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Abstract

We consider an aggregative game of competition in which agents have an imperfect
knowledge about the set of agents they are in competition with. We model agent’s
perceived competitors by a network in which each agent is assumed to only have
information on the activities of their direct neighbors. In this framework, a natural
equilibrium concept emerges, the peer-consistent equilibrium (PCE). In a PCE, each
agent chooses an action level that maximizes her subjective perceived utility and the
action levels of all individuals in the network must be consistent. We decompose the
network into communities and completely characterize peer-consistent equilibria by
identifying which sets of agents can be active in equilibrium. An agent is active if
she either belongs to a strong community or if few agents are aware of her existence.
We show that there is a unique stable PCE. We provide a behavioral foundation of
eigenvector centrality, since, in any stable PCE, agents’ action levels are proportional
to their eigenvector centrality in the network. We illustrate our results with two
well-known models: Tullock contest function and Cournot competition.
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1 Introduction
Competition in economics is usually viewed as “reciprocal.” That is, if agent i considers
agent j as a competitor, then agent j will also consider agent i as a competitor. However,
in the real world, agents may perceive other agents as competitors when the reverse is
not necessarily true. In other words, the network is directed. Moreover, many real-world
networks are weakly connected, that is, there may not exist a path between every pair of
agents. This implies that agents may not be aware of others located further away in the
network. Therefore, even though competition is global, in many cases agents only care about
their local competitors. For example, when estimating demand and thus making investment
decisions, firms may only account for their perceived local competitors, even though, in
reality, they are competing with a larger set of firms. However, because competition is
global, their local perception is flawed from the outset. They make investments (actions)
and then discover that their perceived demand (or resource) is not correct. They will then
change their beliefs about their demand and adjust their investments. This pattern will
continue until an equilibrium is reached.

In this paper, we study a standard aggregative game in which agents compete in terms
of actions. However, they only perceive a subset of agents as competitors and are not
aware of the others. For example, if we consider the standard Tullock contest game, each
agent believes that their compete for some (perceived) ressource with the agents she is
aware of while, in reality, they compete for a larger ressource with the whole set of agents.
Similarly, in the standard Cournot oligopoly competition with homogenous product, each
firm estimates that the product price is based on the belief that they are only in competition
with their direct neighbors. In reality, the price is determined by the quantities produced
by all firms in the network.

In this framework, a natural equilibrium concept emerges, the peer-consistent equilib-
rium (PCE), which captures both the agents’ local sightedness—each agent chooses an
action level that maximizes her perceived utility—and the fact that the action levels of all
individuals in the network are consistent in equilibrium. Indeed, at a PCE, individual i’s
perceived subjective utility is equal to her objective payoff. Therefore, although individu-
als start with a wrong perception of their competitors, this wrong perception induces an
interaction pattern that eventually leads to a correct perception of their competitors at
equilibrium. In other words, their wrong perception is peer-consistent. For example, in
the contest game, the local perception of agents in terms of resources has to be consistent
with the “real” resources observed in equilibrium. Similarly, in the Cournot competition
game, the firms’ local perception of product price has to be consistent with the “real” price
in equilibrium.

Our second contribution is to show that peer-consistent equilibria provide a behav-
ioral foundation of the eigenvector centrality measure.1 More precisely, we prove that the
action level of each agent at a PCE is proportional to her eigenvector centrality ; this de-

1Some papers have also provided an axiomatic foundation of eigenvector centrality; see e.g., Palacios-
Huerta and Volij (2004); Dequiedt and Zenou (2017); Bloch et al. (2019).
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termines the intensive margin of resource demand at peer-consistent equilibria (i.e., how
much action an active agent exerts). This result is very general and holds beyond strongly
connected networks, for which eigenvector centrality is usually defined. Other papers have
provided a microfoundation of eigenvector centrality. For example, Golub and Jackson
(2010, 2012) develop models on DeGroot updating in which eigenvector centrality is the
right way to characterize an agent’s influence. However, this arises from a heuristic learning
process rather than behavior in a game. Banerjee et al. (2013) provide a microfoundation
of eigenvector centrality by showing that it is the limit of diffusion centrality. In Sadler
(2020), a theorem shows that there exists a network game of strategic complements with
an equilibrium in which actions are ordered according to eigenvector centrality. Our model
is different in the sense that it provides a behavioral foundation for eigenvector central-
ity measure based on an aggregative game and PCE. Moreover, in all these models, the
network is assumed to be strongly connected and all agents exert strictly positive action
t in equilibrium. Our model solves for a more general framework in which the network is
weakly connected.2 In our unique stable equilibrium, some agents may exert zero effort
and the eigenvector centrality remains well defined. In essence, we provide a behavioral
foundation of eigenvector centrality for any weakly connected directed network.

