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Abstract

Given demand data for a group of agents, we seek to make counter-

factual welfare statements. Our main result considers whether there are

convex preferences for which some candidate allocation is Pareto opti-

mal. We show that this candidate allocation is possibly efficient if and

only if it is efficient for the incomplete relation derived from the revealed

preference relations and convexity. Similar ideas are used to address re-

lated questions: when the Kaldor criterion may be used to make welfare

comparisons, what prices can be Walrasian equilibrium prices, and the

possibility of a representative consumer when the income distribution

is endogenous.

1 Introduction

Consider a social planner facing a collection of individuals in a classical

exchange environment. The planner has access to a finite set of demand ob-

servations for each individual in society, in the form of price-demand pairs.

She wants to implement some allocation for the individuals.

∗
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She first wants to establish whether the given allocation is Pareto efficient

for the set of individuals, or at least check whether it could be Pareto efficient,

given the demand observations. As a minimal discipline on preference, she

asks whether there are monotone and convex preferences consistent with the

demand observations, for which the suggested allocation is Pareto efficient.

Our main result provides a complete characterization of those allocations

that might possibly be Pareto efficient for the observed demand, a concept we

term possible efficiency. The characterization is easy enough to understand.

Demand generates some implications on what preferences must look like: in

particular, rational demand gives us both a direct and an indirect revealed pref-

erence. The revealed preference is, in general, incomplete. Given this revealed

preference, we can speak of making further inferences based on convexity. For

example, if it is known that both x and y are revealed preferred to z, then
1
2
(x + y) should also be at least as good as z. All the inferences that we can

make using both the indirect revealed preference and convexity define what we

call a domination relation for a given individual. Further, monotonicity allows

additional inferences: if x is revealed preferred to z, and w ≥ x, then w should

also be revealed preferred to z. This domination relation is, in a sense, the

“smallest” set of inferences we can make from the data by using rationality,

convexity and monotonicity alone. Critically, these domination relations are

typically highly incomplete.

Our main result establishes that possible efficiency of an allocation co-

incides with Pareto efficiency of the allocation, taken with respect to these

incomplete dominance relations. Here, incompleteness of the derived relation

is a statement about positive inferences that can be made, rather than a pos-

sibly normative statement about preferences, as in the work of Ok (2002);

Dubra et al. (2004); Eliaz and Ok (2006). Efficiency with respect to this

relation is the same notion as is used in the matching literature, where the in-

complete relation there is typically the stochastic dominance relation on a set

of lotteries induced by a linear order on the set of degenerate outcomes. See

e.g. Bogomolnaia and Moulin (2001); McLennan (2002); Abdulkadiroğlu and

Sönmez (2003); Manea (2008); Carroll (2010); Bogomolnaia and Heo (2012);
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Hashimoto et al. (2014); Aziz et al. (2015); Doğan and Yıldız (2016).

The paper actually uses the domination relations, and related concepts, to

address a host of related problems. We start from individual welfare compar-

isons, and ask for counterfactual (unobserved) rankings that may be inferred

from individual-level consumption data. The exercise follows Varian (1982),

and is related to the literature on demand bounds (Blundell et al., 2007, 2008,

2015; Allen and Rehbeck, 2020b,a, see e.g). Our results imply that the coun-

terfactual comparisons are entirely determined by the domination relations

derived from the data.

Next we turn to collective decisions. Aside from the result on Pareto opti-

mal allocations we have described, we consider the Kaldor criterion: whether

an economic policy decision can be defended on the grounds that those who

benefit from the policy could compensate those who lose. Again the idea of

domination gives us an answer, and serves to rule out whether a dataset vali-

dates a policy decision. We also present a result on whether a possibly efficient

allocation is compatible with Walrasian equilibrium.

Our methods can be used to discuss the testable implications of Walrasian

equilibrium, in the spirit of Brown and Matzkin (1996). Given a consump-

tion data set, we characterize the prices that could be Walrasian equilib-

rium prices. In the General Equilibrium literature, the famous Sonnenschein-

Mantel-Debreu theorem can be read as saying that the are no restrictions on

the sets of prices that may be equilibrium prices. Brown and Matzkin show

that data on prices and endowments (observations “on the equilibrium mani-

fold”) may be used to refute the theory, but they do not characterize the prices

that are consistent with the theory. Our result provides such a characteriza-

tion, when the data assumed are individual-level consumption data.

Finally, we turn our attention to the existence of a representative consumer.

There are well-known impossibility results that rule out a representative con-

sumer, unless the income distribution is severely restricted. Our result shows

that if agents’ preferences may be inferred from the data, and the distribution

allowed to be chosen as part of the rationalization exercise, then representative

consumers may be obtained very generally. We think of this result as a caveat
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on the idea of endogenizing the income distribution to enable a representative

consumer.

Related Literature.

The theory of efficiency in classical economic enviroinments without com-

pleteness is studied in many works; a few of these include Shafer and Son-

nenschein (1975); Gale and Mas-Colell (1975, 1977); Fon and Otani (1979);

Weymark (1985); Rigotti and Shannon (2005) Bewley (2002), and Bewley

et al. (1987).

Also related are concepts of testing whether certain allocations can be equi-

libria of a given economy. Brown and Matzkin (1996) is a canonical reference.

In that paper, the authors check whether a collection of candidate objects

could be equilibria of a given economy. Results in this literature usually focus

on establishing a list of polynomial inequalities that must be satisfied in or-

der for the data to be rationalizable—these inequalities are analogous to the

“Afriat inequalities” of rational consumer behavior. In showing that a par-

ticular rationalization problem reduces to one of verifying whether a solution

exists to a list of polynomial inequalities establishes that these problems are

decidable, in an algorithmic sense. See also Bossert and Sprumont (2002);

Carvajal et al. (2004); Carvajal (2004); Bachmann (2004, 2006b,a); Brown

and Calsamiglia (2007); Carvajal (2010); Cherchye et al. (2011); Carvajal and

Song (2018) for testable implications of related environments. Some of these

investigate efficiency directly: Bossert and Sprumont (2002) discuss how the

core correspondence varies (for fixed preferences) as endowments vary. Bach-

mann (2006b) considers an environment in which collections of endowments

and consumption bundles (but not prices) are observed. His Proposition 5

establishes that Pareto efficiency has essentially no testable content in this

environment, even if all preferences are represented by strictly concave and

continuously differentiable utilities.1

As mentioned, what these papers primarily do is provide an analogue of

1The idea is that a common linear preference renders every allocation efficient. Then
perturb each agent’s utility a bit to ensure strict concavity and smoothness.
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the result of Afriat (1967), whereby rationalizability is equivalent to the sat-

isfaction of a set of inequalities. In contrast, our work differs in two respects:

first, we provide an economic characterization of whether a given bundle could

possibly be efficient—our characterization is more analogous to the characteri-

zation of rationality via absence of cycles (also discussed by Afriat (1967), and

termed “Generalized Axiom of Revealed Preference” by Varian (1982)). We

take as the starting point of our proof a collection of “Afriat inequalities” that

must be satisfied, and use these to uncover a dual system of linear inequalities

that we can interpret — they have concrete economic meaning — and deliver

a condition in terms of the domination relation.

