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ABSTRACT. This paper studies the welfare impact of information spillover in divisible-

good markets with heterogeneous traders and interdependent values. In a setting in which

two groups of traders trade two distinct but correlated assets, one within each group, the

information content in the price of one asset spillovers to the other market. Some “in-

formed” traders who submit demand schedules may condition their demands on the prices

of both assets, while others not. We prove the existence of a linear equilibrium and exam-

ine how information spillover affects trading, information efficiency, and welfare, as the

fraction of the informed traders varies. In the two symmetric benchmarks, full informa-

tion spillover (all traders are informed) dominates no information spillover (all traders are

uninformed) in terms of trading volume and welfare. However, in markets with heteroge-

neous traders, information spillover can hurt overall welfare, while still improving infor-

mation efficiency and liquidity; we characterize the non-monotone impact of information

spillover on aggregate welfare in large finite markets. Furthermore, information spillover

can account for the empirical evidence of excessive price co-movement and volatility trans-

mission in financial markets.
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1. INTRODUCTION

It is well-known that markets are interconnected. For instance, in financial markets,
trading activities of assets in one market can be informative about the values of assets in
other markets. Savvy traders operating in one market will likely use information from
other markets to help guide their trading decisions, amplifying underlying correlation
among markets and volatility of the impact of economic fundamentals, with potential
substantial welfare consequences for all traders. More concretely, during the financial
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crises in the late ’90s and 2008, drastic movements in one national stock market had sig-
nificant impacts on the stock markets across the world (see King et al. (1994), Forbes and
Rigobon (2002), Diebold and Yilmaz (2009)). Likewise, several studies have documented
the “excess comovement” of asset prices relative to the fundamentals (see Pindyck and
Rotemberg (1993), Barberis et al. (2005), Veldkamp (2006)). Similar patterns and issues
appear in many markets, such as real estate, petroleum, electricity, etc. Despite the sig-
nificance of information spillover, there is relatively little study of its impact on strategic
trading. How do strategic traders react to information spillover? For those who do not
directly observe or take into account prices in other markets, how are their trading activi-
ties indirectly affected? Does information spillover enhance the information efficiency of
prices? What determines traders’ equilibrium surplus? Would a policy that encourages
more traders to take advantage of information spillover necessarily improve welfare?

This paper develops a theoretical framework to examine these questions. In our model,
there are two markets and two assets, one in each market. 1 Traders’ values are correlated
both within a market and across markets. Traders in each market observe noisy signals
about their values and compete in demand schedules of the asset and the equilibrium
asset prices are determined by market clearing conditions jointly. Following the strategic
trading literature, traders’ payoffs are linear in their values net off a quadratic cost, and all
traders’ asset values and signals are jointly normally distributed. To model information
spillover, we assume that some traders in a market, who are called “informed traders,”
can react to the price of the asset in the other market and submit demand schedules of
an asset contingent on the prices of both assets and their private signals; the remaining
traders, who are called “uninformed traders,” can only express their demands of an asset
as functions of its own price and their private signals.2 The fraction of informed traders in
a market, which governs the extent of endogenous information spillover into this market,
is the main focus of our exercise.3

We first solve for the unique linear Bayes Nash equilibrium in closed form in two
benchmarks: either all traders are informed or they are all uninformed.4 The differences

1In the online appendix, we show that our results extend to the case with more than two markets and assets.
2Different from insider trading models in the literature, the uninformed traders still observe private signals
that are correlated with their values, so do the informed. The terms “informed” and “uninformed” in
this paper refer to whether a trader has access to the price information from the other market, or more
generally, some additional payoff-relevant information.

3When all traders in one market are uninformed, its asset price is independent of tradings in the other
market, although it is still an informative signal to the informed traders in the other market. Thus, our
model covers exogenous information spillover as a special case.

4The online appendix contains another special case with closed-form solutions where traders in one market
are all informed and all traders in the other market are uninformed.
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between these two equilibria illustrate the impact of information spillover, absence of
heterogeneity. Notably, all traders in a market benefit from information spillover solely
because the information from the asset price in the other market lessens competition. Intu-
itively, because this price is public, no trader has any informational advantage. Instead, it
alleviates adverse selection faced by traders so that they are more willing to trade, which
in turn lowers each trader’s price impact (i.e., how much a marginal increase in her de-
mand would change the price) and hence increases her expected surplus.

In general, trader heterogeneity, despite a realistic feature in many real-world markets,
confounds the information content of prices in the presence of information spillover. In
particular, equilibrium prices no longer reveal the average signals of all traders in a mar-
ket, which is a key property that holds in the symmetric benchmarks. Furthermore, a
traders’ strategic impact depends on the composition of traders in the markets. Conse-
quently, there are no off-the-shelf results that guarantee the existence of linear Bayes Nash
equilibria for the general case. In addition, the equilibria are not in closed forms even
when they exist. The main contributions of this paper are to establish the existence of an
asymmetric linear equilibrium and to characterize the equilibrium and its comparative
statics with respect to information spillover in large but finite markets.

For equilibrium existence, to deal with the unbounded strategy spaces and the large set
of equilibrium coefficients, we first identify four bounded parameters, two in each mar-
ket, that measure the weighted heterogeneity in bidders’ response to their own signals
and the asset price in this market, respectively. We show that these parameters uniquely
pin down each trader’s conditional expectation about her value as a linear function of her
signal and prices; moreover, the inference coefficients are bounded under a joint restric-
tion on the number of traders and the noise in the signal, from which we solve for traders’
optimal strategies and hence the four parameters in the beginning. Applying Brouwer’s
fixed point theorem to this mapping of the parameters delivers existence.5

Because the equilibria are not in closed forms in all but the benchmark cases, we first
consider the large-market limit as the market size in both markets grows to infinity and
then expand the equilibrium system with respect to the total number of traders to char-
acterize traders’ inference, behavior, and welfare in large but finite markets and their
comparative statics with respect to information spillover. Specifically, the limiting equi-
librium is unique and in closed-form, as the numbers of traders in both markets go to
infinity, keeping the fraction of informed traders in each market constant. Furthermore,

5The numerical exercises presented after the existence result suggest that the equilibrium is unique for a
wide range of primitives, although we do not have a formal proof of uniqueness.
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the limiting equilibrium is independent of the fraction of informed traders. However,
both the price impact of a single trader and her inference from information spillover van-
ish in the large market limit in our main setting. The former follows from the fact that
a single trader’s demand becomes negligible in large markets and the latter is a result of
the relative informativeness of signals within a market or across markets in predicting
a traders’ value.6 We also provide a series of numerical examples to illustrate how the
equilibrium outcomes vary with the number of traders.

To further examine analytically both the informational and strategic impacts of infor-
mation spillover, we expand the equilibrium coefficients around their limits and focus on
terms that are of order 1/N and 1/N2, where N is the market size. Remarkably, all these
first and second order effects, which also pin down the speed of convergence, are unique
and in closed form. Most importantly, with these approximations, we can compare how
the informed and uninformed are differentially impacted by information spillover and
characterize its comparative statics in large but finite markets.

Regarding traders’ inference and behavior, we show that information spillover affects
traders’ marginal revenues through the inference of their values and their marginal costs
through the equilibrium price impacts. For an informed trader, the information content
of the asset price in the other market has a first-order effect. This direct “spillover chan-
nel” benefits more to the informed than the uninformed. Intuitively, the extra informa-
tion alleviates the informed traders’ adverse selection problem so that their beliefs are
less responsive (first-order effect) to changes in their own asset prices and more sensitive
(second-order effect) to their own signals than the uninformed. Regarding price impacts,
similar to the benchmarks, because the informed are more willing to trade with less se-
vere adverse selection, all traders’ price impacts in equilibrium are lower with informa-
tion spillover. Moreover, the price impacts are decreasing in the fraction of informed in a
market, albeit only to a second-order effect.

Based on these characterizations, we obtain three main sets of results on traders’ wel-
fare and, at the market level, information efficiency, liquidity, price co-movement, and
volatility transmission. First, the fraction of informed traders has a non-monotonic im-
pact on aggregate welfare. Based on the large-market approximation for the expected
surplus, we show that a trader’s welfare increases if either (i) she relies more on her own
signal (“own signal effect”), or (ii) the two types of traders react more differently to prices
so as to create more trade between them (“heterogeneous beliefs effect”), or (iii) her price

6In the online appendix, we also consider extensions with market-specific systematic risks or supply shocks
in which information spillover does not vanish in the large market limit.
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impact is smaller. Among these three effects, it turns out that only the first two effects,
both of which are second-order, vary with respect to the fraction of informed traders; the
term containing price impact in the welfare approximation is independent of the fraction
of informed traders up to the second-order. Therefore, the welfare comparative statics is
solely driven by the traders’ beliefs and inference in large but finite markets.

For the informed, whose expected surplus is always larger than the uninformed, more
information spillover hurts their welfare. As an important step toward this result, we
show that when the market sizes are large enough, informed traders almost perfectly in-
fer the average signals in both markets from the two market prices, independent of the
fraction of informed. Consequently, changes in information spillover do not affect the
informativeness of prices for the informed. Thus, only the “heterogeneous beliefs effect”
matters for an informed trader: the gain from trading with the uninformed shrinks and so
does her expected surplus, as the fraction of the informed increases. For the uninformed,
their surplus is U-shaped because of two opposing forces. Suppose there are more in-
formed traders in a market, on the one hand, the price contains more information from the
other market, which may crowd out the informativeness of her private signal (a smaller
“own signal effect”), which hurts the uninformed; on the other hand, competition among
the informed gets stronger (a larger “heterogeneous beliefs effect”), which benefits the
uninformed. Overall, as more traders become informed, the weighted average surplus
also turns out to be U-shaped as a function of information spillover. An immediate policy
implication is that an increase in transparency can have negative welfare consequences in
markets with adverse selection and heterogeneously informed traders.

Second, information spillover improves both information efficiency, measured by vari-
ance reduction, and liquidity. When there are more informed traders, the variance of an
uninformed trader’s conditional expectation of her value is always smaller; the variance
of the informed, on the other hand, remains the same up to second-order approxima-
tion. That is, more informed traders improve overall learning and lower the information
advantage of informed traders. In fact, we can rewrite a trader’s expected surplus (up
to second-order approximation) as the difference between information efficiency and the
variance of her own asset price. Because information spillover leads to larger price vari-
ance, this explains the gap between information efficiency and allocation efficiency in our
strategic setting. For liquidity, we show that the expectation of trading volume of a trader
can be rewritten (again up to second-order approximation) as expected surplus multi-
plying another term related to price impact, which has a second-order effect. However,
unlike for information efficiency, the price impact now plays a dominant role.
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Finally, our findings are consistent with the empirical evidence of excessive price co-
movements and volatility transmissions mentioned in the beginning. In particular, the
correlation in prices is larger than the correlation of average signals across markets, and
when there is an exogenous shock to the average signals in one market, the price variance
in the other market also goes up; both effects are increasing in information spillover.

This paper is related to the large literature on divisible-good double auctions with in-
terdependent values and strategic trading in imperfectly competitive markets. Rostek
and Yoon (2020) give a contemporary and comprehensive survey of the literature. Start-
ing from the seminal work by Wilson (1979) that considers the symmetric pure common
value case, subsequent papers, Vives (2011), Rostek and Weretka (2012), Ausubel et al.
(2014), Vives (2014), and Du and Zhu (2017) for example, extend the analysis to general
interdependent value settings with symmetric equilibria. More recent contributions by
Malamud and Rostek (2017), Rostek and Yoon (2021), Rostek and Yoon (2021), Chen and
Duffie (2021), Wittwer (2021), and Rostek and Wu (2021) take the market design perspec-
tive to analyze the impact of trading technologies (e.g. the arrangement of trading venues,
market fragmentation, joint or independent market-clearing across venues, synthetic as-
sets, access to information) in multi-asset markets with either private or interdependent
values. An important insight is that, when traders are strategic and can trade in multiple
markets, the change in traders’ price impact in decentralized markets can outweigh the
loss of information or market depth and hence improve overall welfare relative to central-
ized markets. In comparison, to isolate the cross-market information externality, our main
model assumes that each trader only trades in one market so that her payoff does not di-
rectly depend on the allocations across markets and analyzes how information spillover,
either exogenous or endogenous, affects her price impact and welfare.7

Trader heterogeneity in the presence of information spillover is another substantial de-
parture of our paper from the literature. Different from the insider trading models ini-
tiated by Kyle (1989) in which some traders are privately informed and the rest has no
private information, in our model all traders are privately informed and, in addition, a
fraction of traders in each market learns some additional public signal, such as the price
in the other market when information spillover is endogenous. A recent contribution
by Manzano and Vives (2021) also studies asymmetric divisible good auctions with two
types of traders, who also provide an extensive and insightful discussion on the relevance

7The online appendix contains an analysis of the case in which all traders trade in both markets.



INFORMATION SPILLOVER IN MARKETS WITH HETEROGENEOUS TRADERS 7

of trader heterogeneity in many real-world markets.8 Manzano and Vives (2021) over-
come the potentially complex inference problem under heterogeneous information by
studying a setting in which all traders of the same type observe a common type-specific
signal so that the market price perfectly aggregates information when there are two types
of traders; they also consider trader heterogeneity in other dimensions, such as the mar-
ginal cost. In contrast, prices in our model do not perfectly aggregate information and
different types of traders hold distinct beliefs; we deal with this non-degenerate adverse
selection by exploiting the asymptotic symmetry in large markets as explained in previ-
ous paragraphs. In addition, our focus on the comparative statics of information spillover
is specific to our setting and differs from the questions addressed in Manzano and Vives
(2021). Our work thus complements Manzano and Vives (2021), in both the economic
insights and technical methods, and echoes their advocate for further investigations of
markets with heterogeneous traders.

The rest of the paper is organized as follows. Section 2 presents the setting. Section 3
analyzes two symmetric benchmarks. Section 4 establishes equilibrium existence in the
general case. Section 5 examines the equilibrium in large finite markets. Section 6 dis-
cusses the modeling assumptions and extensions. The proofs of the results are relegated
to Appendices A–C. The online appendix contains further details of the extensions.

2. MODEL

Consider a setting with two risky assets, k ∈ {I, I I}, traded in two separate markets.
For each k ∈ {I, I I}, there are nk ∈ N+ traders who trade asset k in market k, and the
set of traders in market k is denoted by Nk. For each trader i ∈ Nk, the per-unit value of
asset k to her is θi

k. The vector of all traders’ values, (θi
I ,θ

j
I I)i∈NI ,j∈NI I , is jointly normally

distributed with a zero mean vector (as a normalization). The variance of θi
k is σ2

θk
> 0. The

covariances satisfy: Cov(θi
k,θ j

k) = σ2
θk

ρk > 0, for all i, j ∈ Nk, and Cov(θi
k,θ j
−k) = σθk σθ−k φ ∈

R, for all i ∈ Nk, j ∈ N−k, k,−k ∈ {I, I I} with k ,−k. We assume 1 > ρk ≥ |φ|> 0.9

For each k ∈ {I, I I}, trader i ∈ Nk privately observes a noisy signal si
k = θi

k + εi
k about

her value. The noise εi
k is normally distributed with mean zero and variance σ2

εk
and inde-

pendent across all traders i and assets k. Let σ2
k = σ2

εk
/σ2

θk
be the variance ratio measuring

the impact of noise relative to the value in market k. The noises (εi
I , ε

j
I I)i∈NI ,j∈NI I and the

values (θi
I ,θ

j
I I)i∈NI ,j∈NI I are independent.