We then explore the role of the network’s architecture in determining the extensive
margin of resource demand at peer-consistent equilibria, that is, which agent is active and
which agent is not. A group of at least two agents forms a “community” if it is a strongly
connected component of the network. Our third contribution, therefore, is to break down
the network into communities where, in each community, all agents are either active or
inactive. We show that there are typically multiple peer-consistent equilibria. Some agents
may be active at a given PCE, but inactive at another.

The multiplicity of peer-consistent equilibria is interesting as it underlines the behav-
ioral richness of our equilibrium concept. Yet, one may want to make more precise pre-
dictions for any given network. To address this question, we study the stability of the
peer-consistent equilibria with respect to a very natural dynamic. Indeed, at each period
of time, each agent best replies to their “local” utility observed in the previous period and
the efforts of their direct neighbors until an equilibrium is reached in which the perceived
local utility is equal to the “real” or objective utility. Our fourth contribution is to provide
a very simple and intuitive characterization of the stable PCE. We show that a community
is active at a stable PCE if it is “aware” of the largest and densest community in the whole
network. As we will see, this implies that there is always a unique stable PCE. In this
PCE, some agents are active, but typically not all.

More generally, by considering weakly connected instead of strongly connected net-
works, we are able to explain why some agents may be inactive in equilibrium. This is due
to the fact that some agents are not aware of the activity of other agents in the network.
In other words, they believe that competition is “local” whereas it is, in fact, “global.”
We show that the stable peer-consistent equilibria are the long-run outcome of repeated
interactions where agents constantly adjust their beliefs on the resource available. Hence,

2Clearly, a strongly connected network is a particular case.
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some agents will end up being inactive because the better informed agents make increasing
efforts. This is one of our key results that cannot be obtained in network games with
perfect information about the network and/or a strongly-connected network.

Next, we study the policy implications of our model. We first examine the impact of
adding a directed link between two agents. We show that the agent, who is at the source
of the link, is the one who obtains the highest benefit from the link addition. Further, we
show that adding a link may decrease the number of active agents in the network. We then
study the key-player policy (Ballester et al., 2010) and highlight another counter-intuitive
result. By removing an agent in the network, we may make several inactive agents (for
example, in terms of criminal effort) active. Finally, we show that, by merging two different
connected networks (i.e., social mixing), the total activity is higher than the sum of total
activity in each disconnected network.

In the final part of the paper, we provide a clean application of the assumptions and
predictions of our model. We consider education and how “perceived” competitors at
school lead to different levels of education efforts that are proportional to the eigenvector
centrality of each student in the network. Indeed, in many schools, students are assessed
on a regular basis and their ranking in the classroom matters for their final evaluation as it
translates into a national or state test score. In particular, each time they obtain a grade,
they try to estimate their ranking in the classroom but only know the test scores of their
direct friends and/or their direct (perceived) competitors. Then, these students adjust
their education effort to their perceived ranking. They do so until they obtain their final
national or state ranking. We provide evidence that, in the education context, friendship
networks are largely directed and local and that the eigenevector centrality of each student
is a good predictor of their test scores.

Contribution to the literature

Our paper contributes to the games-on-network literature.3 In many situations in which
networks matter, agents make both binary decisions (extensive margin) and quantity deci-
sions (intensive margin). Consider, for example, crime. First, an individual has to decide
whether to become a criminal (active or not active); this is a binary decision (extensive
margin). Then, if she becomes a criminal, she must decide how many crimes to commit
(intensive margin). The literature on network games has mostly focused on the intensive
margin by assuming that actions are continuous (Jackson and Zenou, 2015). There are,
however, some papers that have considered network games with discrete actions (extensive
margin); see, for example, Morris (2000), Brock and Durlauf (2001), and Leister et al.
(2021). We believe that this is the one of the first papers4 to consider both extensive and
intensive margins. We show that the extensive margin (i.e., who is active in the network)
is community based, that is, agents belonging to the same community are either all active

3For overviews, see Jackson (2008), Jackson and Zenou (2015), Bramoullé et al. (2016), and Jackson
et al. (2017).

4Other papers (e.g., Calvó-Armengol and Zenou (2004); Bramoullé and Kranton (2007)) have considered
both but without being able to provide a general characterization of the equilibria. Moreover, these models
are usually plagued by multiple equilibria.
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or all inactive, and depends on the density of the community, whereas the intensive margin
is individual based and solely determined by the position in the network: the higher the
individual eigenvector centrality, the higher the effort and, thus, the higher the individual
share of the resource in the network.