Second, we focus on a single, candidate allocation. In so doing, we are able

to come up with a formulation of the problem in which the equations we must

solve are linear. This formulation is what allows us to leverage well-known

duality techniques. Were we to ask the same question for multiple candidate

allocations, the problem would be polynomial. Importantly, there may be two

candidate allocations, each of which are possibly efficient, but which cannot

possibly both be efficient at the same time.

We are not the first to study representative consumers in a revealed pref-

erence framework. Cherchye et al. (2009) consider household preference ag-

gregation in a model with a collective public good, and Cherchye et al. (2016)

establish an empirical counterpart to the Gorman aggregation result. Their

focus is on empirically understanding two sources of aggregation: household

bargaining and linear Engel curves. Our result focuses instead on endoge-

nous income distribution, as in Samuelson (1956), but not necessarily with

the presence of a social welfare function. We show the inherent weakness of

not restricting the income distribution.

2 The model

Definitions and notational conventions.

We use the following notational conventions: For vectors x, y ∈ Rn, x ≤ y

means that xi ≤ yi for all i = 1, . . . , n; x < y means that x ≤ y and x 6= y;
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and x � y means that xi < yi for all i = 1, . . . , n. The set of non-negative

vectors in Rn is denoted Rn
+, and the set of vectors that are strictly positive

in all components is Rn
++. A function f : A ⊆ Rn → R is weakly monotone

increasing, or non-decreasing, if f(x) ≥ f(y) when x ≥ y; and monotone

increasing, if it is weakly monotone increasing and f(x) < f(y) when x� y.

An agent is defined through a preference relation on Rm
+ , which we repre-

sent throughout by a utility function u : Rm
+ → R. Given a finite set of agents

N , an allocation is a vector x̄ = (x̄i)i∈N ∈ RmN
+ . If each agent is endowed

with a utility function ui, an allocation x̄ Pareto dominates the allocation ȳ

if ui(ȳi) ≤ ui(x̄i) for all i, with a strict inequality for at least one agent. An

allocation x̄ is Pareto optimal if there is no allocation satisfying∑
i∈N

yi =
∑
i∈N

x̄i

that Pareto dominates it.

Next we turn to a criterion for comparing allocations based on the principle

that winners may compensate the losers. Let x̄ and ȳ be two allocations. Say

that x̄ weakly Kaldor dominates ȳ if there is no allocation z̄ with
∑

i z̄i ≤
∑

i ȳi

that Pareto dominates x̄. The idea is that if x̄ does not weakly dominate ȳ,

then there is a way of re-assigning (whence losers are compensated by winners)

the aggregate bundle
∑

i ȳi in a way that Pareto dominates x̄ (see (Graaff,

1967, ch. 5) for a discussion of the Kaldor criterion).

An exchange economy is a tuple E = (ui, ωi)i∈N , where i ∈ N is the set of

agents in the economy, and each agent is endowed with a utility function ui

and an endowment vector ωi ∈ Rm
+ . A Walrasian equilibrium in E is a pair

((xi)i∈N , p) for which 1)
∑

i xi =
∑

i ωi (markets clear); and 2) for all i ∈ N ,

p · xi = p · ωi and ui(x
′
i) > ui(xi) implies that p · y > p · ωi.

Given endowment vectors ωi for a set of agents N , we say that x̄ =

(x̄i)i∈N ∈ RmN
+ is an allocation of (ωi)i∈N of

∑
i x̄ =

∑
i ωi.
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Data and rationalizability.

A pair (p, x) ∈ Rm×m
+ is an observation, and should be interpreted as

the datum that the consumption bundle x was chosen from the budget set

{y ∈ Rm
+ : p · y ≤ I} in which the income, or budget, is I = p · x. A (possibly

empty) finite list of observations {(pk, xk)}Kk=1 is termed an individual dataset.

N is a finite set of individuals. A group dataset is a collection of individual

datasets, one for each i ∈ N . So, Di = {(pki , xki )}
Ki
k=1 denotes an individual

dataset for individual i, and {Di : i ∈ N} is a group data set.

An individual dataset is rationalizable if there is an increasing and con-

cave utility function ui : Rm
+ → R for which for all k, ui(x) > ui(x

k
i ) im-

plies pki · x > pki · xki . In this case, we say that ui rationalizes the individual

dataset. Similarly, we say that a group dataset is rationalizable if each indi-

vidual dataset is rationalizable.

In our paper we insist that rationalizing utilities be increasing and concave.

Clearly, some structure must be assumed on utilities, or any data becomes

rationalizable. The most common approach is to impose local non-satiation,

and then resort to Afriat’s theorem which says that one may without loss of

generality assume a rationalizing utility that is both increasing and concave.

Concavity, thus, comes for free. In our paper we require rationalizing utilities

to do more than just explain individual consumers’ datasets, so the assumption

of monotonicity and concavity are not innocuous.

We define the direct revealed preference as: x �Ri y if x ≥ xki for some k,

and pki · xki ≥ pki · y. We define the direct revealed strict preference as: x �Ri y
if there is k for which

x� xki �Ri y, or x ≥ xki and pki · xki > pki · y.

These definitions of revealed preferences are slightly unusual, in that they

already incorporate the expectation of a monotone preference.2 Observe that

�Ri ⊆ �Ri .

2See Chambers and Echenique (2009) and Nishimura et al. (2017) for such “composi-
tions” of the revealed preference relation with the order on consumption bundles. It is easy
to see that Afriat’s theorem remains true under our definition of revealed preference
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The indirect revealed preference �Ii is defined as the transitive closure of

�Ri . The indirect revealed strict preference x �Ii y obtains when there is a

finite chain x = z1 �Ri . . . �Ri zL = y, where at least one instance of �Ri is �Ri .

A dataset satisfies the Generalized Axiom of Revealed Preference (GARP)

if there is no x, y ∈ Rm
+ such that x �Ii y while y �Ii x.

3 Results

We consider counterfactual welfare comparisons. Given data on individual

consumption, we seek to characterize which counterfactual (i.e. unobserved)

welfare conclusions may be drawn on the basis of what can be inferred about

agents’ preferences from the data. For individual agents, we want to evaluate

unobserved bundles. For a group of agents, the welfare comparisons are about

the possible Pareto optimality of some allocation, or consistency with the

Kaldor criterion. The same ideas allow us to understand the possible (again

counterfactual) Walrasian equilibrium prices, and when a representative agent

is possible.

All proofs are relegated to Section 5.

3.1 Individual welfare

We begin by discussing which individual welfare conclusions may be drawn

from a single agent’s consumption dataset. Aside from the intrinsic merit of

these results, they serve to introduce some of the ideas we use later in our

(main) results on collective welfare.

Our first result asks when we can say that one bundle is unambiguously

better than another, given what the data tell us about the agent. Specifically,

given a dataset {(xk, pk) : 1 ≤ k ≤ K} and two unobserved bundles x̄ and ȳ,

when is x̄ ranked above ȳ for all utility functions compatible with the data?