8Another recent paper by Andreyanov and Sadzik (2021) also studies exchanges with trader heterogeneity
from a robust mechanism design perspective.

9The condition ρk ≥ |φ| is necessary for the covariance matrix of all signals to be positive semi-definite.
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The initial endowment of each trader i ∈ Nk is normalized to zero. The payoff of trader
i ∈ Nk from trading xi

k units of asset k at a price pk ∈R is

ui
k(xi

k, pk,θi
k) = (θi

k − pk) · xi
k −

γ

2

(
xi

k

)2
,

which is linear in her value of the asset θi
k net off the asset price pk and has a quadratic

inventory cost, where γ > 0 is a commonly known constant.
Traders at each market submit net demand schedules for the corresponding asset and

the equilibrium prices of the assets are simultaneously determined by the market-clearing
conditions at both markets. To examine the impact of information spillover from one mar-
ket to the other, we assume that there are two types of traders at each market, depending
on whether their demand can be contingent on the price of the other asset. Specifically, for
each k ∈ {I, I I}, letN 1

k be the set of informed traders in market k, who can submit demand
schedules depending on the prices of the assets in both markets. That is, for each i ∈ N 1

k ,
trader i submits a demand function xi

k : R2 → R such that xi
k(pk, p−k) ∈ R specifies the

quantity of asset k trader i demands for any price vector (pk, p−k). Let N 0
k = Nk \ N 1

k be
the set of uninformed traders in market k, who submit demand schedules only as a func-
tion of the price of asset k. That is, for each i′ ∈ N 0

k , trader i′ submits a demand function
xi′

k : R → R specifying the quantity demanded xi′
k (pk) of asset k for any price pk ∈ R.

A trader is a buyer if her demand is positive or a seller if her demand is negative. Let
n1

k = |N 1
k | and n0

k = |N
0
k |= nk − n1

k be the numbers of informed and uninformed traders,
respectively. Denote by αk = n1

k/nk ∈ [0,1] the fraction of informed traders in market
k. Given the submitted demand schedules in both markets, (xi

I(pI , pI I), xi′
I (pI))i∈N 1

I ,i′∈N 0
I

and (xj
I I(pI I , pI), xj′

I I(pI I))j∈N 1
I I ,j
′∈N 0

I I
, the equilibrium price vector (p∗I , p∗I I) ∈ R2 is deter-

mined by the two market-clearing conditions:

∑
i∈N 1

I

xi
I(p∗I , p∗I I) + ∑

i′∈N 0
I

xi′
I (p∗I ) = 0, and ∑

j∈N 1
I I

xj
I I(p∗I I , p∗I ) + ∑

j′∈N 0
I I

xj′
I I(p∗I I) = 0.

For each k ∈ {I, I I}, an informed trader i ∈ N 1
k receives xi

k(p∗k , p∗−k) units of asset k and
pays p∗k xi

k(p∗k , p∗−k), and an uninformed trader i′ ∈ N 0
k is allocated xi′

k (p∗k) units of asset k
and pays p∗k xi′

k (p∗k).
We adopt linear Bayes Nash equilibrium as the solution concept. A strategy of an in-

formed trader i ∈ N 1
k is a mapping xi

k(pk, p−k, si
k) from her realized signal si

k to a demand
schedule for asset k contingent on (pk, p−k). A strategy of an uninformed trader i′ ∈ N 0

k is
a mapping xi′

k (pk, si′
k ) from her realized signal si′

k to a demand schedule for asset k contin-
gent on pk. A Bayes Nash equilibrium is a strategy profile (xi

k, xi′
k )k∈{I,I I},i∈N 1

k ,i′∈N 0
k

such that
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for each trader i ∈ N 1
k and signal si

k, the demand schedule maximizes i’s expected payoff:

E

[
ui

k(xi
k(p∗k , p∗−k, si

k), p∗k ,θi
k)

∣∣∣∣si
k, p∗k , p∗−k

]
≥ E

[
ui

k(x̃i
k( p̃k, p̃−k, si

k), p̃k,θi
k)

∣∣∣∣si
k, p̃k, p̃−k

]
,

where (p∗k , p∗−k) is the market-clearing price vector given xi
k and all other traders’ equilib-

rium strategies and ( p̃k, p̃−k) is the market-clearing price vector given any strategy x̃i
k and

all other traders’ equilibrium strategies, and for each i′ ∈ N 0
k and si′

k ,

E

[
ui′

k (xi′
k (p∗k , si′

k ), p∗k ,θi′
k )

∣∣∣∣si′
k , p∗k

]
≥ E

[
ui′

k (x̃i′
k ( p̃k, si′

k ), p̃k,θi′
k )

∣∣∣∣si′
k , p̃k

]
,

where p∗k is asset k’s market-clearing price given xi′
k and all other traders’ equilibrium

strategies and p̃k is asset k’s market-clearing price given any strategy x̃i′
k and all other

traders’ equilibrium strategies. A Bayes Nash equilibrium is linear if all traders’ equilib-
rium strategies are linear functions. Since traders in each of the four subgroups (N 1

I , N 0
I ,

N 1
I I , and N 0

I I) are ex ante symmetric, we further restrict attention to linear Bayes Nash
equilibria that are symmetric within each subgroup.

3. BENCHMARKS

To illustrate the spillover effect of asset prices, we first solve for the closed-form equi-
libria in two benchmark cases. To simplify notations, here we assume the two markets
are symmetric in the sense that nI = nI I = n, ρI = ρI I = ρ, and σ2

I = σ2
I I = σ2.

3.1. Information Spillover (αI = αI I = 1). Suppose all traders can condition their de-
mands on the prices of both assets. Consider the symmetric linear demand:

(1) xi
k(pk, si

k) = a1
ksi

k − B1
k pk + b1

k p−k,

where a1
k, B1

k , and b1
k are coefficients. The equilibrium is derived as follows:

(i) Trader i’s first order condition is

(2) E
[
θi

k|s
i
k, pk, p−k

]
− pk = (γ + λ1

k)xi
k,

where left-hand side is the marginal revenue, and the right-hand side represents the mar-
ginal cost, which contains a term λ1

k = dpk/dxi
k, i.e., the price impact in market k, measur-

ing how the equilibrium price reacts to a change in trader i’s demand.
(ii) The price impact λ1

k. In the two market-clearing conditions, we take derivative with
respect to xi

k to obtain

1 + ∑
j,i,j∈N 1

k

[
∂xj

k
∂pk

dpk

dxi
k
+

∂xj
k

∂p−k

dp−k

dxi
k

]
= 0
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and

∑
l∈N 1

−k

[
∂xl
−k

∂p−k

dp−k

dxi
k
+

∂xl
−k

∂pk

dpk

dxi
k

]
= 0,

from which we solve for the price impact:
(3)

λ1
k =

dpk

dxi
k
= −

 ∑
j,i,j∈N 1

k

∂xj
k

∂pk
−

∂xj
k

∂p−k

∑l∈N 1
−k

∂xl
−k

∂pk

∑l∈N 1
−k

∂xl
−k

∂p−k




−1

=
B1
−k

(n− 1)
(

B1
k B1
−k − b1

kb1
−k

) ,

where the second equality follows from the conjectured linear strategy profile in (1).
(iii) Trader i’s inference: E

[
θi

k|s
i
k, pk, p−k

]
. The market-clearing condition for asset k

implies that

(4) s̄1
k =

B1
k pk − b1

k p−k

a1
k

,

where s̄1
k = (∑i∈N 1

k
si

k)/n is the average signal of all (informed) traders in market k. There-
fore, (pI , pI I) is a linear combination of (s̄I , s̄I I) and hence is also jointly normal dis-
tributed. The projection theorem then implies that

(5) E
[
θi

k|s
i
k, pk, p−k

]
= C1

s si
k +

(
C1B1

k
a1

k
−

C1
−b1
−k

a1
−k

)
pk +

(
C1
−B1
−k

a1
−k
−

C1b1
k

a1
k

)
p−k,

where

C1
s =

1− ρ

1− ρ + σ2 , C1 =
σ2

1− ρ + σ2 ·
ρ2 + ρ(1−ρ+σ2)

n − φ2(
ρ + 1−ρ+σ2

n

)2
− φ2

, C1
− =

σ2 · φ
n(

ρ + 1−ρ+σ2

n

)2
− φ2

.

(iv) Substituting (5) and (3) into (2) and matching coefficients, we get
(6)

a1
k ≡ a1 =

(n− 2)C1
s − C1

γ(n− 1)
, B1

k ≡ B1 =
(C1

s + C1)a1

(C1
s + C1)2 − (C1

−)
2

, b1
k ≡ b1 =

C1
−a1

(C1
s + C1)2 − (C1

−)
2

.

The above strategy profile is an equilibrium if and only if a1 > 0. A simple sufficient
condition for a1 > 0 is (1− ρ)(n − 2) > σ2. Furthermore, we have the following result
regarding the equilibrium coefficients.

Proposition 3.1. If αI = αI I = 1 and (1− ρ)(n− 2) > σ2, the equilibrium is given by (6)
and the parameters satisfy:

(i) b1 > 0 if and only if φ > 0;

(ii) 0 < a1 < C1
s

γ
n−2
n−1 and 0 < |b1|< B1 < 1

γ
n−2
n−1 ;

(iii) a1, B1, and |b1| are increasing in |φ|.
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3.2. No Spillover (αI = αI I = 0). Now suppose no trader can condition her demand on
the price of the other asset, thus there is no information spillover and the market-clearing
prices are determined separately. Following the steps in the previous benchmark, the
equilibrium in market k ∈ {I, I I} with no spillover is given by

(7) xi
k(pk, si

k) = a0
ksi

k − B0
k pk,

where

(8) a0
k ≡ a0 =

(n− 2)C0
s − C0

γ(n− 1)
, B0

k ≡ B0 =
a0

C0
s + C0 ,

(9) C0
s =

1− ρ

1− ρ + σ2 , C0 =
σ2

1− ρ + σ2 ·
ρ

ρ + 1−ρ+σ2

n

.

Moreover, trader i’s price impact in market k is

(10) λ0
k =

dpk

dxi
k
=

1
(n− 1)B0

k
.

The above strategy profile is an equilibrium if and only if a0 > 0. Again, a sufficient
condition is (1− ρ)(n− 2) > σ2. The result is summarized in the next proposition.

Proposition 3.2. If αI = αI I = 0 and (1− ρ)(n− 2) > σ2, the equilibrium is given by (8)
and the parameters satisfy:

(i) 0 < a0 < C0
s

γ
n−2
n−1 and 0 < B0 < 1

γ
n−2
n−1 ;

(ii) a0 and B0 are independent of |φ|.

3.3. Comparison. This section compares traders’ inference, behavior, and welfare. Corol-
lary 3.3 shows that traders put the same weight on their own signals in both benchmarks
and the uninformed place a higher weight on the price of her asset than the informed.

Corollary 3.3. The equilibrium inference parameters satisfy C0
s = C1

s , C0 > C1.

Since traders’ inferences are directly related to their equilibrium strategies, the next
result (Corollary 3.4) compares traders’ demand schedules.

Corollary 3.4. The informed traders’ demand schedules, compared to those of the unin-
formed, are more sensitive to their own price, i.e., B1

k > B0
k and more sensitive to their

own signals, i.e., a1
k > a0

k. The price impact under information spillover is lower than that
under no spillover: λ1

k < λ0
k.

Intuitively, with a lower price pk, an informed trader in market k is less pessimistic
about the quality of the asset and thus demands more than an uninformed trader, since
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an informed trader’s inference is less sensitive to the own price (C1 < C0). Therefore,
the equilibrium market demand under information spillover is more responsive to price
(B1

k > B0
k). Consequently, the equilibrium price is less sensitive to a change of trade, i.e.,

(λ1
k < λ0

k). As an immediate implication, informed traders are more willing to rely on
their own signals (a1

k > a0
k), since they have smaller price impacts.

Finally, we compare traders’ equilibrium payoffs. Denote by W1
k (resp., W0

k ) a trader’s
expected equilibrium payoff in the benchmark with (resp., without) information spillover.
Proposition 3.5 establishes that a trader’s expected payoff is strictly decreasing in her
price impact, and informed traders’ payoffs are higher since information spillover lowers
all traders’ price impacts.

Proposition 3.5. Traders’ expected surpluses in the benchmarks are given by

W1
k =

γ
2 + λ1

k
(γ + λ1

k)
2
(C1

s )
2E(si

k − s̄k)
2 and W0

k =
γ
2 + λ0

k
(γ + λ0

k)
2
(C0

s )
2E(si

k − s̄k)
2,

where W1
k > W0

k .

4. THE GENERAL CASE

This section establishes the existence and characterization of equilibria in the general
setting in which there can be both informed and uninformed traders in each market. We
first characterize both types of traders’ equilibrium strategy and inference, and then apply
Brouwer’s fixed point theorem to prove existence.

For each k ∈ {I, I I}, we conjecture a linear demand schedule for any uninformed trader
i′ ∈ N 0

k in market k as
x0

k,i(pk, si
k) = a0

ksi
k − B0

k pk,

and another linear demand schedule for any informed trader i ∈ N 1
k in market k as

x1
k,i(pk, p−k, si

k) = a1
ksi

k − B1
k pk + b1

k p−k,

where a0
k, B0

k , a1
k, B1

k , and b1
k are constants. Recall that αk = n1

k/nk is the fraction of in-
formed traders in market k. Let Bk = αkB1

k + (1− αk)B0
k and bk = αkb1

k be the aggregate
sensitivities of demand in market k to pk and p−k, respectively. Lemma 4.1 characterizes
the equilibrium demand schedules.

Lemma 4.1. The equilibrium demand schedule of an informed trader i ∈ N 1
k is

(11) x1
k,i(pk, p−k, si

k) =
1

γ + λ1
k

(
E
[
θi

k|s
i
k, pk, p−k

]
− pk

)
,
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where

λ1
k =

(
(αknk − 1)(B1

k − b1
k

b−k
B−k

) + (1− αk)nkB0
k

)−1

.

The equilibrium demand schedule of an uninformed trader i ∈ N 0
k is

(12) x0
k,i(pk, si

k) =
1

γ + λ0
k

(
E
[
θi

k|s
i
k, pk

]
− pk

)
,

where

λ0
k =

(
αknk(B1

k − b1
k

b−k
B−k

) + ((1− αk)nk − 1)B0
k

)−1

.

Lemma 4.1 shows that a trader’s demand is increasing in the conditional expectation of
her value, and is decreasing in the price impact λ1

k (or λ0
k). The next Lemma (Lemma 4.2)

characterizes the market-clearing prices in terms of traders’ signals, given the conjectured
strategies of all traders. It establishes that the price pk is a linear combination of the
average signals of traders in different subgroups; as a result, the price vector (pI , pI I) is
also jointly normally distributed.