As with our model, there are also network games that focus on imperfect informa-
tion about the network and introduce new equilibrium concepts related to our PCE. In
particular, McBride (2006), Lipnowski and Sadler (2019) and Battigalli et al. (2020) con-
sider self-confirming and peer-confirming equilibria. Lipnowski and Sadler (2019) apply
self-confirming equilibria (SCE) and rationalizable SCE to games where feedback about
the actions of others is described by a network topology: agents observe only the actions
of their peers (i.e., neighbors), but their payoffs may depend on everybody’s actions and
are not observed ex-post. The main difference to our PCE is that Lipnowski and Sadler
(2019) allow agents to make conjecture about agents who are not their neighbors;5 in our
model, we assume that agents do not even know these agents exist. The peer-confirming
equilbrium concept of Lipnowski and Sadler (2019) is such that adding links in the network
restricts the set of permissible profiles/conjectures and thus the set of equilibria.6 This is
not true in our model.7 Moreover, our concept of peer-consistent equilibrium (PCE) is
equivalent to a specific kind of the self-confirming equilibrium (SCE) developed by Batti-
galli et al. (2020) when the game is written in such a way that the feedback agents receive
is made explicit. In fact, our equilibrium concept (PCE) is a refinement of SCE whereby
agents wrongly believe that they compete for a local rather than a global resource.

Our equilibrium characterization in terms of communities also relates to other network
models that also partition agents into endogenous community structures, including risk
sharing (Ambrus et al., 2014), interaction between market and community (Gagnon and
Goyal, 2017), behavioral communities (Jackson and Storms, 2019), information resale and
intermediation (Manea, 2021), and technology adoption (Leister et al., 2021). However,
the driving forces and policy implications are very different. In particular, all these papers
assume a perfect knowledge of the network and use standard equilibrium concepts.

Our paper also contributes to the literature on aggregative games (Jensen, 2018). In
this literature, usually the network is not explicitly modeled and agents are assumed to
know with certainty their competitors. Tullock contest game is one of our applications;
thus we also contribute to the literature on conflicts,8 especially the more recent literature
on conflicts in networks.9 In this literature, the structure of local conflicts is modeled as

5Indeed, a strong assumption that is implicit in the definition of peer-confirming equilibrium in Lip-
nowski and Sadler (2019) is that players know the network structure.

6When the network is complete, the set of peer-confirming equilibria coincides with the set of Nash
equilibria. For the empty network, peer-confirming equilibria coincide with rationalizable equilibria. In-
creasing the number of links reduces the number of equilibria. In contrast, the set of PCE may very well
increase when links are added.

7McBride (2006) applies self-confirming equilibrium (SCE) to games of network formation with asym-
metric information in which agents only observe the private information of other linked agents. We instead
assume that the network is exogenous and that actions are continuous.

8See Corchón (2007), Konrad (2009), and Jensen (2016) for overviews.
9See e.g., Goyal and Vigier (2014), Franke and Öztürk (2015), Hiller (2017), König et al. (2017),
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a network in which rivals invest in conflict-specific technology to attack their respective
neighbors. This literature assumes that the network is undirected (which is a particular
case of our network) and that agents know the network, and solves the model using stan-
dard Nash equilibrium concept. Further, these studies usually do not provide a general
characterization of all possible equilibria.

Finally, our model contributes to the general literature on competition in Industrial
Organization (IO). We believe that this is the first model that introduces the concept of
perceived competition in this literature and models it through a network.10

The rest of the paper unfolds as follows. In the next section, we describe our model and
introduce our new concept of equilibrium. Section 3 provides a general characterization of
all peer-consistent equilibria (PCEs) for any network by first introducing the concept of
communities, as well as an ordering between them, then by providing the exact condition
under which each equilibrium exists, and, finally, by determining the unique stable PCE. In
Section 4, we study the policy implications of our model, while, in Section 5, we investigate
the economic implications of our results. Section 6 offers concluding remarks.

In Appendix A, we provide some useful results on nonnegative matrices and propose a
definition of eigenvector centrality in weakly-connected (directed) networks. All the proofs
of the results in the main text can be found in Appendix B. We provide additional results
in Appendix D. Finally, Appendix E deals with the case when the network is not generic.

2 The model

2.1 Aggregative games

Consider a finite set of agents, denoted by N = {1, 2, · · · , n}. Each agent i ∈ N exerts
some action11 xi ∈ R+. We consider an aggregative game (Jensen, 2018) in which every
player i’s payoff is a function of the player’s own action xi and the aggregate of all players’
actions

∑
j∈N xj. For each agent i, the total cost of exerting action xi is equal to cxi,

where c > 0 is the (constant) marginal cost of action. Let πi : Rn
+ → R be agent i’s payoff

function. It is given by:

πi(x) = vi(x)− cxi = xi f (X)− cxi, (1)

where x = (x1, x2, · · · , xn) denotes the vector of actions chosen by agents and X =
∑

i∈N xi
is the sum of all agents’ actions in the network. Function f is a non-increasing, differentiable
and continuous map, with f : ]0,+∞[→ R+ such that limx→0+ f(x) > c, limx→+∞ f(x) < c.