The answer turns out to depend on the revealed preference relation inferred

from the consumer’s choices. Say that x̄ bests ȳ if x̄ can be written as a convex

combination of bundles zl, where for each l zl �I x̄, or zl �I ȳ, with at least

8



one occurrence of the latter. Say that x̄ strictly bests ȳ if it weakly bests it,

and one of the revealed preference comparisons is strict (�I for �I).
Now it turns out that x̄ strictly bests itself when it is incompatible as a

choice with the existing dataset. This means that there is no price at which x̄

could be demanded, and for which the resulting dataset (obtained by adding

x̄ with a price to the existing dataset) is rationalizable. So we shall focus on

bundles that do not strictly best themselves.

It is easy to see that if x̄ strictly bests ȳ, then it is ranked above ȳ by

any rationalizing concave and monotone increasing utility function. Indeed, if

x̄ =
∑

l λlz
l is as above, then for any concave, increasing, rationalizing utility:

u(x̄) ≥
∑
l

λlu(zl)

≥
∑
l

λlu(xkl)

≥ αu(x̄) + (1− α)u(ȳ)

with α < 1 because at least one of the zl corresponds to a comparison with ȳ.

Given that at least one inequality is strict we conclude that u(x̄) > u(ȳ).

Our first result says that the condition is not only sufficient for the conclu-

sion, but also necessary.

Theorem 1. Let {(xk, pk) : 1 ≤ k ≤ K} be a a dataset and x̄, ȳ ∈ Rm
+ be two

unobserved bundles so that x̄ does not strictly best itself. Then u(x̄) > u(ȳ)

for all concave and monotone rationalizing u if and only if x̄ strictly bests ȳ.

Our next result is a warm-up for the analysis of collective welfare because

it will involve the same notion of “besting,” which we term “domination.”

The question is not about ranking two consumption bundles, but instead we

are given an unobserved bundle x̄, and wish to know when there exists a

rationalizing utility for which this new bundle is at least as good as anything

that was observed in the data.

Say that a bundle y weakly dominates x̄ if it is a convex combination of

some collection zl of bundles, 1 ≤ l ≤ L, such that, for each l, zl �I x̄.
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A bundle y strictly dominates x̄ for agent i if it weakly dominates it and,

moreover, if in the defining convex combination there is l with zl �I x̄.

Theorem 2. Let {(xk, pk) : 1 ≤ k ≤ K} be an individual dataset and x̄ ∈ Rm
+

an arbitrary bundle. There exists a rationalizing utility for which u(x) ≥
max{u(xk) : 1 ≤ k ≤ K} if and only if once we add x̄ �R xk for all k to the

revealed preference relation, as well as any revealed preference comparisons

required by the sign of pk · (xk − x̄), we have

1. GARP is satisfied.

2. There is no bundle y ≤ x̄ that strictly dominates x̄ for the agent.

In contrast with Theorem 1, which wanted something to be true of every

(concave, increasing) utility, Theorem 2 asks about the existence of a ratio-

nalizing utility with a certain property. The latter sort of result is, of course,

most conclusive when the condition fails, and thus certifies that the property

is incompatible with any rationalizing utility.

3.2 Collective welfare

Our next result asserts that a candidate allocation x is “possibly efficient,”

meaning that we cannot rule out that it is efficient given the available data, if

and only if it is efficient for the (incomplete) empirical domination relations.

Theorem 3 asserts that if a candidate allocation is not Pareto efficient, then

there is another allocation which strictly Pareto dominates it according to

the empirical domination relation we have defined. Formally, an allocation

ȳ empirically dominates the allocation x̄ if
∑

i ȳi ≤
∑

i x̄i while ȳi weakly

dominates x̄i for all i and strictly dominates it for at least one i.

Theorem 3. Let {(xki , pki ) : 1 ≤ k ≤ Ki}, for i ∈ N , be a rationalizable

group dataset, and x̄ an allocation. There are rationalizing utilities for which

x̄ is Pareto efficient if and only if x̄ is not empirically dominated by any other

allocation.
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Empirical domination ensures the existence of a common supporting price

at the allocation x̄, essentially the equality of marginal rates of substitution

for a collection of rationalizing utilities. If we additionally require that this

price supports the Scitovsky contour at x̄, then the ideas behind Theorem 3

can be used to provide an empirical basis for the Kaldor criterion:3

Corollary 4. Let {(xki , pki ) : 1 ≤ k ≤ Ki}, for i ∈ N , be a rationalizable

group dataset. Let x̄ and ȳ be allocations. There are rationalizing utilities for

which x̄ weakly Kaldor dominates ȳ if there is no allocation (z̄i) that weakly

dominates x̄i for all i, and strictly dominates it for at least one i, and a scalar

κ ≥ 0, for which ∑
i

z̄ ≤
∑
i

x̄i + κ(
∑
i

ȳi −
∑
i

x̄i)

Observe that Corollary 4 only offers a sufficient condition for Kaldor domi-

nation. When the condition holds, then we may say that there are rationalizing

utilities for which a switch from x̄ to ȳ could not be defended on the basis of

the Kaldor criterion.

Given Theorem 3, one may use the Second Welfare Theorem to decentralize

a possibly efficient allocation x̄ by means of taxes and subsidies. But one may

also want to know when x̄ is a potential Walrasian allocation without any

transfers. Suppose then that we have access to individual endowments (ωi),

for which
∑

i ωi =
∑

i x̄i, and we want to know if there are prices q for which

(x̄, q) constitutes a Walrasian equilibrium of the exchange economy defined by

the endowments and some rationalizing utilities.

Say that a bundle ȳi ωi-dominates x̄i if ȳi is the convex combination of

bundles zli where, for each l, either zli = ωi or zli �Ii x̄i. Say that a bundle ȳi

strictly ωi-dominates x̄i if ȳi ωi-dominates x̄i and one of the inequalities in the

convex combination is strict: so there is l with zli �Ii x̄i.

Theorem 5. Let {(xki , pki ) : 1 ≤ k ≤ Ki}, for i ∈ N , be a rationalizable group

dataset. Suppose given a collection (ωi)i∈N of endowments, and an allocation

3Given utilities (ui), the Scitovsky contour at x̄ is the set S(x̄) = {
∑

i zi : ui(zi) ≥
ui(x̄i) for all i ∈ N}. If a price q supports all individual upper contour sets at x̄ and
q ·

∑
i ȳi < q ·

∑
i x̄, then

∑
i ȳi /∈ S(x̄).
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(x̄i)i∈N of (ωi)i∈N . There exists a price vector q, and rationalizing utilities

(ui)i∈N so that (q, (x̄i)) is a Walrasian equilibrium of (ui, ωi)i∈N if and only if

there is no allocation (ȳi)i∈N of the endowments so that 1) ȳi ωi-dominates x̄i

for all i, and 2) strictly ωi-dominates it for some i.