Lemma 4.2. The market clearing price of asset k ∈ {I, I I} is

(13) pk = D1
k s̄1

k + D0
k s̄0

k + d1
k s̄1
−k + d0

k s̄0
−k,

where s̄1
k = ∑i∈N 1

k
si

k/n1
k, s̄0

k = ∑i′∈N 0
k

si′
k /n0

k, k,−k ∈ {I, I I},k ,−k, and

D1
k =

B−kαka1
k

BkB−k − bkb−k
, d1

k =
bkα−ka1

−k
BkB−k − bkb−k

, D0
k =

B−k(1− αk)a0
k

BkB−k − bkb−k
, d0

k =
bk(1− α−k)a0

−k
BkB−k − bkb−k

.

Next we examine traders’ conditional expectations of their values. Because of trader
heterogeneity, there are two types of learning: “cross assets” and “cross subgroups.” Un-
like the benchmark cases, traders’ conditional expectations of their values and equilib-
rium strategies do not have closed-form solutions due to the asymmetry. To facilitate the
economic interpretations of the characterization and to establish equilibrium existence,
we introduce the following parameters that capture the impact of signals on market-
clearing prices:

• The price impact of own-asset signals, ζk:

(14) ζk ≡ D1
k + D0

k .

• The price impact of cross-asset signals relative to own-asset signals, δk:

(15) δk ≡
d1

k + d0
k

D1
k + D0

k
.
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• The price impact of cross-subgroup signals within a market, πk:

(16) πk ≡
D1

k
D1

k + D0
k
=

αka1
k

αka1
k + (1− αk)a0

k
.

The next result (Lemma 4.3) expresses traders’ conditional expectations as functions of
the parameters (ζk, δk,πk)k∈{I,I I}. Besides the associated economic interpretations, these
parameters are technically convenient to handle, allowing us to establish tight bounds for
the fixed point mapping in the existence proof.

Lemma 4.3. Given the conjectured equilibrium strategies, the conditional expectation of
the value of an informed trader i ∈ N 1

k is

(17) E
[
θi

k|s
i
k, pk, p−k

]
= C1

kss
i
k + C1

k pk + c1
k p−k,

and the conditionally expected value of an uninformed trader i ∈ N 0
k is

(18) E
[
θi

k|s
i
k, pk

]
= C0

kss
i
k + C0

k pk,

where (C1
ks,C

1
k , c1

k,C0
ks,C

0
k )k∈{I,I I} are coefficients that depend on (δk,ζk,πk,σ2

k ,ρk,nk,φ)k∈{I,I I}.
The exact form of is given in equation (25) and (27) in Appendix B.

Now we state the first main results of the paper (Theorem 4.4) that establishes the exis-
tence of a linear equilibrium and demonstrate its properties.

Theorem 4.4. There exists σ̄2
k ∈ (0, (1− ρk)(nk − 2)) such that if σ2

k < σ̄2
k for k = I, I I,10

there exists a linear Bayes Nash equilibrium such that

(1) a1
k > 0, B1

k > 0, |b1
k |> 0, a0

k > 0 and B0
k > 0.

(2) C1
ks, C0

ks ∈ (0,1), C1
k ,C0

k ∈ [0, nk−2
nk−1 ].

(3) b1
k > 0 and c1

k > 0 if and only if φ > 0.

Here we provide a sketch of proof for Theorem 4.4. First, we define two parameters to
capture the heterogeneity between informed and uninformed traders:

(19) πk =
αka1

k
αka1

k + (1− αk)a0
k

, Πk =
αkB1

k
αkB1

k + (1− αk)B0
k

.

Then we construct a fixed point mapping as follows:

Step 1: The input of the mapping is πk ∈ [0,1] and Πk ∈ [0,1] for k ∈ {I, I I}.
Step 2: Fix any (πk,Πk)k∈{I,I I}, we solve for the unique (C1

ks,C
1
k , c1

k,C0
ks,C

0
k )k∈{I,I I}, as well

as (δk,ζk)k∈{I,I I}.

10The condition σ2
k < σ̄2

k holds if nk is large enough or σ2
k is small enough.
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Step 3: Given (C1
ks,C

1
k , c1

k,C0
ks,C

0
k )k∈{I,I I}, we get the unique (a1

k, B1
k , a0

k, B0
k)k∈{I,I I}, which are

all positive numbers, and also (b1
I ,b1

I I).
Step 4: Given (a1

k, B1
k , a0

k, B0
k)k∈{I,I I}, we obtain the output of the mapping πk ∈ [0,1] and

Πk ∈ [0,1] for k ∈ {I, I I}.
Along the proof of Theorem 4.4, we also identify the following properties regarding

the inference parameters and equilibrium strategies. First, both types of traders respond
positively to private signals (a1

k > 0 and a0
k > 0) and negatively to the own price (B1

k > 0
and B0

k > 0). This is guaranteed by the assumption that the noise of the private signal σ2
k is

small enough or there is a large number of trader nk. Intuitively, if a trader’s signal is very
informative about her value, her demand would mostly rely on her signal as opposed to
the prices. If instead it relies more on the information content of prices, then a low price,
for example, would imply that the asset is less valuable and thus the trader would lower
her demand, violating optimality. Likewise, if there are more traders, the price would
be less sensitive to each individual trader’s demand, thus the trader is more willing to
submit a larger demand when the price is lower. Second, informed traders react to the
price from the other market positively (b1

k > 0 and c1
k > 0) if and only if the two assets

are positively correlated (φ > 0). Under positive (negative) correlation, a higher price
in other market serves a good (bad) news about the value of the asset in a trader’s own
market. Finally, the sensitivity of the own price for both types of traders is less than nk−2

nk−1

to prevent the own price from being so precise to crowd out the informativeness of private
signals and make traders completely abandon their private signals.

4.1. Numerical Exercises. For fixed market sizes, the inference problems depend on the
composition of traders in both markets, which complicates the characterizations of traders’
best replies and thus the equilibrium demand schedules. Here we provide several numer-
ical examples on the impact of how information spillover αk (see Figures 1–3). From the
mapping constructed in Theorem 4.4, we apply the fixed point iteration to get a unique
numerical solution of (πk,Πk) and hence all the equilibrium parameters.11

First, the informed and the uninformed react differently to their own prices (B1
k − B0

k ,

0), and their reactions to their own signals also differ but only mildly (a1
k − a0

k , 0). In
addition, different from the benchmarks, it is not always the case that informed traders
trade more aggressively, i.e., a1

k > a0
k (see Figure 1), while it is still true that informed

traders are more sensitive to prices (B1
k > B0

k). When nk is small enough, an uninformed

11For simplicity, we focus on the symmetric case where αI = αI I and nI = nI I ≡ n, where n = 10,50.
The inputs of the fixed point iteration are π = πI = πI I and Π ≡ ΠI = ΠI I . It turns out that Π is the
unique positive root of a cubic polynomial, hence we can further simplify the input to be π, which is one-
dimensional and significantly simplifies the numerical analysis. See the details in the online appendix.
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FIGURE 1. Equilibrium Outcome: n = 10

FIGURE 2. Equilibrium Outcome: n = 50

trader may trade more aggressively due to a free-riding effect. Since informed traders
are more sensitive to prices, then a larger fraction of informed traders lowers the price
impact, which benefits all traders in the market. Compared to the informed trader, an
uninformed trader faces one more informed in the market, so she could benefit more from
the smaller price impact of her residual demand. However, when the market size is large,
this free-riding effect vanishes, since the impact of a single trader becomes insignificant,
consequently, the informational advantage of an informed trader dominates: a1

k > a0
k (see

Figure 2 and Proposition 5.2).
Second, information spillover (αk) has monotonic impacts on the equilibrium beliefs

and strategies. If there are more informed traders (a higher αk), then market k becomes
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more competitive (lower price impacts λ1
k and λ0

k); both types of traders trade more ag-
gressively (higher a1

k and a0
k); and informed traders are less responsive to both prices,

relative to uninformed traders (lower B1
k − B0

k and b1
k). Based on these observations, we

characterize the equilibrium in large markets in the next section.

FIGURE 3. Welfare: n = 50 and n = 10

Finally, the impacts of information spillover (αk) on welfare are non-monotonic (See
Figure 3). To be specific, when the number of traders are large enough (see the left figure
n = 50 in Figure 3), the welfare of informed traders (W1

k ) is decreasing in αk, while the
welfare of uninformed traders (W0

k ) and the aggregate welfare Wk ≡ αkW1
k + (1− αk)W0

k
are U-shaped in αk. Note that the welfare in the benchmarks corresponds to the two
extreme points in the interval αk ∈ [0,1]; thus, the asymmetry between the two types of
traders plays has important welfare implications in the general (i.e., interior) case.

5. ANALYSIS OF LARGE MARKETS

To further examine the equilibrium properties, this section considers settings in which
the numbers of traders at both markets grow large, which allow us to disentangle the
information channel of price spillover from its strategic impact on traders’ inference, be-
havior, and welfare. We focus on the generic case in which ρk > |φ| for each k, that is,
traders’ values are more correlated within a market than across markets. Let N = nI + nI I

be the total number of traders. Denote by χk = nk/N ∈ (0,1) the proportion of traders
in market k ∈ {I, I I}. Recall that αk ∈ (0,1) is the fraction of informed traders in market
k. We will take N to infinity while holding both (χk) and (αk) fixed. That is, we study
equilibria in large markets keeping the relative sizes of different subgroups the same. In
particular, we examine the inference and demand parameters in the orders of 1/N and
1/N2, which capture most of the direct and indirect spillover effects when N is large.

5.1. Comparison between two types of traders. We first compare traders’ inferences and
strategies in large markets. In particular, the unique limiting equilibrium is symmetric
and independent of the fraction of the informed. This “asymptotic symmetry” lays out
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the foundation toward the analysis of how information spillover and the composition of
traders influence the equilibrium in later sections.

Proposition 5.1 characterizes and compares traders’ inferences. Notably, the infinite-
market limit as well as the first and second order effects are all unique.

Proposition 5.1. Traders’ inference parameters satisfy the following:

(1) |c1
k|=

c∗k
nk

+ o( 1
N ), |δk|=

δ∗k
nk

+ o( 1
N ), C0

k − C1
k = ∆k

nk
+ o( 1

N ), and C1
ks − C0

ks = ∆ks
n2

k
+

o( 1
N2 ), where c∗k =

σθk
(1−ρk)|φ|

σθ−k
(ρkρ−k−φ2)

1
αk+

1−ρk
σ2

k

.

(2) c∗k > 0, δ∗k > 0, ∆k > 0, and ∆ks > 0.12

(3) limN→∞ c1
k = limN→∞ δk = 0, limN→∞ C1

k = limN→∞ C0
k = 1−C∗k , and limN→∞ C1

ks =

limN→∞ C0
ks = C∗k , where C∗k = 1−ρk

1−ρk+σ2
k
.

First, an informed trader’s inference depends on the price in the other market, |c1
k|> 0

when the two assets are correlated (φ , 0), as she directly takes into account this informa-
tion externality. Since pk is predominantly determined by the average signal s̄k in market
k, as the number of traders nk grows large, s̄k is almost a perfect signal of her value, i.e.,
Cov(θi

k,s̄k)

Var(s̄k)
is close to 1. Therefore, the residual explanatory power of s̄−k converges to zero

and is proportional to 1
nk

, i.e., 1− Cov(θi
k,s̄k)

Var(s̄k)
=

σ2
εk

Var(s̄k)
1
nk

.13 Consequently, the cross-asset ef-
fect is non-zero |δk|> 0. Because of information spillover, the demand of the informed
in market k depends on the price p−k, which is correlated with s̄−k, thus the equilibrium
price pk depends on s̄−k (i.e., |δk|> 0). Since this cross-asset effect is a direct consequence
of information externality, |δk| is also proportional to 1

nk
.

Second, the uninformed are more sensitive to the own price than the informed: C0
k > C1

k .
Intuitively, the information disadvantage of the uninformed makes them put more weight
on the own price than the informed. Since this is also a direct implication of information
externalities, C0

k − C1
k is proportional to 1

nk
.

Finally, the uninformed are less sensitive to their own signals than the informed (C0
ks <

C1
ks). Since the uninformed put more weight on the own price (C0

k > C1
k ), which contains

information about the other market (|δk|> 0), it crowds out their reliance on their own
signals than the informed. Since the difference C1

ks − C0
ks is jointly determined by both

C0
k − C1

k and |δk|, it is proportional to 1
n2

k
.

Based on Proposition 5.1, we can now characterize and compare traders’ equilibrium
strategies in Proposition 5.2. In particular, the price impacts for both types of traders

12All these parameters are solved in closed-form in the proof.
13We have Cov(θi

k, s̄k) = (ρk +
1−ρk

nk
)σ2

θk
and Var(s̄k) = (ρk +

1−ρk+σ2
k

nk
)σ2

θk
.
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are asymptotically the same up to second-order approximations. This is because price
impacts are determined by the price elasticity of demand Bk ≡ αkB1

k + (1− αk)B0
k , so if

the market size is large, each trader faces with approximately the same set of market
participants. Consequently, the behavior differences between the two types of traders are
completely due to their information differences. Formally, an informed trader’s demand
is more sensitive to the own signal (a1

k > a0
k), since her belief is more sensitive to the

own signal than the uninformed (C1
ks > C0

ks); an informed trader’s demand is also more
sensitive to the own price (B1

k > B0
k), since her conditional expectation about her value is

less sensitive to the own price (C1
k < C0

k ), that is, with a lower price, she is less pessimistic
about the asset value and is willing to buy more assets than the uninformed.

Proposition 5.2. Traders’ equilibrium strategies satisfy the following:

(1) λ1
k =

1
(nk−1)Bk

+ o( 1
N2 ) and λ0

k =
1

(nk−1)Bk
+ o( 1

N2 ).

(2) a1
k − a0

k =
a∗k
n2

k
+ o( 1

N2 ), B1
k − B0

k =
B∗k
nk

+ o( 1
N ), and |b1

k |=
b∗k
nk

+ o( 1
N ).

(3) a∗k =
1
γ ∆ks > 0, B∗k = 1

γ ∆k > 0, and b∗k =
1
γ c∗k > 0.

(4) limN→∞ a1
k = limN→∞ a0

k =
C∗k
γ , limN→∞ B1

k = limN→∞ B0
k =

C∗k
γ , limN→∞ b1

k = 0, and
limN→∞ λ1

k = limN→∞ λ0
k = 0.

5.2. Impacts of information spillover. Next, we study how information spillover, pa-
rameterized by the fraction αk, affects traders’ inference and behavior in market k.