Kovenock and Roberson (2018), Xu et al. (2019). For overviews, see Kovenock and Roberson (2012) and
Dziubiński et al. (2016).

10Observe that our model of perceived competition and our equilibrium characterization results in terms
of eigenvector centrality are not valid for all contest and IO and, thus, aggregative games. As this will
become clear below, they are only true for a class of aggregative games such as, for example, the Tullock
contest function and the Cournot oligopoly competition.

11In this paper, we use the terms “action” and “effort” interchangeably.
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In addition, we assume that the application x ∈ ]0,+∞[ 7→ xf
(
x+z
W

)
is quasi-concave, for

any W > 0 and z ≥ 0. We also assume that limx→0+ xf(x) = l ∈ [0,+∞[.12

We assume that the function f is non-increasing. This implies that ∂πi(x)
∂xj
≤ 0, meaning

that we only focus on competition, that is, the higher is the effort of the other agents,
the lower is my utility. For example, in the case of Cournot competition, the higher is
the production of goods from other firms, the lower is the price of the product, and thus
the lower is the profit of firms. Similarly, for the Tullock conflict model, the higher is the
effort of other agents, the lower is the share of resources each agent obtains and, thus,
the lower is her utility. Observe, however, that this does not imply that it is a game with
strategic complements or strategic substitutes, or, equivalently, that πi(x) has increasing
or decreasing differences. Indeed, for j 6= i, we have:

∂2πi(x)

∂xi∂xj
= f ′(X) + xif

′′(X). (2)

For Cournot competition (see below), f ′′(X) = 0, and we have a game with strategic
substitutes. For the Tullock contest function, we have f ′′(X) ≥ 0 and it is a game with
neither strategic substitutes nor strategic complements.

2.2 Networks: Locally-sighted individuals

We embed the aggregative game played by agents into a network, by assuming that agents
are locally-sighted. Agents are only aware of those to whom they are directly linked, but
otherwise do not know anything else about the network. In other words, local-sightedness
implies that each individual only perceives resources and interactions of her local environ-
ment (i.e., of her direct links).

Formally, given the set of agents N , a (directed) network is a pair (N,G) where G is
an n×n adjacency matrix, with entry gij ∈ {0, 1}. For each pair i, j ∈ N , agent i is linked
to j if and only if gij = 1. Since the perception of a link is not necessarily reciprocal,
it is possible that gji = 0, meaning the network is directed. We therefore allow for the
situation in which an individual is considered as a neighbor (contender) of another, but
not vice versa.13 To be precise, for each i ∈ N , let Ni = {j ∈ N : gij = 1} be the
(directed) neighborhood of agent i. This will become clearer when we introduce the notion
of “perceived competition.”

There is a (directed) path from individual i to individual j in the network if there is
a sequence {j1, j2, · · · , jm} ⊆ N with j1 = i, jm = j and such that gj`j`+1

= 1 for each
` ∈ {1, ...,m − 1}. In this case, agent i is said to be connected to j through a path. In

12Note that we do not restrict the map f to be properly defined in 0, and we also handle the case where
f goes to infinity at zero. As we will see, an important example where this occurs is the linear Tullock
contest. However we need to make sure that x = 0 is not an equilibrium. We thus assume that the limit
when x goes to 0 from the right exists.

13A network is undirected if, for each pair i, j ∈ N , gij = gji. Note that undirected networks are special
cases of directed networks.
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order to indicate that such a path exists between i and j, we use the notation i ⇒ j. A
(directed) cycle is a (directed) path from a certain agent i ∈ N to herself.

Definition 1. Let (N,G) be a directed network.

• (N,G) is weakly connected if the underlying undirected graph (i.e., ignoring the
directions of edges) is connected. Accordingly, a directed network is disconnected if
it is not weakly connected.

• (N,G) is semi-connected if, for any pair of agent i, j ∈ N , there is a path from i
to j (i.e., i ⇒ j) or a path from j to i (i.e., j ⇒ i).

• (N,G) is strongly connected if each node can reach every other node by a path,
that is, for any pair of agents i, j ∈ N , there is a path from i to j (i.e., i ⇒ j).

• (N,G) satisfies no-isolation if, for each i ∈ N , Ni 6= ∅.

Throughout the paper, we consider weakly connected networks satisfying the no-isolation
property. Note that strongly-connected networks are semi-connected and also satisfy no-
isolation. In turn, semi-connected networks are weakly connected. Note also that a weakly-
connected network that satisfies no-isolation necessarily contains at least one directed cycle.