3.3 Walrasian equilibrium

Motivated by the Sonnenschein-Mantel-Debreu theorem, which implies

that nothing can be said about the sets of prices that can be Walrasian equi-

librium prices, Brown and Matzkin (1996) famously argued that general equi-

librium theory has testable implications for data on prices and individual-level

incomes. Brown and Matzkin’s result relies on the decidability of certain sys-

tems of polynomial equations, but they do not provide a characterization of

the data that is consistent with Walrasian equilibrium.4 Here we shall pro-

vide such a characterization, but under somewhat different assumptions. We

take as given a group dataset, a collection of individual endowments, and a

price vector that is a candidate for equilibrium price. Our result provides a

condition that describes when the price can be a Walrasian equilibrium price.

Formally, we have access to a group data set and we are given 1) agents’

endowments (ωi)i∈N , and 2) a proposed Walrasian equilibrium price p̄.5 We

want to know if there is an allocation (x̄i) such that ((x̄i), p̄) constitutes an

Walrasian equilibrium in the exchange economy (ui, ωi)i∈N , for some collection

of rationalizing utilities (ui)i∈N .

Note that for any given price p̄ we can say whether an observed bundle xki

would be affordable at the budget defined by p̄ and endowments ωi: this will

happen when p̄ ·xki ≤ p̄ ·ωi. So we can think of p̄ as a “partial” observation, to

be added to the data of each individual agent, which describes a new price and

budget, but not a chosen consumption bundle. We may say that, whatever a

consumer chooses to buy at this budget, it would be revealed preferred to xki if

4They do provide such a characterization, in terms of what they call the Weak Axiom
of Revealed Equilibrium, for the special case of N = 2 and Ki = 2.

5A similar result is possible if we assume given individual incomes instead of endowments.
The same is true of Brown and Matzkin (1996).
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p̄·xki ≤ p̄·ωi, and strictly revealed preferred to xki if p̄·xki < p̄·ωi. Now, with p̄ in

hand, such revealed preference comparisons should be added to those already

defined from the existing data. Then we may take the transitive closure of

the revealed preference relations thus augmented by p̄, and say that a bundle

x is empirically worse than consumption at prices p̄ if, whatever would be

consumed at p̄ would be indirectly revealed preferred to x. Similarly we may

say that a bundle x is strictly empirically worse than consumption at prices p̄

if the revealed preference relation is strict. Let Li be the set of observations

for which the consumption bundles are empirically worse than p̄.

We adopt the following notation: Ii = p̄ · ωi is i’s income when prices

are p̄ and her endowment ωi; I
k
i = pki · xki is agent i’s implied income in

observation k, and ω̄ =
∑

i ωi is the economy’s aggregate endowment. We say

that p̄ is consistent with the group dataset if there is a choice for individual

consumption at prices p̄ that does not violate GARP. It is possible to provide

a characterization of consistent prices, essentially along the lines of our results

in Section 3.1. In the statement of the theorem, a and b are the first two letters

of the alphabet; they are disjoint from ∪Li.

Theorem 6. Consider a rationalizable group dataset, a consistent price p̄, and

endowments (ωi)i∈N . There are rationalizing utilities (ui), and consumption

bundles x̄i, for i ∈ N , so that ((x̄i), p̄) constitutes a Walrasian equilibrium of

the exchange economy (ui, ωi)i∈N if and only if there is no price q∗ ∈ Rm
+ and

probability µi on Li ∪ {a, b} such that

1. Eµi p̃i ≤ q∗ for all i,

2. and
∑

i Eµi Ĩi > q∗ · ω̄,

where p̃i and Ĩ are random price and incomes that equal, respectively, pki and

Iki on k ∈ Li, p̄ and Ii on a, and 0 on b.

The condition in the theorem means that there is a “social,” or common,

price q∗ that all agents agree is undesirable, but makes total income cheaper:

meaning that q∗ is bad because it makes goods more expensive than at an

average of either p̄ or at prices that are already revealed to be worse than p̄,
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and at the same time makes aggregate endowment (= total income) cheaper

than the average observed or proposed income. More specifically, suppose

that vi is agent i’s indirect utility function. Then Eµi p̃i ≤ q∗ for all i implies

that Eµiv(p̃i) ≥ v(Eµi p̃i) ≥ vi(q
∗), as vi is convex and nonincreasing. The

condition in Theorem 6 says that, to rule out that p̄ is an equilibrium price, the

unfavorable price q∗ would still price aggregate endowment below the agents’

aggregate expected income.

3.4 Representative consumer

We now turn to the existence of a representative consumer. It is well-

known that a representative consumer is impossible under other than very

stringent assumptions: Antonelli’s Theorem (Antonelli, 1886) and Gorman’s

Theorem (Gorman, 1953) deliver clear impossibility results when one insists

on the representative consumer being valid for all price vectors and individual

budgets (see for example Shafer and Sonnenschein (1982)). The literature has

therefore turned to situations where the income distribution is endogenously

determined. Our next result looks at this question when all we know about

consumers comes from data on their consumption choices.

For convenience we assume that all observed prices are the same. The more

important substantive assumption is the existence of a “small” agent, who

always consumes less than the aggregate bundle in every observation. Our

result says that endogenizing an income distribution in this setting enables

the existence of a representative consumer quite generally.

Theorem 7. Let Di = {(xki , pki ) : 1 ≤ k ≤ Ki}, for i ∈ N , be a group dataset

with the property that K = Ki and pki = pk for all i, and that, for some agent

i∗, xli∗ <
∑

i x
k
i for all k, l. Let Da = {(

∑
i x

k
i , p

k) : 1 ≤ k ≤ K} be an aggregate

dataset. Then the datasets Da and Di, for all i ∈ N , are rationalizable if and

only if there are rationalizing utilities ui for each agent i ∈ N , and v for the

aggregate dataset Da, so that for any price vector p ∈ Rm
+ and income I > 0

there are (xi) ∈ RmN
+ such that

1.
∑

i xi ∈ argmax{v(z) : z ∈ Rm
+ and p · z ≤ I}
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2. xi ∈ argmax{ui(z) : z ∈ Rm
+ and p · z ≤ p · xi}

In Theorem 7, p ·xi should be read as agent i’s endogenous income. So the

property that xi ∈ argmax{ui(z) : z ∈ Rm
+ and p · z ≤ p · xi} means that i is

optimizing by choosing xi at prices p and income set to Ii = p · xi.
One interpretation of Theorem 7 comes from the property of rationaliz-

ability. If we are interested in aggregation, it is natural to consider a situation

where a group data set and the resulting aggregate dataset Da are rational-

izable. Theorem 7 describes what may be inferred theoretically from such a

situation.

4 Remarks

They key to our results is an observation based on Afriat’s theorem, which

says that an individual dataset {(pki , xki ) : 1 ≤ i ≤ Ki} is rationalizable if and

only if there is a solution Uk
i , λ

k
i > 0 to the following system of linear “Afriat

inequalities:”6

U l
i ≤ Uk

i + λki p
k
i · (xli − xki ).

The observation is that we may normalize such a solution so that λk
∗
i = 1 for

some specific observation k∗. As a result we obtain that system that remains

linear, even if the prices pk
∗
i at this particular observation were unknown.