For inference, the first step is to analyze the key parameters δk and ζk, representing
cross-asset and own-asset effects, respectively. Let s̄k be the average signal of all traders
in market k ∈ {I, I I}. From Lemma 4.2, we get

(20) pk = ζk(s̄k + δk s̄−k) + o(
1
N
),

where ζk is the impact of s̄k on pk and δk is the relative impact of s̄−k on pk. From Propo-
sition 5.1, a larger αk implies that the total demand in market k is more sensitive to p−k,
since there are more informed traders reacting to p−k. Consequently, the equilibrium
price pk is more sensitive to s̄−k (larger |δk|). In other words, pk is less informative of s̄−k.
Furthermore, since the inference of the informed is less sensitive to pk than that of the
uninformed, a larger αk implies that the total demand in market k is less sensitive to pk,
which is predominantly determined by s̄k. As a result, the equilibrium price pk is less
sensitive to s̄k (lower ζk). That is, pk is more informative of s̄k. Lemma 5.3 below formally
establishes these relationships.

Lemma 5.3. If we ignore the terms of order o( 1
N ), then

• |δk| and |δkζk| are increasing in αk.
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• ζk is decreasing in αk.

Applying Lemma 5.3, we establish the comparative statics of the inference parameters
in Proposition 5.4.

Proposition 5.4. The impacts of information spillover on inference are the following:

(1) First order effect: if we ignore the terms of order o( 1
N ), then

• C1
k is increasing in αk, and |c1

k| is decreasing in αk.
• C0

k is independent of αk;
(2) Second order effect: if we ignore the terms of order o( 1

N2 ), then
• C1

ks is independent of αk;
• C0

ks is decreasing in αk if and only if αk <
1−ρk

σ2
k

.

According to Proposition 5.4, information spillover has a first-order effect on the in-
formed traders’ inference from prices, but has no first-order effect on that of the unin-
formed. For the informed, conditioning on observing p−k, the predicting power of pk

on s̄−k is of second-order effect, thus we only need to focus on the direct inference of s̄k

from pk. A larger αk has two effects: (i) a smaller ζk, implying that pk is more informative
about s̄k (a larger C1

k ); (ii) a larger |δk|, implying that pk contains more information about
of s̄−k, which crowds out the informativeness of p−k in predicting s̄−k (a smaller |c1

k|). For
the uninformed, the price pk contains two sources of information: s̄k and s̄−k. Recall that
Lemma 5.3 shows that with a larger fraction of informed traders, pk is more informative
about s̄k and less informative about s̄−k. It turns out that their first-order effects exactly
cancel out so that the informativeness of pk remains unchanged.14

Proposition 5.4 also establishes that information spillover has a second-order effect on
traders’ inference from their own signals. For the informed, C1

ks is independent of αk. This
is because they can almost perfectly infer the average signals from both markets (s̄k and
s̄−k), independent of αk (see (20)). For the uninformed, C0

ks is decreasing in αk if and only if
αk <

1−ρk
σ2

k
.15 This non-monotonicity follows from two opposing effects. On the one hand,

the correlation between a trader’s value and the price is stronger when there are more
informed traders in the market. As a result, the uninformed rely more on the price instead
of their signals to predict their values (smaller C0

ks). On the other hand, the market price
becomes noisier with more informed traders and thus the correlation between a trader’s
signal and the price is weaker, which implies that the signal contains more information
(larger C0

ks). In total, these two effects generate the non-monotonity in Proposition 5.4.

14It is possible that αk has a second-order effect on C0
k .

15If 1−ρk
σ2

k
> 1, then C0

ks is decreasing in αk for all αk ∈ [0,1].
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Moreover, when the fraction of the informed is small, the former dominates the latter,
thus C0

ks is decreasing in αk for small αk.16

Next, we study how information spillover affects traders’ equilibrium strategies. The
first step (Lemma 5.5) is to analyze the price impact: λ1

k and λ0
k. Recall that Bk ≡ αkB1

k +

(1− αk)B0
k is the price elasticity of the market demand.

Lemma 5.5. The following results hold:

• First order effect: if we ignore the terms of order o( 1
N ), then Bk is increasing in αk;

λ1
k and λ0

k are independent of αk.
• Second order effect: if we ignore the terms of order o( 1

N2 ), then λ1
k = λ0

k =
1

(nk−1)Bk

is decreasing in αk.

Lemma 5.5 states that the price elasticity of the market demand (Bk) is increasing in
αk. Intuitively, the demand of an informed trader is more responsive to price, relative to
an uninformed trader: B1

k > B0
k (see Proposition 5.2). Thus, if there are more informed

traders, the market demand becomes more elastic. Consequently, the price impacts λ1
k

and λ0
k are smaller, where the changes are in the second order.

Proposition 5.6 then establishes the comparative statics of the equilibrium.

Proposition 5.6. The equilibrium impacts of information spillover are the following:

(1) First order effect: if we ignore the terms of order o( 1
N ), then

• B1
k and |b1

k | are decreasing in αk.
• B0

k is independent of αk.
(2) Second order effect: if we ignore the terms of order o( 1

N2 ), then
• a1

k and a0
k are increasing in αk.

The first part of Proposition 5.6 follows from the fact that information spillover has
a second-order effect on price impacts (Lemma 5.5) and a first-order effect on inference
(Proposition 5.4). For the second part, note that even though the inference from signals
C1

ks is independent of αk, the price impact of the informed is smaller when there are more
informed traders, thus they trade more aggressively with a higher signal, i.e., a1

k is in-
creasing in αk. For the uninformed, their price impact is also smaller with more informed
traders, yet their inference from signals C0

ks is non-monotone in αk. Overall, the former
dominates the latter and hence the uninformed also trade more aggressively with a higher
signal, i.e., a0

k is increasing in αk.

16See the online appendix for more detailed analysis of this non-monotonicity.
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5.3. Welfare Analysis. This section presents the main results on traders’ welfare. Denote
the ex ante expected surplus of an informed (resp., uninformed) trader in market k by W1

k

(resp., W0
k ). Recall that s̄k is the average signal of all traders in market k.

Lemma 5.7 characterizes W1
k and W0

k . Importantly, it decomposes an informed (resp.,
uninformed) trader’s welfare into three parts: (1) an own signal effect: E[C1

ks(s
i
k − s̄k)]

2

(resp., E[C0
ks(s

i
k − s̄k)]

2), respectively; (2) a heterogeneous beliefs effect: (1− αk)
2E[(C1

k −
C0

k )s̄k + c1
k s̄−k]

2 (resp., α2
kE[(C1

k − C0
k )s̄k + c1

k s̄−k]
2); and (3) a strategic effect related to the

price impacts.

Lemma 5.7. Ignoring the terms of order o( 1
N2 ), we have

(1) W1
k =

γ
2 +λ1

k
(γ+λ1

k)
2

[
E[C1

ks(s
i
k − s̄k)]

2 + (1− αk)
2E[(C1

k − C0
k )s̄k + c1

k s̄−k]
2].

(2) W0
k =

γ
2 +λ0

k
(γ+λ0

k)
2

[
E[C0

ks(s
i
k − s̄k)]

2 + α2
kE[(C1

k − C0
k )s̄k + c1

k s̄−k]
2].

Furthermore, the strategic effects satisfy
γ
2 +λ1

k
(γ+λ1

k)
2 =

γ
2 +λ0

k
(γ+λ0

k)
2 =

1
2γ (1− ( 1

(nk−1)C∗k
)2), which is

independent of αk.

Notably, information spillover does not affect welfare through the strategic effect up
to the second order. That is, the welfare impact of information spillover can be almost
completely attributed to the information effects. To see this, let us consider the informed.
The same reasoning applies to the uninformed. Recall that a larger αk lowers the price
impact λ1

k, so the informed trade more aggressively. However, the marginal benefit of
trading equals its marginal cost in equilibrium so that there is no first or second order
welfare change when αk increases. Proposition 5.8 goes on to characterize how the own
signal and heterogeneous beliefs effects and thus traders’ welfare react to changes in αk.

Proposition 5.8. If we ignore the terms of order o( 1
N2 ), then

(1) W1
k is decreasing in αk.

(2) W0
k is decreasing αk if and only if αk < α∗k ≡

1−ρk
1−ρk+σ2

k
.

(3) Wk ≡ αkW1
k + (1− αk)W0

k is decreasing in αk if and only if αk < α̂k ≡
1−ρk

2(1−ρk)+σ2
k
.

(4) Wk evaluated at αk = 1 and αk = 0 are the same.
(5) W1

k −W0
k is positive and decreasing in αk.

Proposition 5.8 shows that for any given market composition, the informed are always
better than the uninformed (W1

k > W0
k ), but the welfare advantage W1

k −W0
k shrinks as αk

increases. For the informed, since C1
ks is independent of αk, the own signal effect is also

independent of αk. The heterogeneous beliefs effect is decreasing in αk: a larger αk means
that there are fewer uninformed from whom the informed can take advantage. Therefore,
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the welfare of the informed is decreasing in αk. For the uninformed, the own signal effect
is non-monotonic (Proposition 5.4) and the heterogeneous belief effect is increasing in αk.
When the fraction of the informed is small (αk < α∗k ), the information disadvantage of the
uninformed dominates, so that the welfare of the uniformed is U-shaped in αk.

Perhaps more surprisingly, the aggregate (i.e., weighted average) welfare Wk ≡ αkW1
k +

(1− αk)W0
k is also U-shaped. That is, more information spillover does not always improve

the aggregate welfare. To understand this, we consider the aggregate own signal and
heterogeneous beliefs effects, respectively. The aggregate own signal effect displays a
U-shape, since a larger αk implies that both there are more informed traders who are
better than the uninformed and the uninformed may get worse, and the latter dominates
when the fraction of informed is small, i.e., αk < α̂k. The aggregate heterogeneous beliefs
effect displays a reversed U-shape, as intuitively the market becomes more heterogeneous
when αk is in the middle. Overall, the aggregate own asset effect dominates the aggregate
heterogeneous belief effect, so Wk is U-shaped in αk.

5.4. Information Efficiency and Liquidity. In this section, we first examine the impact
of information spillover on information efficiency, captured by an individual trader’s un-
certainty reduction, formally defined as:

τ1
k = Var(θi

k)−Var(θi
k|s

i
k, pk, p−k), τ0

k = Var(θi
k)−Var(θi

k|s
i
k, pk).

Since a larger fraction of informed traders αk improves the informativeness of the price
pk, i.e., a higher correlation between the value and the price (see the online appendix for
details of this statement), uninformed traders in market k get more precise estimation of
their values by observing only pk; whereas informed traders, who observe both prices,
can almost perfectly estimate the average signals from both markets, independent of αk.
Thus, we have the following result (Proposition 5.9).

Proposition 5.9. If we ignore the terms of order o( 1
N2 ), then

(1) τ1
k is independent of αk.

(2) τ0
k is increasing in αk.

(3) τ1
k − τ0

k is positive and decreasing in αk.

The next result (Proposition 5.10) characterizes the relationship between welfare and
information efficiency. The welfare of any trader can be decomposed into two parts: in-
formation efficiency and price volatility. Hence, the gap between allocation efficiency
and information efficiency comes from the volatility of prices. This gives an alternative
explanation about the welfare impact of information spillover: as αk increases, the welfare
deterioration for both types of traders is due to the fact pk becomes more volatile (higher
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Var(pk)) and all traders are risk averse. Another immediate implication is that the advan-
tage of the informed W1

k −W0
k is completely determined by the information gain τ1

k − τ0
k ,

since price variance has the same effect on all traders.

Proposition 5.10. If we ignore the terms of order o( 1
N2 ), then

(1) W1
k =

γ
2 +λ1

k
(γ+λ1

k)
2

(
τ1

k −Var(pk)
)

and W0
k =

γ
2 +λ0

k
(γ+λ0

k)
2

(
τ0

k −Var(pk)
)
.

(2) W1
k −W0

k = 1
2γ (τ

1
k − τ0

k ).
(3) Var(pk) is increasing in αk.

Next, we study liquidity (i.e., trading volumes) in both markets. Define the liquidity
indices of the informed, the uninformed, and an average trader respectively as:

L1
k ≡ E(x1

k,i)
2, L0

k ≡ E(x0
k,i)

2, Lk ≡ αkL1
k + (1− αk)L0

k.

Proposition 5.11 extablishes that liquidity are determined by the price impact λ1
k (or λ0

k)
and welfare. With more informed traders, the uninformed trade more aggressively since
the price impact plays a bigger role than information disadvantage, while the informed
may trade less aggressively since the loss of information advantage may dominate the
gain from a lower price impact if αk is small enough. Moreover, the total liquidity is
increasing in αk.

Proposition 5.11. If we ignore the terms of order o( 1
N2 ), then

(1) L1
k = (γ

2 + λ1
k)
−1W1

k , L0
k = (γ

2 + λ0
k)
−1W0

k , and Lk = (γ
2 + λ1

k)
−1Wk.

(2) L1
k is decreasing in αk if and only if αk < αL

k ≡
1
2(1−

1−ρk
σ2

k
).

(3) L0
k and Lk are increasing in αk.

(4) L1
k − L0

k =
2
γ (W

1
k −W0

k ) is positive and decreasing in αk.

5.5. Price co-movement and volatility transmission. Here we show that information
spillover can account for the empirical patterns of market prices mentioned in the intro-
duction. First, it exacerbates the price comovement across markets beyond the correlation
in the fundamentals (see Proposition 5.12). Define rp as the correlation between pk and
p−k, and define rs as the correlation between s̄k and s̄−k, which captures the correlation
between fundamentals in two markets. Intuitively, a larger fraction of informed traders
in each market makes the market price contain more information about the other market,
thereby increasing the correlation between the two prices.

Proposition 5.12. Information spillover amplifies price co-movement:

(1) |rp| is increasing in both αk and α−k.
(2) |rp|≥ |rs|.
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(3) |rp|= |rs| if and only if αk = α−k = 0.
(4) rp > 0 and rs > 0 if and only if φ > 0.

Furthermore, information spillover amplifies the transmission of price volatility be-
tween the two markets (Proposition 5.13). Suppose that the variance of the average
signal s̄−k increases, due to higher volatility of true value θi

−k or noises εi
−k. Define

∆k ≡ ∆Var(pk)/∆Var(p−k) as the change in price volatility in market k, relative to market
−k, which captures the transmission of price volatility. Intuitively, because prices provide
information about the average signals of both markets: pk = ζk(s̄k + δk s̄−k) + o( 1

N ) and
p−k = ζ−k(s̄−k + δ−k s̄k) + o( 1

N ), a larger αk (and thus a higher δk) implies a higher degree
of linkage between two prices.

Proposition 5.13. The change in price volatility ∆k is increasing in αk.

6. DISCUSSION AND EXTENSIONS

We conclude with a brief discussion of the modeling assumptions and several exten-
sions studied in more detail in the online appendix.

Endogenous or exogenous information spillover. As mentioned in the introduction,
our results cover both endogenous and exogenous information spillover. When there are
informed traders in both markets, the equilibrium prices and their information content
are endogenously determined through joint market clearing. When only one market has
informed traders, the price in the other market, which is determined by its own market-
clearing condition, can be viewed as exogenous and “semi-public” information that is
only available to the informed in the former market. Therefore, in addition to prices from
other markets, our analysis applies to broader settings in which a fraction of traders (i.e.,
insiders) commonly observe some informative signals about their values before trading.