Let Wi be a shifter that captures the misperceived intensity of the competition faced by
agent i. We assume that Wi is only based on agent i’s local environment (i.e., agent i as
well as her neighbors, {i} ∪ Ni). In other words, individual and aggregate efforts are not
observed in the network, except at the neighborhood level, i.e., each agent i only observes
her own effort as well as the efforts of her direct neighbors.

Given an effort profile x ∈ Rn
+, for each i ∈ N , let x−i be the effort sub-profile of agents

j ∈ Ni. We can write the perceived utility of agent i as

ui(xi,x−i;Wi) = xi f

(
xi +

∑
j∈N gijxj

Wi

)
− cxi. (3)

Note the importance of Wi in the above definition. Indeed, in the situation where agents
observe the entire vector of actions in the network, the perceived utility of agents would
coincide with their objective payoffs and Wi =

xi+
∑

j∈N gijxj

X
. When agents only observe

the actions of their neighbors, Wi could take any values coherent with what is happening
in agent i’s neighborhood.

When we introduce below the definition of our solution concept, Peer-Consistent Equi-
librium (PCE), it will become clear why we define the perceived utility as in (3).

Remark 1. Apart from their position in the network, all agents are identical.

The aim of our paper is to study how the individual’s network position affects the effort
and outcome of each agent. This is why we assume that all agents are ex-ante identical,
i.e., ci = c for all i ∈ N . In other words, the only source of heterogeneity stems from
the agents’ network position and, thus, the set of agents they perceive as competitors.
Differences in perceived competition are therefore the main source of heterogeneity.
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2.3 Two important applications

Our aggregative game with utility function (1) is relatively general and can be applied to
many aggregative games such as Tullock contest games, Cournot competition, tournaments,
teamwork games, etc. (Alos-Ferrer and Ania, 2005; Jensen, 2010). Here we provide two
main applications: Tullock contest games and Cournot competition.

2.3.1 Linear (Tullock) contest games

There is a given resource, available in a fixed amount V ∈ R+ = [0,∞), to be shared
between the n agents. The agents play a contest game, described as follows. Each agent
i ∈ N exerts some action (effort) xi ∈ R+ before the resource V is distributed. An action
profile x = (x1, x2, · · · , xn) determines, for each agent i, her share of the resource V using
the following proportional rule:

vi(x) =

{
xi
X
V if X > 0,

1
n
V if X = 0.

(4)

Equation (4) corresponds to the well-known “Tullock contest function” from the contest
literature (Skaperdas, 1996; Kovenock and Roberson, 2012).14 One important difference is
that we do not interpret xi

X
as the probability of agent i getting V , but as the percentage

of resource V that agent i can obtain, given her and the other agents’ effort choices. We
assume that the resource V is given exogenously and that the sharing rule (4) is symmetric
and takes a proportional form. This means that the utility function of each agent i is still
given by (1) but with

f (y) =
V

y
. (5)

Note that the map f has the properties of an aggregative game (see Section 2.1).15

Given the exogenous resource V ,Wi stands for agent i as resources perceived to be “owned”
by the local environment of agent i, that is, by agent i as well as her neighbors, {i} ∪ Ni.
In other words, the resources V available in the economy as well as the efforts of the n
agents in the network are not observed by any agent in the network; each agent i only
observes Wi, her perceived resources, and

∑
j∈N gijxj, the efforts of her direct links. Thus,

each individual i ∈ N competes for Wi, with agents in Ni (i.e., her neighbors). Given Wi,
the perceived utility of agent i is then equal to

ui(xi,x−i;Wi) =

{
xiV

xi+
∑

j∈N gijxj
Wi − cxi if xi +

∑
j∈N gijxj > 0,

V
1+|Ni|Wi if xi +

∑
j∈N gijxj = 0.

(6)

14The theoretical foundations of the Tullock contest function are well established. In particular, the
Tullock contest function can be derived using a stochastic, axiomatic, optimally-derived, and microfounded
approach (Skaperdas, 1996; Jia, 2008; Jia et al., 2013).

15We have that limx→0+ f(x) = +∞, limx→+∞ f(x) = 0 and xf
(
x+z
W

)
= Wx

x+zV is strictly concave in x.
Moreover limx→0+ xf(x) = V .
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2.3.2 Cournot competition

Consider a standard homogeneous good Cournot oligopoly game on a network with n firms
competing in quantities. The profit function for each firm i is given by

πi(x) = (p− c)xi, (7)

where
p = (ᾱ−X)+ (8)

We assume that α > c. In (7), xi denotes the quantity produced by firm i while p is the
price of the product. This means that the profit function of each firm i is still given by (1)
but with

f (y) = (ᾱ− y)+ . (9)

Again, the map f satisfies the assumptions required in Section 2.1.16 Firms only observe
the quantities produced by their neighbors in the directed network (N,G). In other terms,
they observe

∑
j gijxj. Given Wi, the perceived utility of firm i is then equal to:

ui(xi,x−i;Wi) =

[
ᾱ−

xi +
∑

j gijxj

Wi

]
xi − cxi (10)

Indeed, firm i believes that the price is an affine transformation in the total demand, which
is correct. However, she does not observe the actual demand X :=

∑
j xj, but only the

demand in her neighborhood xi +
∑

j gijxj. When observing that the realized price she
faces is not her perceived price (the one she perceived from her local demand), she does not
know that it is because there are other firms producing the same product in the network.
Instead, she believes it is because the perceived slope affecting the price is incorrect.

