias).
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such that for all � 2 �(
) and A 2 �;

'A (�;A) 2 �(A) ;

where �(A) = f� 2 �(
) : � (A) = 1g.

An updating rule ' is an HTM updating rule for a belief-HTM (�; �;�) if for any

A;A 2 � and � 2 �(A),

'A (�;A) =

8<:
BU(�;A) if � (A) > �A
�A\A if � (A) � �A and A \ A 6= ;
�A if � (A) � �A and A \ A = ;

.

Theorem 3 below shows that the updating rule adopted in HTM is insentive to the order

in which the uncontradictory information appears� that is, conditioning on any arbitrary

event A, for all consistent pairs of events B;C 2 �A (i.e., B \ C 6= ;), the order in which

information arrives never in�uences the �nal posterior under the updating rule. In other

words, under the HTM updating rule, the order in which the information arrives does not

matter if the di¤erent pieces of information do not contradict each other.

Theorem 3 (Order Independence): The HTM updating rule, ' = f'AgA2�, for a

belief-HTM (�; �;�) satis�es order independence: For all A 2 � and B;C 2 �A with

B \ C 6= ;,

'B ('A (�A; B) ; C) = 'A (�A; B \ C) = 'C ('A (�A; C) ; B) .

Moreover, for all � 2 �(
) such that � = �
 in a belief-HTM (�; �;�), it is true that

'B ('
 (�;B) ; C) = �B\C = 'C ('
 (�;C) ; B) ,

for all B;C 2 � with B \ C 6= ;.
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The order independence in Theorem 3 refers to a very general form of order indepen-

dence that is applicable to (non-)Bayesian updating. Thus, the HTM updating rule that

satis�es this order independence could violate Bayes�rule like other (non-Bayesian) statis-

tical techniques. Corollary 4 below states that if the information is su¢ ciently correlated,

order independence pertains to Bayesian updating.

Corollary 4: The HTM updating rule, ' = f'AgA2�, for (�; �;�) satis�es a BU-form of

order independence: For all A 2 � and B;C 2 �A with �A (B \ C) > �A,

'B ('A (�A; B) ; C) = BU (�A; B \ C) = 'C ('A (�A; C) ; B) .

Remark 2. Due to the feature of fact-based updating (i.e., 'A (�;A) 2 �(A)), Theorem

3 implies that the HTM updating rule must satisfy order independence if, and only if,

the information is not logically contradictory (i.e., A \ B 6= ;). Corollary 4 asserts that

if the information is �-su¢ ciently correlated (i.e., �A (B \ C) > �A), the HTM updating

rule turns out to be Bayesian updating. If � = 0, Corollaries 1 and 4 yield an order

independence result for conditional probability systems. That is, for any CPS f�AgA2�
and for all correlation-consistent pairs of events B;C 2 �A (i.e., �A (B \ C) > 0), we

have 'B ('A (�A; B) ; C) =BU(�A; B \ C) = 'C ('A (�A; C) ; B). This is harmonious with

Basu�s (2019) result on (weak) path independence of lexicographic updating rule, because

a CPS can alternatively be viewed as a �lexicographic conditional probability system.�We

would like to point out that our order independence theorem applies to a wider range of

(non-)Bayesian updating rules, irrespective of whether the occurred events are expected or

unexpected in a conditional world.

We end this section by providing an example to explain our order independence result

about the HTM updating rule.
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Example 1. Suppose 
 = f!1; !2; !3g is a 3-state space. Consider an HTM with a

threshold vector � = 0 and a prior over priors � 2 �(� (
)) such that8<:
� = 0:6�0 + 0:4�1

�0 = 1!1

�1 = 0:5!2 + 0:5!3
.

The associated HTCPS � = f�AgA2� is a CPS on 
 such that

�A =

�
1!1 if A = 
; B
0:5!2 + 0:5!3 if A = C

,

where B = f!1; !2g and C = f!2; !3g. Obviously, B \ C = f!2g 6= ;. We have

'B ('
 (�
; B) ; C) = 1!
2 = 'C ('
 (�
; C) ; B) .

That is, this is an instance of our order independence theorem when A = 
, B = f!1; !2g

and C = f!2; !3g. Remarkably, in spite of �
 (C) = 0, the HTM updating rule ' satis�es

order independence under the circumstances.