With this observation in hand, we can now approach a problem like that in

Theorem 3. For the allocation x̄ to be Pareto optimal, agents’ utilities would

need to have a common supporting prices q at x̄i. The existence of such a

price q may be added to the above system of inequalities as if it were a new

observation. Assuming that the corresponding value of λ has been normalized

to 1, the system is still linear. See Bachmann (2004) or Bachmann (2006b)

for related constructions. Now the work in proving the theorem amounts to

interpreting the dual linear system.

The results obtained in Section 3 exemplify the power of our approach, but

6See Chambers and Echenique (2016) for a discussion of Afriat’s theorem and this system
of linear inequalities.
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there are also clear limits. Given a dataset, one may ask a related question

for a collection of allocations: whether there exists a single economy capable

of generating all such allocations as Pareto efficient ones. It is natural to

conjecture that there is such an economy if and only if each of the allocations is

undominated. This conjecture turns out to be false, as shown by the following

example:

Example 1. Let N = {1, 2}, and suppose there are two commodities, so that

m = 2. Individual 1 has an empty individual dataset. Individual 2 has four

observations: (p12, x
1
2) = ((2, 1), (1, 2)), (p22, x

2
2) = ((2, 1), (0, 4)), (p32, x

3
2) =

((1, 2), (2, 1)), and (p42, x
4
2) = ((1, 2), (4, 0)).

Now, suppose we want to consider the allocations x̄11 = (1, 0), x̄12 = (0, 4),

and x̄21 = (0, 1), x̄22 = (4, 0). Observe that because individual 1 has an empty

individual dataset, each of these allocations are possibly efficient by Theorem 3.

On the other hand, they cannot both be efficient for the same economy. To

understand why, observe that if q1 supports x12, then q1 · (0, 4) ≤ q1 · (1, 2), as

the individual data set for individual 2 is rational. If q1(2) = 0 (the second

coordinate of q1), then this inequality is obviously strict as q1 ≥ 0.

So, if q1(2) = 0, we conclude that q1 · (1, 2) − q1 · (0, 4) > 0, so that

q1 · (1,−2) > 0, from which we conclude q1 · (1,−1) > 0, or q1 · x11 > q1 · x21.
Similarly, if q1(2) > 0, then we know q1 · (1,−2) ≥ 0, so that (as q1(2) > 0),

q1 · x11 > q1 · x21.
So, q1 · x11 > q1 · x21; symmetrically, q2 · x21 > q2 · x11. These inequalities

obviously cannot simultaneously hold for a rational decision maker.

In our discussion, we reduced the problem of testing whether an allocation

x̄ could be efficient to the question of the existence of a supporting price q.

Were we to ask that multiple allocations be efficient, we would need a different

supporting prices for each such allocation, but more to the point, the scale

factors could differ across individuals, thus rendering the system nonlinear. In

other words, we would need different λ for the different allocations, and the

normalization would no longer help us.

So there are obvious limits to our approach, but there are also additional
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applications that we have now exhausted. One of these is envy-freeness. Sup-

pose given a group dataset, and consider the existence of rationalizing utilities

that render some proposed allocation x̄ envy-free: meaning rationalizing utili-

ties (ui) with the property that ui(x̄i) ≥ ui(x̄j) for all i, j ∈ N . Our methods,

based on working through the dual of augmented system of Afriat inequalities,

provide an answer to this question.

A sketch of the solution follows: the trick is to add supporting prices for

each agent at the proposed consumption of other agents in the allocation x̄.

The normalization idea keeps the system linear, and we just need to include

utility values ui,j for i’s utility at the bundle intended for j:

1. For all i ∈ N and all k, l ∈ {1, . . . , Ki} for which pli · (xki − xli) ≤ 0, we

have uki ≤ uli + λlip
l
i · (xki − xli).

2. For all i, j ∈ N and all k ∈ {1, . . . , Ki} for which pki · (xj − xki ) ≤ 0, we

have ui,j ≤ uki + λki p
k
i · (xj − xik).

3. For all i, j ∈ N and all k ∈ {1, . . . , Ki}, uki ≤ ui,j + pi,j · (xik − xj).

4. For all i, j, h ∈ N , ui,j ≤ ui,h + pi,h · (xj − xh).

5. For all i, j ∈ N , ui,i ≥ ui,j.

We omit the details, but hope that it is clear how to proceed on the basis

of this system.

5 Proofs

5.1 Proof of Theorem 3

We begin with the following lemma, which is stated in Chambers and

Echenique (2016), Remark 3.6.

Lemma 8. Let i ∈ N . Suppose that for all k ∈ {1, . . . , Ki}, there are uki ∈ R

and λki > 0 for which for all k, l ∈ {1, . . . , Ki} satisfying pki · (xli− xki ) ≤ 0, we
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have

uli ≤ uki + λki p
k
i · (xli − xki ).

Then the individual dataset {(pki , xki )}
Ki
k=1 is rationalizable.

Proof. Suppose that the condition in the statement of the Lemma is satisfied.

Define the pair of binary relations xki �Ri xli if pki · (xli − xki ) ≤ 0 and xki �Ri xli
if pki · (xli − xki ) < 0.

A cycle is a finite list xl1i �Ri xl2i �Ri . . . xlai �Ri xl1i . We claim that there

can be no cycle. For, if there were, then we would have:

u
lj+1

i − ulji ≤ λ
lj
i p

lj
i · (x

lj+1

i − xlji ),

for all j = 1, . . . , a− 1 and

ul1i − u
la
i < λlai p

la
i · (x

l1
i − x

la
i ).

Reading addition of indices as modulo a, observe that

0 =
a∑
j=1

(u
lj+1

i − ulji ) ≤
a∑
j=1

λ
lj
i p

lj
i · (x

lj+1

i − xlji ) < 0.

The first equality is by telescoping, the weak inequality by summing the

original inequalities, and the strict inequality because of the right hand sides of

the original inequalities are nonpositive (and at least one strictly negative). So,

we arrive at a contradiction and there can be no cycle. Conclude by Afriat’s

Theorem (Afriat, 1967; Chambers and Echenique, 2016) that the individual

dataset is rationalizable.

Now we proceed with the proof of the theorem.

That the conditions are necessary for x to be possibly efficient is straight-

forward.

Now suppose that the conditions are satisfied. We will demonstrate that

there exists some q ∈ Rm
++ so that, for all i ∈ N , the individual dataset given

by {(pki , xki )}
Ki
k=1 ∪ {(xi, q)} is rationalizable. This then implies (by Afriat’s
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Theorem) the existence of a concave, increasing utility function for which for

all y ∈ Rm
+ satisfying q · y ≤ q · xi, we have ui(y) ≤ ui(xi), and consequently

that ui(y) > ui(xi) implies q · y > q · xi. Consequently, it also follows that

ui(y) ≥ ui(xi) implies q · y ≥ q · xi, by continuity and monotonicity of ui. It

then follows that x is efficient for these utility indices.7

The proof relies on a homogeneous Theorem of the Alternative: see Kim

C. Border (2020).

The content of Afriat’s Theorem is that for each i ∈ N and k ∈ {1, . . . , Ki},
there is uki and λki > 0 for which for all k, l ∈ {1, . . . , Ki},

uki ≤ uli + λlip
l
i · (xki − xli).

What we would now like to find are additional unknown parameters.