Observe that, as in the standard Cournot model, there is precisely one price p for
the homogeneous good defined in (8), which is not subject to interpretation. This means
that firms do not “misperceive” the actual price, because they observe it. However, they
“misperceive” how this price emerges because they have a wrong perception of the slope
affecting this price.

Remark 2. Our result can be extended to a Cournot model with a general non-linear
demand function, that is, p = (ᾱ− h (X))+. See Appendix C.

2.4 Peer-consistent equilibrium

The critical assumption of our model is that, in order to choose an effort level, each
individual i considers the competition in her neighborhood {i}∪Ni while, in reality, she is
in competition for all agents in the network. The following equilibrium concept captures
this idea.

16That is, f(0) = α > c, limy→+∞ f(y) = 0 < c and x 7→ x
(
α− x+z

W

)
+

is quasiconcave. Finally
limx→0+ xf(x) = 0.
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Definition 2. A Peer-Consistent Equilibrium (PCE) is a vector x∗ ∈ Rn
+ such that,

(i) for each i ∈ N and each xi ∈ R+,

ui(x
∗
i ,x

∗
−i;Wi) ≥ ui(xi,x

∗
−i;Wi),

(ii) for each i ∈ N ,

Wi =
x∗i +

∑
j∈N gijx

∗
j

X∗
.

Condition (i) states that, given her perceived competition (total resource share in her
neighborhood) and a vector of actions x, each individual i chooses an effort that maximizes
her perceived utility. Each agent i takes Wi as given, and chooses the action xi that
maximizes ui(xi,x−i,Wi). Note, however, the subtle part of condition (i): taking Wi

as given, each agent i is only best responding to the choice of actions of agents in her
neighborhood.

Condition (ii) states that the effort levels of all individuals in the network will, in
turn, determine the benefits Wi obtained by each agent i. In fact, Wi is defined such
that ui

(
x∗i ,x

∗
−i;Wi

)
= πi(x∗). This is a consistency requirement imposed in equilibrium.

Indeed, at a peer-consistent equilibrium, ui
(
x∗i ,x

∗
−i;Wi

)
individual i’s perceived subjective

utility has to be equal to πi(x∗), her objective payoff function in the underlying aggregative
game. This has to be true for all i and, thus, all neighborhoods. Therefore, although
individuals initially start with a wrong perception of whom they are in competition with,
this wrong perception induces an interaction pattern that eventually leads to a correct
perception at equilibrium. This is why we call it a “peer-consistent equilibrium.”

Remark 3. Peer-consistent equilibria and Nash equilibria coincide if and only if the net-
work is complete, in which case the unique PCE is the Nash equilibrium of the aggregative
game.

Indeed, a peer-consistent equilibrium of our aggregative game on a complete network is
simply a Nash equilibrium on the same game, since all agents observe the whole network
and the notion of local-sightedness disappears. As soon as at least one link is missing, the
coincidence disappears: at least one agent is not aware of the existence of some other agents.
Observe that the PCE is neither a refinement of the concept of Nash equilibrium, nor a
superset (such as correlated equilibria or the concept of peer-confirming equilibria defined
in Lipnowski and Sadler (2019)). Rather, it is the outcome of a decentralized optimization
problem where each agent must choose the action that maximizes their perceived utility,
and where each perceived utility must be ex-post consistent with the realized outcome.

Remark 4. We only consider unweighted networks, that is, gij ∈ {0, 1}. In our paper, the
network captures the perception of the competition that each agent faces. Thus, it can only
take two values, 0 and 1, since gij = 1 means that agent i perceives j a competitor while
gij = 0 means that she does not perceive j as a competitor.17

17This is an important remark because weakly connected networks are non-generic in the space of
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2.5 Peer-consistent equilibrium: An illustration

To understand our peer-consistent equilibrium concept (Definition 2) and the role played
by the consistency requirement, let us consider the following two-part example in which we
compare the set of peer-consistent equilibria in two closely related networks in the linear
(Tullock) contest games (Section 2.3.1) where the utility of each agent i given by (6). This
will be part of our leading examples in this paper.

Example 1. Consider the two networks displayed in Figure 1. In order to illustrate our
definition of a peer-consistent equilibrium (PCE), let us focus on agents 1 and 6.