Trading in both markets. Our model assumes that each trader only participates in one
of the two markets in order to isolate the impact of information externality from prices.
The online appendix contains an analysis of the case in which all traders trade in both
markets and have multidimensional private information. Assuming a trader’s demand
for each asset can be contingent on both asset prices, we derive the unique symmetric
equilibrium. Compared with the full information spillover benchmark in Section 3.1, the
equilibrium features two extra incentives, in addition to the information externality from
prices: cross-market (and within-market) price impacts and cost linkage of holding differ-
ent assets; furthermore, traders trade more aggressively based on their signals and prices
when they participate in both markets. In the more general case with both traders who
trade both assets and those who only trade one asset, the above three types of incentives
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would confound each other due to this new trader heterogeneity, which is an interesting
question that goes beyond the scope of our current analysis.

Additional comparative statics. The analysis in Section 5 focuses on the comparative
statics of the equilibrium in market k of information spillover, parameterized by the frac-
tion αk of informed traders in a market. The online appendix contains further compar-
ative statics results, such as the cross-market impact of information spillover (i.e., how
α−k affects equilibrium in market k), which we show are negligible up to second-order
approximations, and the correlation |φ| between the two assets, which we show amplifies
the impact of information spillover.

More than two markets. We focus on the two-market setting for notational simplicity.
We show in the online appendix that, when there are more than two markets, informa-
tion spillover has stronger impacts on the equilibrium, as the prices from other markets
provide more information about traders’ values. Furthermore, an increase in the number
of markets is qualitatively similar to an increase in the asset correlation |φ|.

Positive information spillover in large markets. In our main setting, the impact of
information spillover vanishes as the market size increases to infinity, which is a conse-
quence of the assumption that a trader’s residual uncertainty diminishes when the mar-
ket size increases, conditional on the average signal of traders in her market (in particular,
si

k = θi
k + εk and ρk > |φ|). There are several ways to enrich the model to reinstall infor-

mation spillover in the large market limit. We pursue two such extensions in detail in the
online appendix: systematic risks and supply shocks. Since the underlying logic of these
two extensions is similar, here we only briefly discuss the former.

We model systematic risk by introducing an extra market-specific normally-distributed
noise ek in the signals of all traders in market k: si

k = θi
k + ek + εk, for all i ∈ Nk. Even

when these noises eI and eI I are independent, in the large market limit, the average signal
of traders in market k will not filter out all the noise in si

k. As in the main setting, we
first solve for the unique symmetric equilibrium in the benchmark where all traders are
informed and examine how the systematic noise ek affects traders’ inference. In particular,
it muffles the informativeness of the average signal s̄k, but this also implies that traders
may rely more on information spillover (i.e., s̄−k) if ek becomes noisier. Furthermore, in
the large market limit, information spillover matters for traders’ inference as long as the
variance of the systematic risk is positive.

In the general case with heterogeneously informed traders, the presence of systematic
risk implies that the limiting equilibrium remains asymmetric, which further complicates
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the equilibrium characterization even in large but finite markets. To make progress, ex-
tend the approximation method in the main setting to investigate equilibria around a
double limit, first taking the market size to infinity and then taking the variance of the
system risk to zero. This again allows us to characterize the comparative statics of in-
formation spillover up to second-order approximations. Furthermore, we show that the
results in our main setting are robust to systematic risks.

APPENDIX A. PROOFS OF THE RESULTS IN SECTION 3

A.1. Proof of Proposition 3.1. We first solve for E
[
θi

k|s
i
k, pk, p−k

]
. It follows from the

market clearing condition (4) that pk = a1
k(B1
−k s̄1

k + b1
k s̄1
−k)/(B1

k B1
−k − b1

kb1
−k), so it suffices

to solve for E[θi
k|s

i
k, s̄1

k, s̄1
−k]. We have Cov(s̄1

k,θi
k) =

(1+(n−1)ρ)σ2
θ

n , Cov(s̄1
k, si

k) = Var(s̄1
k) =

(1+(n−1)ρ+σ2)σ2
θ

n , and Cov(s̄1
−k,θi

k) = Cov(s̄1
−k, si

k) = Cov(s̄1
k, s̄1
−k) = φσ2

θ . Thus,

E
[
θi

k|s
i
k, s̄1

k, s̄1
−k

]
=C1

s si
k + C1s̄1

k + C1
− s̄1
−k = C1

s si
k +

(
C1B1

k
a1

k
−

C1
−b1
−k

a1
−k

)
pk +

(
C1
−B1
−k

a1
−k
−

C1b1
k

a1
k

)
p−k,

where

C1
s =

1− ρ

1− ρ + σ2 , C1 =
σ2

1− ρ + σ2 ·
ρ2 + ρ(1−ρ+σ2)

n − φ2(
ρ + 1−ρ+σ2

n

)2
− φ2

, C1
− =

σ2 · φ
n(

ρ + 1−ρ+σ2

n

)2
− φ2

.

Then we prove the properties of the equilibrium parameters. First, since C1
− > 0 if

and only if φ > 0 and b1
k has the same sign as C1

−, we have b1 > 0 if and only if φ > 0.
Second, since ρ2 + ρ(1 − ρ + σ2)/n − φ2 > |φ|(1 − ρ + σ2)/n, we have C1 ≥ |C1

−| and

thus |b
1|

B1 =
|C1
−|

C1
s +C1 <

|C1
−|

C1 < 1. Since C1 > 0, we have a1 = (n−2)C1
s−C1

γ(n−1) < C1
s

γ
n−2
n−1 . Since

C1 > |C1
−|, we also have B1 = a1

C1
s +C1−|C1

−|
< a1

C1
s
< 1

γ
n−2
n−1 . Finally, since ρ2 + ρ(1 − ρ +

σ2)/n < (ρ + (1− ρ + σ2)/n)2 − φ2, we have ∂C1

∂|φ| < 0. Together with ∂a1

∂C1 < 0, we have

∂a1

∂|φ| > 0. In addition, since ∂C1
−

∂|φ| > 0, both B1

a1 and |b
1|

a1 are increasing in C1
− and decreasing

in C1, and thus both are increasing in |φ|. Together with ∂a1

∂|φ| > 0, we have that B1 and |b1|
are increasing in |φ|.

A.2. Proof of Proposition 3.2. From the market-clearing condition, pk = a0
k s̄0

k/B0
k , where

s̄0
k = ∑i′∈N 0

k
si′

k /n, we have that Cov(pk,θi′
k ) = a0

k (1 + (n− 1)ρ)σ2
θ /(nB0

k), Cov(pk, si′
k ) =
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a0
k
(
1 + (n− 1)ρ + σ2)σ2

θ /(nB0
k), Var(pk) = (a0

k)
2 (1 + (n− 1)ρ + σ2)σ2

θ /(n(B0
k)

2). Thus,

E
[
θi′

k |s
i′
k , pk

]
=C0

k si′
k + C0s̄0

k = C0
k si′

k + C0 B0
k pk

a0
k

,

where

C0
s =

(1− ρ)

1− ρ + σ2 , C0 =
σ2

1− ρ + σ2
ρ

ρ + 1−ρ+σ2

n

.

Finally, it is clear that a0 > 0 and B0 > 0 are independent of φ. Since C0 > 0, we have

a0 = (n−2)C0
s−C0

γ(n−1) < C0
s

γ
n−2
n−1 and thus B0 = a0

C0
s +C0 <

a0

C0
s
< 1

γ
n−2
n−1 .

A.3. Proof of Corollary 3.3. First, C0
s = C1

s = (1− ρ)/(1− ρ + σ2). Next, we have

C0 − C1 =
σ2

1− ρ + σ2 ·
(1−ρ+σ2)φ2

n(
ρ + 1−ρ+σ2

n

)((
ρ + 1−ρ+σ2

n

)2
− φ2

) > 0.

A.4. Proof of Corollary 3.4. Part (i) follows directly from the closed-form solutions. By
Corollary 3.3, we have a1

k − a0
k =

C0−C1

γ(n−1) > 0. Since C0 > C1, then we have

B1
k

a1
k
=

C1
s + C1

(C1
s + C1)2 − (C1

−)
2
>

1
C1

s + C1 >
1

C0
s + C0 =

B0
k

a0
k

.

Together with a1
k > a0

k, we have B1
k > B0

k . Since a1
k =

C1
s

γ+λ1
k
, a0

k =
C0

s
γ+λ0

k
, and C1

s = C0
s , then

a1
k > a0

k implies that λ1
k < λ0

k.

A.5. Proof of Proposition 3.5. With full information spillover, for any trader i ∈ N 1
k ,

xi
k =

1
γ+λ1

k
(E[θi

k|s
i
k, pk, p−k]− pk), then her expected payoff is

W1
k = E((E[θi

k|s
i
k, pk, p−k]− pk)xi

k −
γ(xi

k)
2

2
) = (

γ

2
+ λ1

k)E(xi
k)

2.

By the market-clearing condition, the equilibrium demand is xi
k = a1si

k − B1pk + b1pk =

a1(si
k − s̄k). Together with the fact that a1 = 1

γ+λ1
k
C1

s , we have

W1
k =

γ
2 + λ1

k
(γ + λ1

k)
2
(C1

s )
2E(si

k − s̄k)
2.

Similarly, W0
k =

γ
2 +λ0

k
(γ+λ0

k)
2 (C0

s )
2E(si

k − s̄k)
2. Since λ1

k < λ0
k and C1

s = C0
s , we have W1

k > W0
k .
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APPENDIX B. PROOFS OF THE RESULTS IN SECTION 4

B.1. Proof of Lemma 4.1. The first-order condition of an uninformed trader i′ is

(21) E
[
θi′

k |s
i′
k , pk

]
− pk = (γ +

dpk

dxi′
k
)xi′

k .

In addition, from the market-clearing conditions, we have

1 + ∑
j′∈N 0

k ,j′,i′

∂xj′

k
∂pk

dpk

dxi′
k
+ ∑

i∈N 1
k

[
∂xi

k
∂pk

dpk

dxi′
k
+

∂xi
k

∂p−k

dp−k

dxi′
k

]
= 0

and

∑
l′∈N 0

−k

∂xl′
−k

∂p−k

dp−k

dxi′
k

+ ∑
l∈N 1

−k

[
∂xl
−k

∂p−k

dp−k

dxi′
k

+
∂xl
−k

∂pk

dpk

dxi′
k

]
= 0.

Thus, the price impact of an uninformed trader i′ is

(22)
dpk

dxi′
k
= −

 ∑
j′∈N 0

k ,j′,i′

∂xj′

k
∂pk

+ ∑
i∈N 1

k

∂xi
k

∂pk
− ∑

i∈N 1
k

∂xi
k

∂p−k

∑l∈N 1
−k

∂xl
−k

∂pk

∑l′∈N 0
−k

∂xl′
−k

∂p−k
+ ∑l∈N 1

−k

∂xl
−k

∂p−k


−1

.

Substituting (22) into (21) and using the conjectured linear strategies, we obtain

(23) xi′
k (pk, si′

k ) =
1

γ + dpk

dxi′
k

(
E
[
θi′

k |s
i′
k , pk

]
− pk

)
=

1
γ + λ0

k

(
E
[
θi′

k |s
i′
k , pk

]
− pk

)
,

where λ0
k is given by (12). Similarly we obtain the strategy of the informed as in (11).

B.2. Proof of Lemma 4.2. The market-clearing conditions can be rewritten as

αka1
k s̄1

k + (1− αk)a0
k s̄0

k =
(

αkB1
k + (1− αk)B0

k

)
pk − (1− αk)b1

k p−k = Bk pk − bk p−k,

for k,−k ∈ {I, I I} and k , −k. Thus, we have pk = D1
k s̄1

k + D0
k s̄0

k + d1
k s̄1
−k + d0

k s̄0
−k, where

the parameters are given in the statement of this lemma.

B.3. Proof of Lemma 4.3. We first define some new parameters:

C∗k =
1− ρk

1− ρk + σ2
k

, κk = 1− ρk + σ2
k , ηk =

σθ−k

σθk

,(24)

ek1 =
πk
αk

κk
nk

, ek2 = (
(1− πk)

2

1− αk
+

π2
k

αk
)

κk
nk

, ek3 =
1− πk
1− αk

κk
nk

,

yk1 =
κkek2 − e2

k1
κk − ek1

φ

ηk
, yk2 = ρk(ρ−k + e−k2)− φ2,

yk3 = (ρk + ek2)(ρ−k + e−k2)− φ2 − ek1 − ek2

κk − ek1
((ρk + ek1)(ρ−k + e−k2)− φ2).
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Informed traders: For an informed trader i ∈ N 1
k , since (θi

k, si
k, pk, p−k) is jointly normal,

we have E(θi
k|s

i
k, pk, p−k) = C1

kss
i
k + C1

k pk + c1
k p−k. Define X = θi

k, Y = (si
k, pk, p−k). By the

projection theorem, E[X|Y] = E(X) + ΣX,YΣ−1
Y,Y(Y− E(Y)), where

ΣX,Y = (Cov(θi
k, si

k), Cov(θi
k, pk), Cov(θi

k, p−k)),

ΣY,Y =

 Cov(si
k, si

k) Cov(si
k, pk) Cov(si

k, p−k),
Cov(pk, si

k) Cov(pk, pk) Cov(pk, p−k)

Cov(p−k, si
k) Cov(p−k, pk) Cov(p−k, p−k)

 .

Define δk =
d1

k+d0
k

D1
k+D0

k
, ζk = D1

k + D0
k , πk =

D1
k

D1
k+D0

k
. Since D1

k
D1

k+D0
k
=

d1
−k

d1
−k+d0

−k
and by pk =

D1
k s̄1

k + D0
k s̄0

k + d1
k s̄1
−k + d0

k s̄0
−k (see Lemma 4.2), we have

pk = ζk[(πk s̄1
k + (1− πk)s̄0

k) + δk(π−k s̄1
−k + (1− π−k)s̄0

−k)].

In addition, we have ΣX,YΣ−1
Y,Y = (C1

ks,C
1
k , c1

k), where

C1
ks = C∗k −

(1− C∗k )(ek1 − ek2)yk2

(κk − ek1)yk3
, C1

k =
(1− C∗k )(yk2 − yk1δ−k)

(1− δkδ−k)yk3ζk
, c1

k =
(1− C∗k )(yk1 − yk2δk)

(1− δkδ−k)yk3ζ−k
.

(25)

Define βk =
αkak+(1−αk)ak0
αkBk+(1−αk)Bk0

. Then, βk = (1− δkδ−k)ζk. Substituting this into (25), we get

(26) C1
k =

(1− C∗k )(yk2 − yk1δ−k)

yk3βk
, c1

k =
(1− C∗k )(yk1 − yk2δk)

yk3β−k
.

Uninformed traders: For an uninformed trader i ∈ N 0
k , since (θi

k, si
k, pk) is jointly normal,

we have
E(θi

k|s
i
k, pk) = C0

kss
i
k + C0

k pk.