Namely, for each i ∈ N , a scalar ui ∈ R and q ∈ Rm. The vector q is

required to be common to all individuals and will reflect the common prices

supporting the hypothesized efficient allocation x.

Our task is then to find q ∈ Rm, and for each i ∈ N , a real number ui ∈ R,

and for each i ∈ N and k ∈ {1, . . . , Ki}, uki ∈ R and λki ∈ R for which the

following linear inequalities are satisfied:

1. For all i ∈ N and all k, l ∈ {1, . . . , Ki} for which pki · (xli − xki ) ≤ 0, we

have uli ≤ uki + λki p
k
i · (xli − xki ).

2. For all i ∈ N and all k ∈ {1, . . . , Ki}, uki ≤ ui + q · (xki − xi).

3. For all i ∈ N and all k ∈ {1, . . . , Ki}, for which pki · (xi − xki ) ≤ 0, we

have ui ≤ uki + λki p
k
i · (xi − xki ).

4. For all i ∈ N and all k ∈ {1, . . . , Ki}, λki > 0.

5. q ≥ 0 and q 6= 0.

The inequalities can be represented in matrix notation. We display part of

the matrix below, as the matrix itself is quite large. The matrix below displays

7If not, then there is y for which
∑

i yi =
∑

i xi and for all i ∈ N , we have ui(yi) ≥ ui(xi),
with inequality strict for some j ∈ N , implying

∑
i q · yi >

∑
i q · xi, a contradiction.

19



four horizontal blocks. The first two correspond to vectors corresponding to

weak inequalities, the latter two to strict. This matrix has, for each agent

i, 2(Ki + 1) columns, and an additional m columns; in total the number of

columns is m +
∑

i(2Ki + 1). Observe that, in the matrix written below, the

column labelled by q actually represents m columns; for example, 1m′ is an

indicator function of the dimension m′ ∈ {1, . . . ,m}.
As to rows, the matrix has, for each agent i, one row for each ordered pair

(l, k) where l, k ∈ {1, . . . , Ki}, k 6= l, and pki · (xli − xki ) ≤ 0. When agent

i is understood, the row is labeled (l, k), as in the displayed matrix below.

Continuing with the rows for agent i, there are also three rows for each k: one

labeled by (k, ∗), one by (∗, k) and one by k. The row labeled (k, l) for agent

i is meant to capture inequality (1): there is a 1 in the column k for agent i,

a −1 in column l, and pki · (xli − xki ) in the column for k among the second set

of Ki columns. The rest of the entries in that row are zero. In a similar vein,

the rows labeled by (k, ∗) and (∗, k) are there to encode the inequalities in (2)

and in (3). The row labeled k is meant to capture the basic non-negativity

constraint (4), and has a one in column k, among the second collection of Ki

columns.

Finally, the matrix has a collection of rows m + 1 that are not specific

to any agent and seek to capture (5). There is then one column for each

m′ ∈ {1, . . . ,m} (labelled (∗,m)), expressing the nonnegativity of q, and a

row asserting that
∑m

m′=1 q(m
′) > 0; the row labelled M .

Because this matrix is large, we only show certain portions of it. The rows

listed in the matrix have zeroes everywhere for every remaining column.
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

1 ··· k ··· l ··· Ki ··· ∗ 1′ ··· k′ ··· K′i q

(l,k) 0 · · · 1 · · · −1 · · · 0 · · · 0 0 · · · pki · (xli − xki ) · · · 0 0
...

...
...

...
...

...
...

...
... 0

(∗,k) 0 · · · 1 · · · 0 · · · 0 · · · −1 0 · · · pki · (xi − xki ) · · · 0 0
...

...
...

...
...

...
...

...
... 0

(k,∗) 0 · · · −1 · · · 0 · · · 0 · · · 1 0 · · · 0 · · · 0 xki − xi
...

...
...

...
...

...
...

...
... 0

(∗,m′) 0 · · · 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 1m′
...

...
...

...
...

...
...

...
... 0

M 0 · · · 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 1{1,...,m}
...

...
...

...
...

...
...

...
... 0

k 0 · · · 0 · · · 0 · · · 0
... 0 0 · · · 1 · · · 0 0

...
...

...
...

...
...

...
...

... 0


We are searching for a vector in m +

∑
i(2Ki + 1) dimensional real space

which, when multiplied with this matrix to yield a linear combination of its

columns, results in a vector whose coordinates in the first two horizontal blocks

are nonnegative, and in the last two are strictly positive. Such a vector would

represent a solution to the system of inequalities (1)-(5). This is the system

to which we will apply a duality result.

By Motzkin’s transposition theorem (a version of the theorem of the al-

ternative, see Theorem 47 in Kim C. Border (2020)) there is no solution to

the set of inequalities (and consequently to the enumerated list of inequalities

above) if and only if there is, for each row of the matrix, a nonnegative weight,

where for some row corresponding to a strict inequality (either in the third or

fourth horizontal block), one of the weights is strict, for which the weighted

sum of rows is the zero vector.

So, let us suppose by means of contradiction that there is no solution to the

linear system. Therefore, there exists a solution to the dual system. Interpret

the solution as a collection of weights on the rows of the matrix. For the rows
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corresponding to agent i ∈ N (any row except the one labelled M), we let

ξAi ≥ 0 denote the weight for the row labelled by A. For example, in the

row of the above matrix labelled (l, k), ξ
(l,k)
i is the associated weight. We let

ξM ≥ 0 be the weight associated with row M (which is common to all i ∈ N),

and we let ξ(∗,m
′) ≥ 0 be the weight associated with row (∗,m′).

The matrix has a special structure. Observe that, restricted to the first∑
i(Ki + 1) block of columns on the left, and the rows labeled (k, l), (k, ∗), or

(k, ∗) for some agent (and some k, l), the matrix becomes the incidence matrix

of a graph with vertexes that can be identified with these
∑

i(Ki+1) columns.

So each vertex is identified with a pair (i, k), of an agent and an observation

k ∈ {1, . . . , Ki}, or with a pair (i, ∗) for the hypothesized efficient bundle. An

edge goes from a node (i, k) to (i, l) when pki · (xli − xki ) ≤ 0. An edge goes

from (i, ∗) to (i, k) when pki · (xi− xki ) ≤ 0. An edge always goes from (i, k) to

(i, ∗).
Now, the solution to the dual, when restricted to the incidence submatrix,

provides a non-negative linear combination of rows that equals the null vector.

The Poincaré-Veblen-Alexander theorem (Berge, 2001) claims that for any

non-negative weighted sum of incidence vectors of a directed graph which is

zero, there is a collection of positively oriented cycles in the graph, each cycle

being associated with a weight, and the total weight ascribed to an incidence

vector is the sum of all weights associated to cycles in which the incidence

vector appears. Here, a cycle includes no repetitions of nodes.

Because the individual dataset {(pki , xki )}
Ki
k=1 is rationalizable, we may as-

sume without loss of generality that every such cycle involves an edge of the

type connecting (i, k) to (i, ∗). This is because otherwise, along all elements

of the cycle, rationalizability implies that p
kj
i · (x

kj+1

i − xkji ) = 0, and thus the

weighted sum of vectors across that cycle is zero. Removing them does not

affect the total weighted sum of rows.