Nevertheless, there is no Bayesian updating rule that satis�es �strong path indepen-

dence� in Basu�s (2019) sense. To explain this point, we let 'Basu : � (
) � � ! �(
)

denote a Bayesian updating rule for this CPS � = f�AgA2� such that 'Basu (�
; C) = �C .

Then, �
'Basu

�
'Basu (�
; B) ; C

�
= 'Basu (1!1; C) = 0:5!2 + 0:5!3;

'Basu
�
'Basu (�
; C) ; B

�
= 'Basu (0:5!2 + 0:5!3; B) = 1!2.

That is, the Bayesian updating rule 'Basu fails to satisfy �strong path independence.�The

thrust of our order independence theorem is that the HTM updating rule, ' = f'AgA2�,

allows to de�ne, conditioning on any A 2 �, a new updated belief for a prior belief and

new information, while 'Basu does not. (Note that the HTM updating rule ' allows to

have '
 (�
; C) 6= 'B (�
; C) for zero-probability event C.) Basu (2019) takes a di¤erent

way to show (weak) path independence of lexicographic updating rule, which is consistent

with our order independence result (cf. Remark 2).
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6 Conclusion

Bayesian assessing every contingent event is infeasible in the practical application. We are

often faced with the question of how to update beliefs in response to unexpected news.

Ortoleva (2012) provides a decision-theoretic model of HTM in which an agent is Bayesian,

but after observing an event that is su¢ ciently unlikely, she considers a prior over priors,

selecting the prior that assigned the highest likelihood to the unexpected observation.

The main purpose of this paper is to extend the HTM framework to the one in a con-

ditional world. In doing so, we introduce the notion of a Conditional Hypothesis Testing

System (CHTS) that delineates the mode of non-Bayesian reactions for unexpected news

in a conditional decision problem. We show that HTM gives rise to a CHTS representation

(u; �; �) by an array of thresholds �=(�A)A2� (Theorem 2). More speci�cally, under the

behavioral postulates�Well-Behaved Standard Preferences (WbP), Consequentialism, and

Dynamic Coherence� HTM determines a CHTS representation that speci�es the concrete

mode of hypothesis testing in every conditioning event, including the circumstances under

which the DM receives unexpected information that some rare or null event has occurred.

As a result, our CHTS representation implies that the DM has an HTM theory in a recur-

sive manner: The behavioral pattern of non-Bayesian reactions by applying the theory ex

ante in anticipation of future contingencies do not contradict the behavioral pattern pre-

scribed based on the theory via updating. The recursive structure is obviously desirable in

computation and analysis of intertemporal problems. While the original HTM framework

o¤ers the key insight of hypothesis testing, the dynamic feature of CHTS is suppressed

in Ortoleva�s (2012) HT Representation Theorem. As we have emphasized, the speci�c

form of hypothesis testing for the DM�s reaction to unexpected information conditional on

unexpected information is our main focus in this paper.
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In this paper, we also demonstrate that our framework can be used for the study of

sequential information processing in a dynamic setting. We show that the HTM updating

rule satis�es order independence� i.e., the order of receiving uncontradictory information

never in�uences the �nal posterior under the updating rule, regardless of which event has

occurred (Theorem 3). If moreover the information is su¢ ciently correlated, the form of

order independence turns out to be the standard one for Bayesian updating (Corollary 4).

On a conceptual level, the notion of CHTS helps us better understand the HTM framework

in a conditional world; for instance, it improves our understanding of the relation between

HTM and other models such as the conditional-probability-system expected utility model

(Corollary 1).9 Like the concept of Conditional Probability System, the CHTS notion cap-

tures dynamically coherent characteristics whenever (latent) information becomes available

in a hypothesis testing model: It can be useful for a systematic and rigorous analysis of

various economic models of asymmetric information (e.g., Bayesian persuasion, sequential

psychological games, and incomplete-information games), possibly played by non-Bayesian

agents who may change the paradigm upon receiving new information. In this regard,

CHTS provides a general analytical framework for studying complex situations that in-

volve the hypothetical and counterfactual reasoning of Bayesian and non-Bayesian agents,

by unlocking the inherently dynamic characteristics of HTM (whereby the DM envisions

the possibility of receiving information in all hypothetical scenarios). In particular, CHTS

o¤ers a formal apparatus for inquiring into higher-order issues regarding �unexpected�ex-

pected events and expected �unexpected� events in future contingencies such as nuclear

war, pandemics, global warming, etc.