Figure 1: Two similar networks with different densities

5

4

6 1

2 3

(a) A dense network

5

4

6 1

2 3

(b) A less dense network

Same local competitors, same perceived utility: First, as in Definition 2(i), each
agent i maximizes her utility (6) by taking Wi as given. Clearly, in both networks dis-
played in Figures 1(a) and 1(b), agent 6 has the same perceived utility function, namely

weighted directed graphs. Thus, the case for studying them so carefully rests on links being binary rather
than weighted. In our case, it makes sense since the network only captures the “perception” that each agent
has about agents. It is not a “physical” network such as roads, freeways, bridges or a financial network
where links are bank loans.

12



x6
x4+x5+x6

W6 − cx6. Indeed, agent 6’s perception of her own environment does not change
across the two networks. On the other hand, agent 1’s perceived utility function switches
from x1

x1+x2+x3+x6
W1−cx1 to x1

x1+x3+x6
W1−cx1, which implies that agent 1 will decrease her

effort when the link from 1 to 2 is removed. At the same time, one may think that agent
6’s equilibrium level of effort would be unchanged, since the perception of her environment
is unchanged across the two networks. This intuition is wrong, as we show next.
Same perceived utility, different equilibrium efforts: Now, by imposing the consis-
tency requirement of Definition 2(ii), we can show that agent 6 will produce more effort in
the network of Figure 1(b) compared to that of Figure 1(a), even though she faces exactly
the same competitors (and thus the same perceived utility), namely 4 and 5. This is due to
the fact that agent 1’s set of perceived competitors shrinks, triggering a decrease in agent
1’s effort. This decrease, in turn, implies that, in the network of Figure 1(b), there are
more resources left to grab for agent 6 as a by-product of the consistency requirement of
the PCE. �

The aim of this example was to illustrate the concept of PCE. However, to rigorously
explain why, in the networks in Figures 1(a) and 1(b), the efforts of agents are different, we
need to understand the underlying dynamic that leads to the PCE in each network. Since
the dynamic analysis is performed in Section 3.5, we postpone this discussion to Section
5.2.2 below.

3 General analysis: Peer-consistent equilibria
This section aims to present a complete analysis of peer-consistent equilibria in weakly-
connected networks. We first provide a general algebraic characterization in Section 3.1,
for which we show that PCE provides a microfoundation of eigenvector centrality. The
characterization provided so far being implicit, Sections 3.3 and 3.4 are devoted to providing
an alternative characterization; we introduce the concept of community and show that
carefully ordering the agent by community allows the easy identification of all PCEs in any
network. Finally, we show in Section 3.5 that the set of PCEs can be refined to a unique
stable PCE. Importantly, this particular PCE provides a microfoundation of eigenvector
centrality in the case where the network is no longer strongly connected.

3.1 General characterization of peer-consistent equilibria

In this section, we show that an effort profile is a peer-consistent equilibrium if and only if
it is a (properly normalized) nonnegative eigenvector of G.
Theorem 1. Let (N,G) be a weakly-connected network and consider the aggregative game
where the utility of each agent i is given by (1). Then, x∗ is a peer-consistent equilibrium
if and only if

Gx∗ =

(
c− f(X∗)− f ′(X∗)X∗

f(X∗)− c

)
x∗, and x∗ ∈ Rn

+ \ {0}. (11)
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Moreover there is at least one PCE.

Theorem 1 provides a microfoundation of eigenvector centrality in such games on networks.
It shows that, for any weakly-connected network, at any PCE, the effort of each agent
is proportional to her eigenvector centrality.18 This result is driven by the consistency
requirement (ii) of Definition 2 and also to the utility function (1) of the aggregative
game. This is a new result, complementing that of Ballester et al. (2006), who show that,
for any network, in a game with strategic complementarities, for each agent who chooses
effort that maximizes a linear-quadratic utility function, her equilibrium effort is equal
to her Katz-Bonacich centrality. Here, we show that, if each agent chooses effort that
maximizes utility (1) based on the aggregative game, then, at any PCE, her effort will be
proportional to her eigenvector centrality.

Observe that there may be more than one PCE. Importantly, it is worth mentioning
that there typically are peer-consistent equilibria in which some components are equal to
zero, and hence some agents are inactive at equilibrium.19 In the particular case of strongly
connected networks, Equation (11) has a unique non-negative solution:

Remark 5. In any strongly-connected networks, there is a unique peer-consistent equilib-
rium x∗. In addition, for each i ∈ N , x∗i > 0.