Define X = θi
k, Y0 = (si

k, pk). By projection theorem, we can solve for

E[X|Y0] = E(X) + ΣX,Y0Σ−1
Y0,Y0

(Y0 − E(Y0)),

where ΣX,Y0 = (Cov(θi
k, si

k), ΣY0,Y0 =

[
Cov(si

k, si
k) Cov(si

k, pk)

Cov(pk, si
k) Cov(pk, pk)

]
.

Therefore, we have ΣX,Y0Σ−1
Y0,Y0

= (C0
ks,C

0
k ), where

C0
ks = C∗k +

(1− C∗k )(yk2η2
k δ2

k + ρk(ek2 − ek3)− ek3φηkδk)

H0
k

, C0
k =

(1− C∗k )(ρk(κk − ek3) + ηkδkκkφ)

H0
k ζk

,

(27)

H0
k = η2

k δ2
k ((κk + ρk)(ρ−k + e−k2)− φ2) + (κk + ρk)(ρk + ek2)− (ρk + ek3)

2 + 2φ(κk − ek3)ηkδk.
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B.4. Proof of Theorem 4.4. Define βk ≡
αka1

k+(1−αk)a0
k

αkB1
k+(1−αk)B0

k
, C̄1

k = C1
k +

δ−kζ−k
ζk

c1
k, πk =

αka1
k

αka1
k+(1−αk)a0

k

and Πk =
αkB1

k
αkB1

k+(1−αk)B0
k
.

We construct a fixed point mapping in Steps 1–4 for the case where φ > 0, which sat-
isfies the conditions in the Brouwer’s fixed point theorem (Step 5). Step 6 discusses the
case where φ < 0.
Step 1: Given πk ∈ [0,1] and Πk ∈ [0,1], there is a unique δk, ζk, βk, C1

ks, C0
ks, C1

k , C0
k , c1

k, C̄1
k .

Given πk, we get a unique solution ek1, ek2, ek3, yk1, yk2, yk3. An immediate result is that

we get C1
ks = C∗k −

(1−C∗k )(ek1−ek2)yk2
(κk−ek1)yk3

.
Next, we solve for δk. By Lemma 4.2, we get

(28) δk = β−k
αkb1

k
αka1

k + (1− αk)a0
k
=

β−kπkb1
k

a1
k

=
πkβ−kc1

k
C1

ks
.

From(26) and (28), we get δk = (1− C∗k )(
yk1
yk3
− yk2

yk3
δk)

πk
C1

ks
. Consequently,

(29) δk =
(1− C∗k )yk1

(1− C∗k )yk2 +
C1

ks
πk

yk3

.

Since we have solved for yk1,yk2,yk3,πk,C1
ks, then we get the solution of δk.

By the definition of βk, we have πk
Πk

=
a1

k
B1

k

1
βk

=
C1

ks
(1−C1

k )βk
. Together with (26), we get

(30) βk = (1− C∗k )(
yk2

yk3
− yk1

yk3
δ−k) +

ΠkC1
ks

πk
.

By definition, we have ζk = βk
1−δkδ−k

. Since we know βk, δk and δ−k, then there is a
unique solution ζk. By Lemma 4.3, we solve for C0

ks, C0
k , c1

k and C1
k , which are functions of

(δk,ζk, ek1, ek2, ek3,yk1,yk2,yk3). Moreover, we solve for C̄1
k ≡ C1

k +
δ−kζ−k

ζk
c1

k.

Step 2: Given C1
ks,C

1
k ,C0

ks ∈ [0,1], C̄1
k ,C0

k ∈ [0, nk−2
nk−1 ], there is a unique solution to a1

k > 0,
B1

k > 0, a0
k > 0, B0

k > 0, b1
k > 0. Consequently, there is a unique πk ∈ (0,1), Πk ∈ (0,1).

By the definition of δk, we have δk =
ζ−k
ζk

αkb1
k

αkB1
k+(1−αk)B0

k
. Therefore,

α−kb1
−k

α−kB1
−k+(1−α−k)B0

−k
=

δ−kζ−k
ζk

. Together with b1
k

B1
k
=

c1
k

1−C1
k

and C̄1
k = C1

k +
δ−kζ−k

ζk
c1

k, we get

B1
k −

α−kb1
−k

α−kB1
−k + (1− α−k)B0

−k
b1

k = B1
k(1−

b1
k

B1
k

δ−kζ−k
ζk

) = B1
k

1− C̄1
k

1− C1
k

.

Substitute the above expression into the definition of λ1
k and λ0

k, we get

λ1
k =

(
(nαk − 1)B1

k
1− C̄1

k
1− C1

k
+ (1− αk)nkB0

k

)−1

, λ0
k =

(
nkαkB1

k
1− C̄1

k
1− C1

k
+ ((1− αk)nk − 1)B0

k

)−1

.
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Together with B1
k =

1−C1
k

γ+λ1
k

and B0
k =

1−C0
k

γ+λ0
k
, we get

B0
k =

1− C0
k

γ
− x

γ[nkαk
1−C̄1

k
1−C1

k
+ ((1− αk)nk − 1)x]

≡ H0(x),

B1
k =

1− C1
k

γ
− 1

γ[(nkαk − 1)1−C̄1
k

1−C1
k
+ (1− αk)nkx]

≡ H1(x),

where x ≡ B0
k

B1
k
. We divide H0(x) by H1(x) and get x = H0(x)

H1(x) . Define

G(x) ≡ xH1(x)− H0(x).

We need to solve G(x) = 0 to get the solution x =
B0

k
B1

k
.

Notice that if C̄1
k < 1 and C1

k < 1, then G(x) is continuous for x ≥ 0. Moreover, H1(x) is

increasing in x and H0(x) is decreasing in x for any x ≥ 0. Define y =
1−C̄1

k
1−C1

k
. It is apparent

that y > 0.

First, there is a solution x∗ > 0 such that G(x∗) = 0. This holds since G(0) = −1−C0
k

γ < 0
and G(+∞) = +∞.

Second, we prove that the solution x∗ ∈ (0,∞) is unique. Define x such that H1(x) > 0
if and only if x > x (it is possible that x = 0). We prove that G(x) < 0 for x < x. If

x ≥ y, then H1(x) ≥ H1(y) =
1−C1

k
γ − 1

γ(nk−1)y =
1−C1

k
γ(1−C̄1

k )
(nk−2

nk−1 − C̄1
k ) > 0, where the last

inequality holds since C̄1
k < nk−2

nk−1 . By the definition of x, we have x > x. Therefore, x < x

implies that x < y and hence H0(x) > H0(y) = 1
γ (

nk−2
nk−1 − C0

k ) > 0, which holds since

C0
k < nk−2

nk−1 . Since xH1(x) < 0 and H0(x) > 0 for any x < x, then we reach the conclusion
that G(x) = xH1(x)− H0(x) < 0 for x < x. Consequently, any solution x∗ of G(x∗) = 0
satisfies x∗ > x.

We then prove that G(x) is increasing in x for x ≥ x. Since H1(x) > 0 and H1(x) is
increasing in x for x ≥ x, then xH1(x) is increasing for x ≥ x, Together with the fact
that H0(x) is decreasing in x, we have G(x) = xH1(x) − H0(x) is increasing in x ≥ x.
Therefore, the solution x∗ such that G(x∗) = 0 is unique.

Next, we solve for the unique B1
k = H1(x∗) > 0 and B0

k = H0(x∗) > 0. Moreover, x∗ ∈
(0,y) if and only if C̄1

k < C0
k . We know that G(y) = yH1(y) − H0(y) = y 1−C1

k
γ − 1−C0

k
γ =

1
γ (C

0
k − C̄1

k ). There are two cases: (1) If C̄1
k > C0

k , then G(y) < 0, which means that G(x∗) =
0 > G(y). Since x∗ > x and y > x and G(x) is increasing for x > x, then x∗ > y. Moreover,

B1
k = H(x∗) > H1(y) =

1−C1
k

γ(1−Ck)
(nk−2

nk−1 − C̄1
k ) > 0. Furthermore, B0

k = H0(x∗) = x∗H(x∗) >

0. (2) If C̄1
k ≤ C0

k , then G(y) ≥ 0, which means that G(x∗) = 0≤ G(y). Consequently, x∗ ≤
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y. Moreover, B0
k = H0(x∗) ≥ H0(y) = 1

γ (
nk−2
nk−1 − C0

k ) > 0. Furthermore, B1
k = H1(x∗) =

1
x∗H0(x∗) > 0.

Since we have solved B1
k > 0 and B0

k > 0, then together with the fact that C1
ks,C

1
k ,C0

ks ∈
[0,1], C̄1

k ,C0
k ∈ [0, nk−2

nk−1 ], we get the unique a1
k =

C1
ks

1−C1
k
B1

k > 0, a0
k =

C0
ks

1−C0
k
B0

k > 0 and b1
k =

c1
k

1−C1
k
B1

k > 0. Finally, by definition, we get the unique πk ∈ (0,1) and Πk ∈ (0,1).

Step 3: We show that (i) δk ∈ (0, yk1
yk2

), δkδ−k ∈ (0,1); (ii) C1
ks < 1, C0

ks < 1; (iii) if C1
ks > 0,

then βk > 0, ζk > 0, C1
k ∈ (0,1), C0

k > 0, and c1
k > 0.

First, we prove that δk ∈ (0, yk1
yk2

), δkδ−k ∈ (0,1) and δ−k < yk2
yk1

. By equation (29) and
C1

ks
πk

> 0, we get δk < yk1
yk2

. Moreover, by C∗k < 1, yk1 > 0, yk2 > 0, yk3 > 0, we get δk > 0.
Consequently, δkδ−k <

yk1
yk2

y−k1
y−k2

. Since ηkyk1 < y−k2, η−ky−k1 < yk2 and ηkη−k = 1, then we

get yk1
yk2

y−k1
y−k2

< 1. Therefore, δkδ−k <
yk1
yk2

y−k1
y−k2

< 1. Moreover, δ−k <
y−k1
y−k2

< yk2
yk1

.
Second, we prove that C1

ks < 1 and C0
ks < 1. By (25), we get 1 − C1

ks = (1 − C∗k )(1 +
(ek1−ek2)yk2
(κk−ek1)yk3

) =
1−C∗k

yk3

(
ρk(ρ−k + e−k2)− φ2 + (ρ−k + e−k2)(ek2 − ek1−ek2

κk−ek1
ek1)

)
> 0, due to the

fact that ρk(ρ−k + e−k2)− φ2 > 0 and ek2 − ek1−ek2
κk−ek1

ek1 > 0. In all, C1
ks < 1. By (27), 1− C0

ks =
1−C∗k

H0
k
[η2

k δ2
k κk(ρ−k + e−k2) + κkek2− e2

k3 + (ρk + 2φηkδk)(κk − ek3) + ek3φηkδk] > 0, due to the

fact that κkek2 − e2
k3 > 0 and κk − ek3 > 0. Therefore, C0

ks < 1.
Third, we prove that βk > 0 and ζk > 0. By (30), δ−k < yk2

yk1
and C1

ks > 0, πk > 0 and

Πk > 0, then we have βk > 0. Since δkδ−k < 1, then ζk =
βk

1−δkδ−k
> 0.

Next, we prove that C1
k ∈ (0,1). By equation (26) and (30), we get

C1
k =

(1− C∗k )(yk2 − yk1δ−k)

yk3βk
=

(1− C∗k )(
yk2
yk3
− yk1

yk3
δ−k)

(1− C∗k )(
yk2
yk3
− yk1

yk3
δ−k) + C1

ks
Πk
πk

.

Since δ−k <
yk2
yk1

and βk > 0, then C1
k > 0. Furthermore, C1

ks
Πk
πk

> 0 guarantees that C1
k < 1.

Finally, we prove that C0
k > 0 and c1

k > 0. Since H0
k > 0 and κk − ek3 > 0, then C0

k =
(1−C∗k )(ρk(κk−ek3)+ηkδkκkφ)

H0
k ζk

> 0. By equation (26), c1
k > 0 is equivalent to δk < yk1

yk2
, which

holds.
Step 4: If nk is large or σ2

k is small, then C̄1
k ,C0

k ∈ [0, nk−2
nk−1 ] and C1

ks,C
0
ks,C

1
k ∈ [0,1].

First, we prove that C̄1
k ∈ [0, nk−2

nk−1 ]. From (26), we get C̄1
k = C1

k +
δ−kζ−k

ζk
c1

k =
1−C∗k

ζk

yk2
yk3

.

Hence, we need to prove that ζk > nk−1
nk−2

(1−C∗k )yk2
yk3

. By (30) and ζk = β
1−δkδ−k

, we need to
prove that

(31)
(1− C∗k )(

yk2
yk3
− yk1

yk3
δ−k) +

ΠkC1
ks

πk

1− δkδ−k
>

nk − 1
nk − 2

(1− C∗k )yk2

yk3
.
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We check the case δ−k = 0, then (31) is equivalent to

(32) nk − 2 >
1− C∗k

C1
ks

yk2

yk3

πk
Πk

.

As nk → +∞ or σ2
k → 0, we get lim yk2

yk3
= 1, lim πk

Πk
= 1 and limC1

ks = C∗k . The right hand

side of (32) converges to 1−C∗k
C∗k

=
σ2

k
1−ρk

. Moreover, if we ignore the first order term o(1),

then (32) is equivalent to and σ2
k < (1 − ρk)(nk − 2). Since limδ−k = 0, then (31) also

holds.
Second, we prove that C0

k < nk−2
nk−1 . Since C0

k <
1−C∗k

ζk
, then we need to prove that ζk >

nk−1
nk−2(1−C∗k ). Since lim yk2

yk3
= 1, then the condition to guarantee C0

k <
nk−2
nk−1 also guarantees

that C̄1
k <

nk−2
nk−1 .

Finally, we prove that C1
ks,C

0
ks,C

1
k ∈ [0,1]. By Step 3, we only need to prove that C1

ks > 0
and C0

ks > 0, which holds since C1
ks→ C∗k > 0, C0

ks→ C∗k > 0, as nk→ +∞ or σ2
k → 0.

Step 5: Since the mapping constructed above is continuous and maps from a convex
compact set to a convex compact set. By Brouwer’s fixed point theorem, there exists a
fixed point. By construction, we obtain the equilibrium parameters, a1

k, B1
k , a0

k, B0
k , b1

k ,
C1

ks,C
1
k , c1

k,C0
ks, and C0

k that satisfy the properties stated in Theorem 4.4.
Step 6: The φ < 0 case. If φ < 0, then yk1, δk, φ, b1

k , and c1
k are all negative. Therefore, when

we replace δk, φ, b1
k , c1

k with |δk|, |φ|, |b1
k |, |c1

k|, all the analysis above remains valid.

APPENDIX C. PROOFS OF THE RESULTS IN SECTION 5

C.1. Proof of Propositions 5.1 and 5.2. We prove these two results in five steps.
Step 1: The limit as N→ +∞.