9Karni and Vierø (2013, 2017) study belief updating in the wake of growing awareness. They characterize
behaviorally �reverse Bayesianism�according to which the relatively likelihood ratio for events that the
decision is already aware of remains unchanged upon becoming aware of a novel event; cf. also Schipper
(2022) for a related study of �reverse�belief updating under subjective expected utility. The extension of
our analysis to �reverse�(non-)Bayesian updating is an intriguing subject for further research.
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7 Appendix: Proofs

Lemma 1: (i) A class of preference relations f�AgA2� satis�es WbP, Consequentialism,
and Dynamic Coherence if and only if for any A 2 �, the subclass of preference rela-

tions f�A0gA02�A satis�es WbP, Consequentialism, and Dynamic Coherence. (ii) Under
Consequentialism, CDC implies Dynamic Coherence.

Proof: (i) The �If� part is trivial. Suppose f�AgA2� satis�es WbP, Consequentialism,
and Dynamic Coherence. Then, WbP and Consequentialism are also applied to every sub-

class f�A0gA02�A. Because �(
nAi+1) is �Ai-null�implies �(AinAi+1) is �Ai-null�(where
i = 1; : : : ; n, Ai 2 �A, and An+1 = A1), Dynamic Coherence holds true for the subclass

f�A0gA02�A.
(ii) Let i = 1; : : : ; n, and let Ai 2 �. Assume 
nAi+1 is �Ai-null (where An+1 = A1).

Then, AinAi+1 is �Ai-null. De�ne A� = [ni=1Ai. By CDC, AinAi+1 is �A�-null; hence,
[ni=1 (AinAi+1) is�A�-null. Note thatA�n [\ni=1Ai] = [ni=1 (AinAi+1). By Consequentialism,

n [\ni=1Ai] is �A�-null. Therefore, for i = 1; : : : ; n and any f; g 2 F ,

fAig �A� f ; (1)

and by CDC,

f �Ai g , fAig �A� g. (2)

By (1) and (2), f �Ai g , f �A� g for any f; g 2 F ; that is, �Ai=�A�for i = 1; : : : ; n.

Hence, Dynamic Coherence holds. �

Proof of Theorem 2: Let A 2 �. By Lemma 1(i) and Ortoleva�s (2012) Theorem 1,

there exists a minimal Hypothesis Testing representation (u; �A; �A) for f�A0gA02�A. Again
by Ortoleva�s (2012) Theorem 1, there exists a minimal Hypothesis Testing representation

(u; �; �) = (u; �
; �
) for f�AgA2�. Since the prior over priors � 2 �(� (
)) has full
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support in the sense that 
 = [�2supp(�)supp(�), it de�nes by Bayes�rule a (conditional)
prior over priors in every conditioning event; thus we can obtain �A =BU(�;A) for all

A 2 �. Therefore, we have a minimal CHTS representation (u; �; �) where �= f�AgA2�,
owing to the fact that conditional second-order beliefs must be consistent with the common

prior �.

Next, suppose f�AgA2� also satis�es CDC and is represented by a CHTS represen-

tation (u; �; �), via an HTCPS f�AgA2�. For any A0; A 2 � with A0 � A, CDC implies

�A =BU(�A0 ; A) if �A0 (A) > 0. By setting �A0 = 0 for all A0 2 �, we have a minimal
CHTS representation (u; �;0). Now, suppose (u; �;0) represents f�AgA2�. Consider ar-
bitrary A;A0 2 � with A � A0 and A is not �A0-null. Then, �A0 (A) > 0. By the CHTS
representation, �A =BU(�A0 ; A). Therefore, f�AgA2� satis�es CDC. �

Proof of Corollary 1: �If�: Suppose f�AgA2� has a conditional-probability-system ex-

pected utility representation. Then, there exist a nonconstant a¢ ne function u : X ! R

and a CPS f�AgA2� such that for any f; g 2 F

f �A g ,
X
!2


�A (!)u (f (!)) �
X
!2


�A (!)u (g (!)) .

Construct a prior over priors �� 2 �(� (
)) as follows:

�� =
1� �

(1� �K+1)

KX
k=0

�k�k

where � > 0 is su¢ ciently small, �0 = �
, and for k = 1; � � � ; K;

�k =

(
�
n[[k�1`=0 supp(�`)]

if 
 6=
�
[k�1`=0 supp

�
�`
��

�k�1 if 
 =
�
[k�1`=0 supp

�
�`
�� .