Let us now represent the cycles associated with agent i ∈ N by Ci, as

described, each of them comes with a weight µ(c) ≥ 0. What we just claimed is

that for each c ∈ Ci, there is some k ∈ {1, . . . , Ki} and an edge connecting (i, k)

to (i, ∗). This implies, in particular, that xki �Ii x̄i. To see why, let the cycle
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be written via a sequence of nodes: (i, ∗), (i, k1), . . . , (i, kl = k), (i, ∗). Because

(i, ∗) is connected to (i, k1) by an edge, it means that pk1i · (x̄i − x
k1
i ) ≤ 0, so

that xk1i �Ri x̄i; similarly, x
kj+1

i �Ri x
kj
i for all j = 1, . . . , l − 1. Consequently,

by definition, xki �∗i x̄i.
What we have just claimed is that if ξ

(k,∗)
i > 0, it must be that xki �Ii x̄i.

Now, again by Motzkin’s transposition theorem, one of the following must

be true: either ξM > 0, or there is i ∈ N and k ∈ {1, . . . , Ki} for which ξki > 0.

Let us consider each of the two cases in turn.

Case 1: There is a dual solution with ξM > 0.

The only columns for which row M are nonzero are the last m columns.

Rows of type (∗,m′) add (potentially) non-negative terms to these last m

columns. Since the weighted sum of rows equals zero, it follows that

∑
i

Ki∑
k=1

ξ
(∗,k)
i (xki − xi) = −

m∑
m′=1

ξ∗,m
′
1m′ − ξM11 ...,m � 0. (1)

In other words, for each i ∈ N and each k ∈ {1, . . . , Ki}, there is a number

θki ≥ 0 for which ∑
i

Ki∑
k=1

θki (x
k
i − xi)� 0,

where by the preceding discussion, θki > 0 implies xki �Ii xi. Furthermore,

there is i ∈ N and k ∈ {1, . . . , Ki} for which θki > 0, since equation (1) is

strictly negative in every coordinate.

Without loss of generality (since the system is homogeneous), we may

assume that supi∈N
∑Ki

k=1 θ
k
i = 1.

For each i ∈ N , let θ0i = 1−
∑Ki

k=1 θ
k
i . Then∑

i

∑
k

(θki x
k
i + θ0i x̄i)�

∑
i

∑
k

(θki x̄i + θ0i x̄i) =
∑
i

x̄i

so we can define

ȳi = θ0i x̄i +

Ki∑
k=1

θki x
k
i .
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for all i 6= 1. If θ01 > 0, choose y′1 � x̄1 so that ȳ1 = θ01y
′
1+

∑K1

k=1 θ
k
1x

k
1 and y′1 �I1

x̄1; otherwise choose yk
∗

1 � xk
∗

1 so that ȳ1 = θ01x̄1 +
∑K1

k=1 θ
k
1x

k
1 + θk

∗
1 (yk

∗
1 −xk

∗
1 )

and yk
∗

1 �I1 xk
∗

1 . Either way the allocation ȳi weakly dominates x̄i all agents,

and strictly dominates it for agent 1.

Case 2: There is a dual solution with ξki > 0.

This means that there is i ∈ N and k ∈ {1, . . . , Ki} for which ξki > 0. Fix

such an i∗ ∈ N and a k∗ ∈ {1, . . . , Ki}. Because ξM = 0 is possible, we may

only conclude in this case that
∑

i

∑Ki

k=1 ξ
(∗,k)
i (xki − xi) ≤ 0.

On the other hand, we may conclude, since ξk
∗
i∗ > 0, that there is also

l ∈ {1, . . . , Ki∗} with ξ
(l,k∗)
i∗ > 0 and pk

∗
i∗ · (xli∗ − xk

∗
i∗ ) < 0; or in other words,

xk
∗
i∗ �Ri xli∗ . In particular, the edge (i∗, k∗) to (i∗, l) belongs to some c ∈ Ci,

which has a corresponding ξ
(∗,k)
i∗ > 0; we may conclude then that xki∗ �Ii∗ x̄i∗ .

Now
∑

i

∑Ki

k=1 ξ
(∗,k)
i (xki −xi) ≤ 0 implies that we can again as in Case 1 set

θki = ξ
(∗,k)
i , assume without loss that

∑
k θ

k
i ≤ 1, and define θ0i = 1 −

∑
k θ

k
i .

Then we may set z0i = x̄i when θ0i > 0 and zki = xki when θki > 0 and then we

have (ignoring terms where θki = 0)

∑
i

Ki∑
k=0

θki z
k
i ≤

∑
i

x̄i

so that if we define an allocation by yi =
∑Ki

k=0 θ
k
i z

k
i , and recall that xki∗ �Ii∗ x̄i∗ ,

we conclude that the allocation (yi) empirically dominates (x̄i).

5.2 Proof of Theorem 2

For this proof we start by constructing the same matrix as in the proof of

Theorem 3 but with N = 1, and where we now add a row 1∗−1k for each k to

capture the inequality uk ≤ ū. The idea is to consider the same collection of

linear inequalities as before, but where we in addition require that the level of

utility in the new observation exceeds that of any existing observation in the

data. Consider a solution to the dual. Again when restricted to the incidence

matrix there is a collection of oriented cycles in the graph, each cycle being

associated with a weight, and the total weight ascribed to an incidence vector

24



is the sum of all weights associated to cycles in which the incidence vector

appears. A cycle includes no repetitions of nodes.

Because the individual dataset {(pki , xki )}
Ki
k=1 is rationalizable, we may as-

sume without loss of generality that every such cycle involves an edge of the

type connecting (i, k) to (i, ∗). This is because otherwise, along all elements

of the cycle, rationalizability implies that p
kj
i · (x

kj+1

i − xkji ) = 0, and thus the

weighted sum of vectors across that cycle is zero. Removing them does not

affect the total weighted sum of rows.

By the same argument as in the main theorem, if C denotes the set of cycles,

each of them with weight µ(c), we know that a cycle has an edge connecting

(say) (k) to (∗), where ξ(k,∗) > 0 and that in consequence xk �I x̄. What is

different from the proof of the main theorem is that now the cycle may involve

an edge going from (say) (l) to (∗) which was added from a row 1∗ − 1l due

to the inequality ul ≤ ū.

Now as before there are two cases to contend with. First, when ξM > 0

we obtain as before that
∑

k ξ
(k,∗)(xk − x̄) � 0. This means that there is a

convex combination θ−x̄ +
∑

k θ
kxk � x̄ with support in x̄ and the xk �I x̄

(as θk = ξ(k,∗) > 0 means that the argument in previous paragraph applies).

Second, when ξM = 0 then we must have ξk > 0 for some k. This may again

lead to the same case as in the main theorem, or it may be the case that

ξ(k,∗) = 0 for all k and we have a strict cycle involving the new x̄ �R xl edges.

This would be a violation of GARP.