Theorem 4.4 shows that δk ≤
yk1
yk2

. As N → +∞, yk1 → 0, and hence δk → 0. Conse-
quently, lim c1

k = 0, limC1
ks = C0

ks = C∗k , limC1
k = limC0

k = 1 − C∗k , limλ1
k = limλ0

k = 0,

lim a1
k = lim a0

k = lim B1
k = lim B0

k =
C∗k
γ . Moreover, lim βk = limζk = 1, limπk = αk.

Step 2: The coefficients C1
ks, C1

k , c1
k, C0

ks, and C0
k , ignoring the term o( 1

N2 ).
In equilibrium, a1

k − a0
k = o( 1

N ) (which is verified in Step 7). Consequently,

πk − αk =
αk(1− αk)(a1

k − a0
k)

αka1
k + (1− αk)a0

k
= o(

1
N
).

Substituting πk = αk + o( 1
N ) into (24), we get (by ignoring o( 1

N2 ))

ek1 = ek2 = ek3 =
κk
nk

, yk1 =
κkφ

ηknk
,(33)

yk2 = ρk(ρ−k +
κ−k
n−k

)− φ2, yk3 = (ρk +
κk
nk

)(ρ−k +
κ−k
n−k

)− φ2.
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Substituting (33) into (25) and (27) and ignoring o( 1
N2 ), we get

C1
ks = C∗k , C1

k =
(1− C∗k )(yk2 − yk1δ−k)

yk3βk
, c1

k =
(1− C∗k )(yk1 − yk2δk)

yk3β−k
,(34)

C0
ks = C∗k −

(1− C∗k )η
2
k δk(yk1 − yk2δk)

H0
k

, C0
k =

(1− C∗k )κk(
nk−1

nk
ρk + φηkδk)

H0
k ζk

,

H0
k = η2

k δ2
k ((ρk + κk)(ρ−k +

κ−k
n−k

)− φ2) +
nk − 1

nk
κk(ρk +

κk
nk

) + 2
nk − 1

nk
κkφηkδk.

Step 3: The parameter |δk|.
Since C1

ks = C∗k + o( 1
N2 ) and πk = αk + o( 1

N ), then by (29), we get δk =
(1−C∗k )yk1

(1−C∗k )yk2+
C1

ks
πk

yk3

+

o( 1
N2 ) =

yk1

yk2+
C∗k

αk(1−C∗k )
yk3

+ o( 1
N2 ) =

yk1
yk2

αk

αk+
1−ρk

σ2
k

+ o( 1
N ), which holds by yk3 = yk2 + o(1) and

C∗k
1−C∗k

= 1−ρk
σ2

k
. Since yk1

yk2
= κkφ

ηk(ρkρ−k−φ2)
1
nk

, we have

(35) |δk|=
δ∗k
nk

+ o(
1
N
), and δ∗k =

κk|φ|
ηk(ρkρ−k − φ2)

αk

αk +
1−ρk

σ2
k

> 0.

Step 4: The coefficients |c1
k|, C1

ks − C0
ks, and C0

k − C1
k .

By β−k = 1 + o(1) and yk3 = yk2 + o(1), we have c1
k =

(1−C∗k )(yk1−yk2δk)
yk3β−k

= (1− C∗k )(
yk1
yk2
−

δk) + o( 1
N ). By (24) and (35) and yk2 = ρkρ−k − φ2 + o(1),

(36) |c1
k|=

c∗k
nk

+ o(
1
N
) and c∗k =

(1− ρk)|φ|
ηk(ρkρ−k − φ2)

1

αk +
1−ρk

σ2
k

> 0.

Since H0
k = κkρk + o(1), then C1

ks − C0
ks =

(1−C∗k )η
2
k δk(yk1−yk2δk)

H0
k

=
(1−C∗k )η

2
k δk(yk1−yk2δk)
κkρk

+

o( 1
N2 ). By (24) and (35),

(37) C1
ks − C0

ks =
∆ks

n2
k
+ o(

1
N2 ) and ∆ks =

(1− ρk)φ
2

ρk(ρkρ−k − φ2)

αk

(αk +
1−ρk

σ2
k
)2

> 0.

Since H0
k =

nk−1
nk

κk(ρk +
κk
nk
) + 2nk−1

nk
κkφηkδk + o( 1

N ), then

C0
k = (1− C∗k )(1−

κk
nk

+ φηkδk

ρk
)

1
βk

+ o(
1
N
)(38)

C1
k =

(1− C∗k )yk2

yk3

1
βk

+ o(
1
N
) = (1− C∗k )(1−

κk
nk
(ρ−k +

κ−k
n−k

)

ρk(ρ−k +
κ−k
n−k

)− φ2
)

1
βk

+ o(
1
N
).

C0
k − C1

k =
(1− C∗k )ηkφ

ρkβk
(

yk1

yk2
− δk) + o(

1
N
).
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By (38), (24) and (35), we obtain

(39) C0
k − C1

k =
∆k
nk

+ o(
1
N
) and ∆k =

(1− ρk)φ
2

ρk(ρkρ−k − φ2)

1

αk +
1−ρk

σ2
k

> 0.

Step 5: The parameters λ1
k and λ0

k.
Since b1

k = o(1) and b−k = o(1) and Bk − B1
k = o(1), then (λ1

k)
−1 = (αknk − 1)(B1

k −
b1

k
b−k
B−k

) + (1− αk)nkB0
k = nkBk − B1

k + o(1) = (nk − 1)Bk + o(1), which implies that

(40) λ1
k =

1
(nk − 1)Bk

+ o(
1

N2 ), λ0
k =

1
(nk − 1)Bk

+ o(
1

N2 )

The result for λ0
k follows by the same logic. It is clear that λ1

k = o(1) and λ0
k = o(1).

Step 6: The coefficients a1
k − a0

k, B1
k − B0

k , and |b1
k |.

Since λ1
k = o(1) and c1

k = o(1), then |b1
k |=

1
γ+λ1

k
|c1

k|=
1
γ |c1

k|+o( 1
N ). Similarly, B1

k − B0
k =

1
γ (C

0
k − C1

k ) + o( 1
N ), a1

k − a0
k =

1
γ (C

1
ks − C0

ks) + o( 1
N2 ). Consequently, a1

k − a0
k =

a∗k
nk

+ o( 1
N2 ),

B1
k − B0

k =
B∗k
nk

+ o( 1
N ), |b1

k |=
b∗k
nk

+ o( 1
N ), where a∗k =

1
γ ∆ks > 0, B∗k = 1

γ ∆k > 0, b∗k =
1
γ c∗k > 0.

Step 7: We verify that a1
k − a0

k = o( 1
N ).

By Step 6, a1
k − a0

k =
1
γ (C

1
ks − C0

ks) + o( 1
N2 ) =

1
γ

∆ks
n2

k
+ o( 1

N2 ) = o( 1
N ).

C.2. Proof of Lemma 5.3. First, (35) implies that |δk| is increasing in αk.

Next, since C0
k − C1

k = ∆k
nk

+ o( 1
N ) and C1

k = 1− C∗k + o(1), then C1
k0−C1

k
1−C1

k
= ∆k

C∗k nk
+ o( 1

N ).

Since B1
k − B0

k = 1
γ (C

0
k − C1

k ) + o( 1
N ) and B1

k = 1
γ (1− C0

k ) + o(1), then B1
k−B0

k
B1

k
=

C0
k−C1

k
1−C1

k
+

o( 1
N ). By (39), Bk

B1
k
= 1− (1− αk)

B1
k−B0

k
B1

k
= 1− (1− αk)

∆k
C∗k nk

+ o( 1
N ). Since ∆k > 0 is decreasing

in αk, we have that Bk
B1

k
is increasing in αk.

Next, from (30), we have

βk = (1− C∗k )(
yk2

yk3
− yk1

yk3
δ−k) + C1

ks
αk
πk

B1
k

Bk
=

(1− C∗k )yk2

yk3
+ C∗k

B1
k

Bk
+ o(

1
N
).

Since Bk
B1

k
is increasing in αk, then βk is decreasing in αk. Since ζk =

βk
1−δkδ−k

= βk + o( 1
N ),

then ζk is also decreasing in αk.
Finally, since Bk

B1
k
= 1 + o(1), then ζk = βk + o( 1

N ) = (1− C∗k )
yk2
yk3

+ C∗k + o(1). Therefore,

|δkζk|= |
yk1
yk2
| αk

αk+
1−ρk

σ2
k

((1− C∗k )
yk2
yk3

+ C∗k ) + o( 1
N ), which is increasing in αk.

C.3. Proof of Proposition 5.4. Since βk =
αka1

k+(1−αk)a0
k

αkB1
k+(1−αk)B0

k
=

C∗k
1−(αkC1

k+(1−αk)C0
k )
+ o( 1

N2 ), then

βk = C∗k + βk(C0
k − αk(C0

k − C1
k )).
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Substituting (38) into this expression, we get

βk = 1− (1−C∗k )
κk
nk

+ φηkδk

ρk
− αk

(1− C∗k )ηkφ

ρk
(

yk1

yk2
− δk) = 1−

κk
nk

+ φηkδk

ρk
+

κkC∗k
ρknk

+ o(
1
N
).

Substituting the above expression of βk into (38), we obtain

(41) C0
k = (1− C∗k )(1−

κkC∗k
ρknk

) + o(
1
N
).

Therefore, C0
k is independent of αk.

By (39), C0
k − C1

k is decreasing in αk. Since C0
k is independent of αk, then C1

k is increasing

in αk. By (36), |c1
k| is decreasing in αk. Since C1

ks = C∗k + o( 1
N2 ), then ∂C1

ks
∂αk

= 0. By (37),

C0
ks − C1

ks = −
∆ks
n2

k
+ o( 1

N2 ). Thus, ∂∆ks
∂αk

> 0 if and only if αk <
1−ρk

σ2
k

. Therefore, ∂C0
ks

∂αk
< 0 if

and only if αk <
1−ρk

σ2
k

.

C.4. Proof of Lemma 5.5. By (39), αk(B1
k − B0

k) =
αk
γ (C0

k − C1
k ) + o( 1

N ) = 1
γ

∆kαk
nk

+ o( 1
N ),

which is increasing in αk. Together with ∂B0
k

∂αk
= 0, we have Bk = αkB1

k + (1 − αk)B0
k =

B0
k + αk(B1

k − B0
k) is increasing in αk. By (40), we have λ1

k =
1

(nk−1)Bk
+ o( 1

N2 ). Since ∂Bk
∂αk

> 0,

then ∂λ1
k

∂αk
< 0. Similarly, ∂λ0

k
∂αk

< 0.

C.5. Proof of Proposition 5.6. We first prove that a1
k and a0

k are increasing in αk. We
know that a1

k =
1

γ+λ1
k
C1

ks. Since λ1
k is decreasing in αk and C1

ks is independent of αk, then a1
k

is increasing in αk. Since a0
k =

C0
ks

γ+λ0
k
, then

(42) a0
k −

C∗k
γ

=
C0

ks − C∗k
γ

+ (
1

γ + λ0
k
− 1

γ
)C0

ks =
1
γ
(C0

ks − C∗k −
C∗k

1 + γ(λ0
k)
−1

) + o(
1

N2 )

Since (λ0
k)
−1 = (nk − 1)Bk + o( 1

N2 ), Bk = αkB1
k + (1 − αk)B0

k , γ(B1
k − B0

k) = ∆k
nk

+ o( 1
N ),

γB0
k = C∗k + o(1), and γBk = C∗k + o(1), then

1
1 + γ(λ0

k)
−1

=
1

1 + γ(nk − 1)Bk
=

1
1 + γ(nk − 1)B0

k
−

γ(nk − 1)αk(B1
k − B0

k)

(1 + γ(nk − 1)Bk)(1 + γ(nk − 1)B0
k)

=
1

1 + γ(nk − 1)B0
k
− 1

(C∗k )
2

αk∆k

n2
k

+ o(
1

N2 ).

Substituting the above expression and (37) into (42), we obtain

(43) a0
k =

C∗k
γ

+
1
γ

(
−

C∗k
1 + γ(nk − 1)B0

k
+

1
n2

k
(

αk∆k
C∗k
− ∆ks)

)
+ o(

1
N2 )
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where
αk∆k
C∗k
− ∆ks =

(1− ρk)φ
2

ρk(ρkρ−k − φ2)

αk

αk +
1−ρk

σ2
k

(
1

C∗k
− 1

αk +
1−ρk

σ2
k

).

Since C∗k < 1−ρk
σ2

k
, then 1

C∗k
− 1

αk+
1−ρk

σ2
k

> 0 is increasing in αk. Since αk

αk+
1−ρk

σ2
k

is increasing in αk

and B0
k is independent of αk, then a0

k is increasing in αk.
Then we prove that B1

k and |b1
k | are decreasing in αk and B0

k is independent of αk. Since

Bk =
C∗k
γ + o(1), then λ1

k =
1

(nk−1)Bk
+ o( 1

N2 ) =
γ

(nk−1)C∗k
+ o( 1

N ). Therefore, λ1
k is indepen-

dent of αk if we ignore the term o( 1
N ). By the same logic, λ0

k is independent of αk if we
ignore the term o( 1

N ). Consequently, B1
k , |b1

k | and B0
k are completely determined by 1−C1

k ,
|c1

k| and 1− C0
k , in term of comparative statics of αk. Since 1− C1

k and |c1
k| are decreasing

in αk, so are B1
k and |b1

k |. Since C0
k is independent of αk, so is B0

k .

C.6. Proof of Lemma 5.7. Define ak = αka1
k + (1 − αk)a0

k, Bk = αkB1
k + (1 − αk)B0

k , and
bk = αkb1

k . We first solve for E(x1
k,i)

2 and E(x0
k,i)

2. Since a1
k − ak = o( 1

N ) and ak s̄k − Bk pk +

bk p−k = 0, then x1
k,i = a1

k(s
i
k − s̄k) + (Bk − B1

k)pk − (bk − b1
k)p−k + o( 1

N ).
Since pk = ζk(s̄k + δk s̄−k) + o( 1

N ) = s̄k + o(1), Bk − B1
k = −(1− αk)(B1

k − B0
k) = o( 1

N ),
and bk − b1

k = −(1− αk)b1
k = o(1), we have

(44) x1
k,i = a1

k(s
i
k − s̄k)− (1− αk)(B1

k − B0
k)s̄k + (1− αk)b1

k s̄−k + o(
1
N
).

Since E(si
k − s̄k) = E(si

k − s̄k)s̄k = E(si
k − s̄k)s̄−k = 0, then (44) implies that

E(x1
k,i)

2 = (a1
k)

2E(si
k − s̄k)

2 + (1− α2
k)E((B1

k − B0
k)s̄k − b1

k s̄−k)
2 + o(

1
N2 ).

By (a1
k, B1

k − B0
k ,b1

k) = (γ + λ1
k)
−1(C1

ks,C
0
k − C1

k , c1
k) + o( 1

N2 ), we have

(45) E(x1
k,i)

2 =
1

(γ + λ1
k)

2

(
(C1

ks)
2E(si

k − s̄k)
2 + (1− αk)

2Hk

)
+ o(

1
N2 ).

where Hk = E((C1
k − C0

k )s̄k + c1
k s̄−k)

2. Similarly, we get

(46) E(x0
k,i)

2 =
1

(γ + λ0
k)

2

(
(C0

ks)
2E(si

k − s̄k)
2 + α2

k Hk

)
+ o(

1
N2 ).

Next, we solve for W1
k and W0

k . Since E(θi
k|s

i
k, pk, p−k)− pk = (γ + λ1

k)x1
k,i, then

W1
k = E[x1

k,i(E(θi
k|s

i
k, pk, p−k)− pk)−

γ

2
(x1

k,i)
2] = (

γ

2
+ λ1

k)E(x1
k,i)

2.