By construction, it is easily veri�ed that (u;��;0) is a CHTS representation for f�AgA2�.
By Theorem 1, the class of preferences relations f�AgA2� satis�es WbP, Consequentialism,
and CDC.
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�Only if�: Let f�AgA2� satisfy WbP, Consequentialism, and CDC. By Lemma 1(ii)
and Theorem 1, the class of preferences relations f�AgA2� admits a CHTS representation
(u; �;0). Thus, there exist a nonconstant a¢ ne function u : X ! R and an HTCPS

f�AgA2� such that for any f; g 2 F

f �A g ,
X
!2


�A (!)u (f (!)) �
X
!2


�A (!)u (g (!)) .

Since �= 0, for any A;B;C 2 �, �A (C) = �B(A\C)
�B(A)

if A � B and �B (A) > 0. Therefore,

�B (C) = �B (A)�A (C), 8C � A � B. That is, f�AgA2� is a CPS. �

Proof of Corollary 2: The �If�part follows immediately from the second part (for �= 0)

of CHTS Representation Theorem.

�Only if�: Let f�AgA2� be an HTCPS in a CHTS representation. Suppose f�AgA2� is
a CPS on 
. We adopt the construction of �� in the �If�part in the proof of Corollary 1.

Clearly, �� 2 �(� (
)) is a �partitional�prior over priors. By construction of ��, for any
A 2 �, f��Ag = f�Ag = argmax�2�(
)�� (�)� (A). Therefore, �A =BU(��A; A), 8A 2 �.
Since f�AgA2� is a CPS on 
, for any A;A0 2 � satisfying A � A0, we have

�A0 (A \ C) = �A0 (A)�A (C) , 8C � 
;

that is, �A =BU(�A0 ; A) if �A0 (A) > 0. �

Proof of Corollary 3: By Ortoleva�s (2012) Theorem 1, (1)()(2). By the CHTS Rep-
resentation Theorem, (2) ()(3). �

To prove Theorem 3, we need the following lemma. Consider an HTM updating rule,

' = f'AgA2�, for a belief-HTM (�; �;�).

Lemma 2. Suppose A;A 2 � and A \ A 6= ;. Then, 'A (�A;A) = �A\A.
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Proof of Lemma 2: Because A;A 2 � and A \ A 6= ;,

'A (�A;A) =
�
BU(�A;A) if �A (A) > �A
�A\A if �A (A) � �A

=

�
BU(�A; A \ A) if �A (A \ A) > �A
�A\A if �A (A \ A) � �A

.

By CHTS Representation Theorem, �A\A =BU(�A; A \ A) if �A (A \ A) > �A. Therefore,
'A (�A;A) = �A\A. �

Proof of Theorem 3: For all A 2 � and B;C 2 �A with B \ C 6= ;, by Lemma 2,8<:
'B ('A (�A; B) ; C) = 'B (�A\B; C) = 'B (�B; C) = �B\C
'A (�A; B \ C) = �A\B\C = �B\C
'C ('A (�A; C) ; B) = 'C (�A\C ; B) = 'C (�C ; B) = �C\B

.

Thus, for all A 2 � and B;C 2 �A with B \ C 6= ;,

'B ('A (�A; B) ; C) = 'A (�A; B \ C) = 'C ('A (�A; C) ; B) .

Now, assume that � 2 �(
) such that � = �
 in a belief-HTM (�; �;�). Letting A = 
,

we obtain

'B ('
 (�
; B) ; C) = �B\C = 'C ('
 (�
; C) ; B) ,

for all B;C 2 � with B \ C 6= ;.�

Proof of Corollary 4: Let A 2 � and B;C 2 �A. Since �A (B \ C) > �A, B \ C 6= ;.
By Theorem 3,

'B ('A (�A; B) ; C) = 'A (�A; B \ C) = 'C ('A (�A; C) ; B) .

Again, since �A (B \ C) > �A, 'A (�A; B \ C) =BU(�A; B \ C). Thus,

'B ('A (�A; B) ; C) = BU (�A; B \ C) = 'C ('A (�A; C) ; B) ,

for all A 2 � and B;C 2 �A with �A (B \ C) > �A. �
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