5.3 Proof of Theorem 1

The starting point for proving this theorem is the system of linear inequal-

ities introduced by Varian (1982) for this problem. Indeed, by Varian’s Fact

4, ȳ is revealed worse than x̄ if and only if there is no solution q > 0 to the

system of linear inequalities comprised by:

1. q · x̄ ≤ q · xk for all k with xk �I x̄

2. q · x̄ ≤ q · xk for all k with xk �I ȳ
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3. q · x̄ > q · xk for all k with xk �I x̄

4. q · x̄ > q · xk for all k with xk �I ȳ

Set up a matrix to capture this system, with one row for each qm ≥ 0

constraint and one row for the constraint that
∑

m qm > 0. Consider a dual

solution with weights θk for each of the inequalities involving x̄, and ηk for

the inequalities that involve ȳ. Let ξm be the dual variable for the qm ≥ 0

inequalities and ξM for the last
∑

m qm > 0 inequality.

Suppose first that ξM > 0. Then we get that
∑

k(θ
k + ηk)xk � x̄

∑
k(θ

k +

ηk), which means that
∑

k θ
k + ηk > 0 and that we may normalize so that∑

k θ
k + ηk = 1. Set zk

∗ � xk
∗

for some θk
∗

+ ηk
∗
> 0, and zk = xk for all

other k 6= k∗. Then x̄ =
∑

k(θ
k+ηk)zk with xk �I x̄ or xk �I ȳ, and where the

comparison is �I for k = k∗. Note that this combination must place positive

weight on a bundle that is revealed preferred to ȳ, otherwise we would have

that x̄ strictly bests itself.

If instead ξM = 0 then we must have θk + ηk > 0 for some k with either

xk �I x̄ or xk �I ȳ. Again this allows us to assume that
∑

k θ
k + ηk = 1 and

we get that
∑

k(θ
k + ηk)xk ≤ x̄.

5.4 Proof of Theorem 5

We shall omit some details as all these proofs involve similar ideas. Set up

the problem as in the main theorem. The same system of Afriat inequalities

for the observed choices, and the unknown price q that supports the new

allocation (x̄i). Now, however, we add inequalities to capture that x̄i must be

affordable at the income that agents derive from selling their endowment at

equilibrium prices. In fact impose the inequality q · (ωi − x̄i) ≥ 0. Let αi be

the dual variable associated to this inequality. Since x̄i is an allocation of ωi

these will ensure that the inequality holds with equality for all agents. Now

we obtain, reasoning as before, that a dual solution implies∑
i

∑
k

θki (x
k
i − x̄i) +

∑
i

αi(ωi − x̄i) +
∑
m

ξm1m + ξM1 = 0
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Suppose first that ξM > 0 and normalize so that
∑

k θ
k
i + αi ≤ 1. Let

ȳi =
∑

k θ
k
i x

k
i + αiωi + (1−

∑
k θ

k
i − αi)x̄i. Then we obtain∑

i

ȳi �
∑
i

(1− αi)x̄i ≤
∑
i

x̄i.

And as in the previous proof, when ξM = 0 then one of the strict revealed

preference comparisons must get strictly positive weight.

5.5 Proof of Theorem 6.

Normalize the data so that income in each observation equal 1, so we have

Iki = 1 for all k and i. Define the revealed preference relation as before,

but now add the comparisons 0 �Ri k when p̄ · xki ≤ p̄ · ωi and 0 �Ri k when

p̄ ·xki < p̄ ·ωi. Then we abuse notation by denoting by �Ri and �Ri the resulting

transitive closures.

Consider a linear system with the following inequalities:

1. pk · x̄i ≥ 1 for all i and k with 0 �Ri k.

2. pk · x̄i > 1 for all i and k with 0 �Ri k.

3. p̄ · x̄i ≥ p̄ · ωi for all i.

4.
∑

i x̄i =
∑

i ωi = ω̄ (market clearing).

5. x̄i ≥ 0.

Set this up as a homogenous system with NM + 1 columns: the first M

correspond to the unknowns x̄i,m for i ∈ N and 1 ≤ m ≤M . The last column

is used for a normalization variable that will be required to be strictly positive,

and then normalized to 1 in any solution. The rows of this matrix correspond

to the 5 categories of inequalities in the system. So the last column has −1

for the first two collection of rows, −Ii = for the second collection of rows,

where Ii = p̄ ·ωi, −ω̄m for the following set of rows; then 0 for the non-negative

inequality, and finally 1 for the last added row. Let π be the dual variable for

the last “normalization” inequality.
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

(1,1) ··· (i,m) ··· (N,M)

0�R
i k 0 · · · pki,m · · · 0 −1
...

...
...

...
...

0�R
i l 0 · · · pli,m · · · 0 −1
...

...
...

...
...

i 0 · · · pki,m · · · 0 −Ii
...

...
...

...
...

m 0 · · · 1 · · · 0 −ω̄m
...

...
...

...
...

(i,m) 0 · · · 1 · · · 0 0

0 · · · 0 · · · 0 1


Let the dual variables be θki for the first two collection of inequalities, αi for

the next set of inequalities, ηm for the market-clearing inequalities, ξmi for the

non-negativity constraint, and π for the very last “normalization” inequality.

Now the dual system is∑
k

θki p
k + αip̄+ η + ξi = 0 for all i,

and

−
∑
i

∑
k

θki −
∑
i

αiIi − η · ω̄ + π = 0

Clearly the primal system has a solution if the last inequality is ignored,

so we must have π > 0 in any dual solution. The first system implies that

η ≤ 0, so the last system implies that
∑

i,k θ
k
i +

∑
i αi > 0. Define β = −η and

normalize the dual variables so that
∑

k θ
k
i + αi < 1 for all i. Then we have

that ∑
k

θki p
k + αip̄+ (1−

∑
k

θki − αi)ξ′i = β for all i,

as well as ∑
i

∑
k

θki
∑
i

αiIi = β · ω̄ + π.
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This means that there is a probability measure µi for each i on

{k : p̄ �Ri xki } ∪ {a, b} such that Eµi p̃ = β,

where p̃ equals pk on k, p̄ on a and ξ′i on b. And∑
i

Eµi Ĩi < β · ω̄,

where Ĩi is 1 on k, Ii on a and 0 on b.

5.6 Proof of Theorem 7

It is obvious that the existence of these utilities imply that the datasets

are rationalizable. We prove the opposite direction.

Let agent i be as in the hypothesis of the theorem. First we argue that

the union Di ∪Da is rationalizable. Indeed each of the datasets Di and Da is

rationalizable, so any revealed preference cycle would have to involve an edge

p · x ≥ p · x′ for (p, x) ∈ Di and (q, x′) ∈ Da. This is, however, not possible as

x < y.

Now let u be a rationalization of Di ∪ Da and define ui = v = u. Let

uj, for j 6= i be an arbitrary rationalization of Dj. For any observed price

pk, the observed allocation (xki ) and these utilities satisfy the property in the

statement of the theorem. For any unobserved price p, let x ∈ argmax{v(z) :

z ∈ Rm
+ and p · z ≤ 1} and choose xi = x and xj = 0 for j 6= i. Since ui = v

the resulting allocation satisfies the statement in the theorem.
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