Substituting (45) into the above expression, we get

(47) W1
k =

γ
2 + λ1

k
(γ + λ1

k)
2

(
(C1

ks)
2E(si

k − s̄k)
2 + (1− αk)

2E((C1
k − C0

k )s̄k + c1
k s̄−k)

2
)
+ o(

1
N2 ).
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Similarly,

(48) W0
k =

γ
2 + λ0

k
(γ + λ0

k)
2

(
(C0

ks)
2E(si

k − s̄k)
2 + α2

kE((C1
k − C0

k )s̄k + c1
k s̄−k)

2
)
+ o(

1
N2 ).

Finally, we estimate
γ
2 +λ1

k
(γ+λ1

k)
2 and

γ
2 +λ0

k
(γ+λ0

k)
2 . By λ1

k = 1
(nk−1)Bk

+ o( 1
N2 ), λ1

k = o(1) and

(γ + λ1
k)Bk = C∗k + o(1), we get

γ
2 +λ1

k
(γ+λ1

k)
2 = 1

2γ (1− (
λ1

k
γ+λ1

k
)2) = 1

2γ (1− ( 1
(nk−1)Bk(γ+λ1

k)
)2) +

o( 1
N2 ) =

1
2γ (1− ( 1

(nk−1)C∗k
)2) + o( 1

N2 ). Similarly,
γ
2 +λ0

k
(γ+λ0

k)
2 =

1
2γ (1− ( 1

(nk−1)C∗k
)2) + o( 1

N2 ).

C.7. Proof of Proposition 5.8. We first compute two preliminary estimations.

Since C1
k−C0

k
c1

k
= φηk

ρk
+ o( 1

N2 ), lim E(s̄k)
2 = ρkσ2

θk
, and lim E(s̄−k)

2 = ρ−kσ2
θ−k

, then

E(si
k − s̄k)

2 = E(si
k)

2 − E(s̄k)
2 = Xk,(49)

E[(C1
k − C0

k )s̄k + c1
k s̄−k]

2 = (c1
k)

2E(
φηk
ρk

s̄k − s̄−k)
2 = (c1

k)
2Yk + o(

1
N2 ),

where Xk ≡ nk−1
nk

(1− ρk + σ2
k )σ

2
θk

and Yk ≡
ρkρ−k−φ2

ρk
σ2

θ−k
. By (47) and (49), we have

(50) W1
k =

γ
2 + λ1

k
(γ + λ1

k)
2

(C∗k )
2Xk +

1
n2

k

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)

(1− αk)
2

(αk +
1−ρk

σ2
k
)2

+ o(
1

N2 ),

which holds since C1
ks = C∗k + o( 1

N2 ) and (36). Thus, we have dW1
k

dαk
< 0.

By (48) and (49), we have

W0
k =

γ
2 + λ0

k
(γ + λ0

k)
2

(C∗k )
2Xk −

1
n2

k

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)

2αk − α2
k

(αk +
1−ρk

σ2
k
)2

+ o(
1

N2 ),(51)

which holds because of (36) and (37). Consequently, dW0
k

dαk
< 0 if and only if αk <

1−ρk
1−ρk+σ2

k
.

Then by (50) and (51), we obtain

W1
k −W0

k =
1

2γn2
k

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)

1

(αk +
1−ρk

σ2
k
)2

+ o(
1

N2 ).(52)

Thus, W1
k −W0

k is decreasing in αk and W1
k −W0

k > 0.

By (50), (51), and
γ
2 +λ1

k
(γ+λ1

k)
2 =

γ
2 +λ0

k
(γ+λ0

k)
2 + o( 1

N2 ), we have

Wk =
γ
2 + λ1

k
(γ + λ1

k)
2

(C∗k )
2Xk −

1
n2

k

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)

αk(1− αk)

(αk +
1−ρk

σ2
k
)2

+ o(
1

N2 ).(53)
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Hence, Wk is decreasing in αk if and only if αk < α̂k =
1−ρk

2(1−ρk)+σ2
k
. Finally, by (53), Wk is the

same when αk = 1 or αk = 0.

C.8. Proof of Proposition 5.9. Let Var1
k = Var(θi

k|s
i
k, pk, p−k), Var0

k = Var(θi
k|s

i
k, pk). Let

X = θi
k, Y = (si

k, s̄k, s̄−k) and Y1 = (si
k, pk, p−k) and Y0 = (si

k, pk).
Since ΣX,YΣ−1

Y,Y = (C∗k , (1− C∗k )
yk2
yk3

, (1− C∗k )
yk1
yk3

) and ΣY,X = (1,ρk +
1−ρk

nk
,φ)σ2

θk
, then by

the projection theorem,

Var1
k = Var[X|Y] = Var(X)− ΣX,YΣ−1

Y,YΣY,X =
σ2

k
κk

(1− ρ1
k)σ

2
θk

,(54)

where ρ1
k = ρk −

σ2
k

nk

yk2
yk3

= ρk −
σ2

k
nk

+
σ2

k
n2

k

ρ−kκk
ρkρ−k−φ2 + o( 1

N2 ) is independent of αk. Therefore,

τ1
k = Var(θi

k)−Var1
k is independent of αk.

Since ΣX,Y0Σ−1
Y0,Y0

= (C0
ks,C

0
k ) and ΣY0,X = (Cov(θi

k, si
k),Cov(θi

k, pk)) (see Lemma 4.3),
then by the projection theorem,

Var0
k = Var[X|Y0] = Var(X)− ΣX,Y0Σ−1

Y0,Y0
ΣY0,X =

σ2
k

κk
(1− ρ0

k)σ
2
θk

,(55)

where ρ0
k = ρk −

σ2
k

nk
+

σ2
k

n2
k
( κk

ρk
+ κk

ρk

φ2

ρkρ−k−φ2
αk

αk+
1−ρk

σ2
k

(2− αk

αk+
1−ρk

σ2
k

)) + o( 1
N2 ) is increasing in αk.

Since τ0
k = Var(θi

k)−Var0
k is increasing in ρ0

k, then τ0
k is increasing in αk.

C.9. Proof of Proposition 5.10. Let E1
k = E(θi

k|s
i
k, pk, p−k) and E0

k = E(θi
k|s

i
k, pk). By (54)

and (55), we have

(56) τ1
k − τ0

k = Var0
k −Var1

k =
σ2

k
κk

(ρ1
k − ρ0

k)σ
2
θk
=

1
n2

k

(1− ρk)φ
2

ρk(ρkρ−k − φ2)

1

(αk +
1−ρk

σ2
k
)2

.

Comparing (52) with (56), we get

(57) W1
k −W0

k =
1

2γ

(
τ1

k − τ0
k

)
.

Next, we deduce W1
k −W0

k in a different way. By Lemma 5.7, we have

(58) W1
k −W0

k =
1

2γ

(
E((E1

k − pk)
2 −E(E0

k − pk)
2
)
+ o(

1
N2 ).

By the law of total variance, Var(θi
k) = E(Var1

k) + Var(E1
k) = Var1

k + E(E1
k)

2, which holds
since Var1

k is a constant by normality and E(E1
k) = 0. Therefore,

(59) E(E1
k)

2 = Var(θi
k)−Var1

k = τ1
k , E(E0

k)
2 = Var(θi

k)−Var0
k = τ0

k .

Thus, we have E((E1
k − pk)

2 −E(E0
k − pk)

2 = τ1
k − τ0

k + 2E(pk(E0
k − E1

k)).
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We then substitute the above equation to (58) and get

(60) W1
k −W0

k =
1

2γ

(
τ1

k − τ0
k + 2E(pk(E0

k − E1
k))
)
+ o(

1
N2 ).

From (57) and (60), we get E(pk(E0
k − E1

k)) = o( 1
N2 ). Since (1− αk)x0

k,i + αkx1
k,i = 0, then

(1− αk)E0
k + αkE1

k − pk = 0. Therefore, we have

(61) E(pkE0
k) = E(pkE1

k) = Var(pk).

Hence, by (59) and (61), E(E1
k − pk)

2 = E(E1
k)

2 −E(pk)
2 = τ1

k −Var(pk).
Similarly, E(E0

k − pk)
2 = τ0

k −Var(pk). Therefore, we get the decomposition of W1
k and

W0
k in Proposition 5.10. In addition, since τ1

k is independent of αk and W1
k is decreasing in

αk, Var(pk) is increasing in αk.

C.10. Proof of Proposition 5.11. By Step 2 of the proof of Lemma 5.7, we have

L1
k = (

γ

2
+ λ1

k)
−1W1

k , L0
k = (

γ

2
+ λ0

k)
−1W0

k , Lk = (
γ

2
+ λ1

k)
−1Wk.

Since λ1
k =

1
(nk−1)Bk

+ o( 1
N2 ) and B1

k − B0
k =

1
γ

∆k
nk

+ o( 1
N ), we have

(62)
1

(γ + λ1
k)

2
=

1
(γ + ((nk − 1)B0

k)
−1)2

+
2

γ2
αk∆k

(C∗k )
2n2

k
+ o(

1
N2 ).

Substituting E(si
k − s̄k)

2 and E[(C1
k − C0

k )s̄k + c1
k s̄−k]

2 into (45), we get

L1
k = E(x1

k,i)
2 =

1
(γ + λ1

k)
2

(
(C∗k )

2Xk +
1
n2

k
(c∗k(1− αk))

2Yk

)
+ o(

1
N2 ).(63)

We substitute ∆k into (62), and then substitute c∗k and (62) into (63), where we take out
the term in (63) that is related to αk:

1
γ2

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)n2
k

 (1− αk)
2

(αk +
1−ρk

σ2
k
)2

+
2(1 + σ2

k
1−ρk

)αk

αk +
1−ρk

σ2
k

 .

Taking derivative to αk, we get that L1
k is decreasing in αk if and only if αk <

1
2(1−

1−ρk
σ2

k
).

Next, we study L0
k = E(x0

k,i)
2. Substituting E(si

k − s̄k)
2 and E[(C1

k − C0
k )s̄k + c1

k s̄−k]
2 into

(46), we get

L0
k = E(x0

k,i)
2 = (a0

k)
2Xk +

1
(γ + λ0

k)
2

1
n2

k
(c∗k αk)

2Yk + o(
1

N2 ).(64)

Since a0
k, 1

(γ+λ0
k)

2 and c∗k αk are increasing in αk, then L0
k is increasing in αk.
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Then, we estimate Lk ≡ αkE(x1
k,i)

2 + (1− αk)E(x0
k,i)

2. From (53) and Wk = (γ
2 + λ1

k)Lk,
we get

Lk =
1

(γ + λ1
k)

2

(C∗k )
2Xk −

1
n2

k

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)

αk(1− αk)

(αk +
1−ρk

σ2
k
)2

+ o(
1

N2 ).(65)

We substitute (62) into (65), from which we take out term that is related to αk:

1
γ2

(1− ρk)
2φ2σ2

θk

ρk(ρkρ−k − φ2)n2
k

−αk(1− αk)

(αk +
1−ρk

σ2
k
)2

+
2(1 + σ2

k
1−ρk

)αk

αk +
1−ρk

σ2
k

 .

Taking derivative to αk, we get that Lk is increasing in αk.
Finally, since L1

k − L0
k = (γ

2 + λ1
k)
−1(W1

k −W0
k ), W1

k −W0
k = o( 1

N ) and λ1
k = o(1), then

L1
k − L0

k =
2
γ
(W1

k −W0
k ) + o(

1
N
).

C.11. Proof of Proposition 5.12. First, we calculate rp and rs. Since pk = ζk(s̄k + δk s̄−k)

and p−k = ζ−k(s̄−k + δ−k s̄k), then

Cov(pk, p−k) = ζkζ−k[(1 + δkδ−k)Cov(s̄k, s̄−k) + δkVar(s̄−k) + δ−kVar(s̄k)],

Var(pk) = ζ2
k [Var(s̄k) + δ2

kVar(s̄−k) + 2δkCov(s̄k, s̄−k)],

Var(p−k) = ζ2
−k[Var(s̄−k) + δ2

−kVar(s̄k) + 2δ−kCov(s̄k, s̄−k)].

Define ωk =
√

Var(s̄−k)
Var(s̄k)

and ω−k =
√

Var(s̄k)
Var(s̄−k)

. We get

rp =
Cov(pk, p−k)√

Var(pk)Var(p−k)
=

(1 + δkδ−k)rs + δkωk + δ−kω−k√
1 + δ2

k ω2
k + 2rsωkδk

√
1 + δ2

−kω2
−k + 2rsω−kδ−k

.

Since Cov(s̄k, s̄−k) = φσθk σθ−k , Var(s̄k) = (ρk +
κk
nk
)σ2

θk
and Var(s̄−k) = (ρ−k +

κ−k
n−k

)σ2
θ−k

, then

rs =
φ√

(ρk+
κk
nk
)(ρ−k+

κ−k
n−k

)
.

Second, we prove that rp > 0 and rs > 0 if and only if φ > 0. If φ > 0, then rs > 0, δk > 0
and δ−k > 0, thus rp > 0. If φ < 0, then rs < 0, δk < 0 and δ−k < 0, thus rp < 0.

Next, we prove that |rp| is increasing in αk and α−k. We first check the case where φ > 0.
We have

∂rp

∂δk
=

ωk(1− r2)(1− δkδ−k)

(1 + δ2
k ω2

k + 2rsωkδk)
3
2

√
1 + δ2

−kω2
−k + 2rsω−kδ−k

> 0,

using the fact that rs < 1, 1− δkδ−k > 0, and ωkω−k = 1. If φ < 0, we replace φ, rp, rs, δk

and δ−k with |φ|, |rp|, |rs|, |δk| and |δ−k|. By definition, |rp| is increasing in |δk|. Together
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with the fact that |δk| is increasing in αk, we have |rp| is increasing in αk. By symmetry,
|rp| is also increasing in α−k.

Finally, we prove that |rp|> |rs|. Notice that |rp|= |rs| if αk = α−k = 0. Since |rp| is
increasing in αk and α−k, then |rp|> |rs|.

C.12. Proof of Proposition 5.13. Since

Var(p′k)−Var(pk) = ζ2
kδ2

k (Var(s̄′−k)−Var(s̄−k))

Var(p′−k)−Var(p−k) = ζ2
−k(Var(s̄′−k)−Var(s̄−k))

then

∆k ≡
Var(p′k)−Var(pk)

Var(p′−k)−Var(p−k)
=

(δkζk)
2

ζ2
−k

.

Since |δkζk| is increasing in αk and ζ−k is independent of αk, then ∆k is increasing in αk.
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