Let us go back to the general weakly-connected framework. Given a peer-consistent
equilibrium x∗, let N+(x∗) be the set of agents who are active at equilibrium x∗. That is,
N+(x∗) = {i ∈ N : x∗i > 0}. Observe that, if x∗ is a PCE, then its set of active agents is
closed :20

i⇒j and j ∈ N+(x∗) =⇒ i ∈ N+(x∗). (12)

In other words, if there is a path from i to j and j is active at the PCE x∗, then i is active
also.

For any network (N,G) and any subset of agentsM ⊆ N , let GM denote the restriction
of matrix G toM . If Ni = ∅, then agent i is irrelevant to the equilibrium analysis. Indeed,
agent i’s effort is zero in any PCE and x∗ is a PCE for network (N,G) if and only if x∗−i
is a PCE for the network (N \ {i},GN\{i}). Consequently, for the remainder of this paper,
we will always assume that the network satisfies the no-isolation property (Definition 1).

18Eigenvector centrality is usually defined for strongly-connected networks. Indeed, in this case, it is a
well-defined measure of centrality captured by the Perron-Frobenius vector associated with the adjacency
matrix (Jackson, 2008). In Section A.2 of Appendix A, we provide a more general definition of eigenvector
centrality for networks that are not necessarily strongly connected.

19It will be clear from the analysis that follows that weakly-connected networks generally admit several
PCEs. It is possible that, in each of these equilibria, some agents are inactive –of course, these are not
necessarily the same agents across the different PCEs.

20We prove this formally in Lemma B6 in Appendix B.
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3.2 Microfoundation of eigenvector centrality: Some appplications

We would like to illustrate our characterization results for our two main applications of
aggregative games: Linear (Tullock) contest games and Cournot competition.

3.2.1 Microfoundation of eigenvector centrality: Linear (Tullock) contest games

Let us illustrate how (11) emerges in the Linear (Tullock) contest games described in
Section 2.3.1. First, given Wi, each agent i chooses her effort x∗i that maximizes her
perceived utility (6). This leads to:

Wi

∑
j gijx

∗
j(

x∗i +
∑

j gijx
∗
j

)2V = c. (13)

Combining (13) with consistency condition Wi =
x∗i +

∑
j gijx

∗
j

X∗
, we obtain:∑

j gijx
∗
j

x∗i +
∑

j gijx
∗
j

V

X∗
= c.

By solving this equation, we get:∑
j

gijx
∗
j =

(
cX∗

V − cX∗

)
x∗i ,

In matrix form, for x∗ ∈ Rn
+ \ {0}, we obtain:

Gx∗ =
cX∗

V − cX∗
x∗. (14)

3.2.2 Microfoundation of eigenvector centrality: Cournot competition

Let us perform the same exercise for the standard homogeneous good Cournot oligopoly
game of Section 2.3.2. First, given Wi, each firm i chooses a quantity x∗i that maximizes
her perceived utility (10). This leads to:

ᾱ−
x∗i +

∑
j gijx

∗
j

Wi

− x∗i
Wi

= c. (15)

Combining (13) with consistency condition Wi =
x∗i +

∑
j gijx

∗
j

X∗
, we obtain:

ᾱ−X∗ − x∗iX
∗

x∗i +
∑

j gijx
∗
j

= c.

By solving this equation, we get:∑
j

gijx
∗
j =

(
2X∗ − ᾱ + c

ᾱ− c−X∗

)
x∗i ,
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In matrix form, for x∗ ∈ Rn
+ \ {0}, we obtain:

Gx∗ =

(
2X∗ − ᾱ + c

ᾱ− c−X∗

)
x∗. (16)

3.3 Communities

Let us start with some important definitions.

Definition 3. Given M ⊂ N , (M,GM) is a strongly-connected component of (N,G) if:

(i) it is a strongly-connected sub-network;

(ii) for each I ⊂ N \M , (M ∪ I,GM∪I) is not a strongly-connected network.

A strongly-connected component with at least two agents is called a community.21

Let C(G) denote the set of communities in (N,G):

C(G) := {M ⊂ N : (M,GM) is a community of (N,G)} .

An element of C(G) is a subset of agents of cardinal at least two, such that the correspond-
ing sub-network is strongly connected. Note that under the no-isolation property, C(G) is
never empty. Indeed, a cycle in the network always exists and communities are disjoints.22

To illustrate this definition, consider the network in Figure 1(a) withN = {1, 2, 3, 4, 5, 6}
and define M1 = {1, 2, 3} and M2 = {4, 5, 6}. We can see that both (M1,GM1) and
(M2,GM2) are strongly-connected components: each is a strongly-connected sub-network,
and it is not possible to enlarge any of these two sub-networks to form a larger strongly-
connected network. Hence, C(G) = {M1,M2}. Note that the set of communities is un-
changed in the network of Figure 1(b).

Definition 4. Let M ⊂ N . Agent i ∈ N is an adjunct to the sub-network (M,GM) of
(N,G) if i is connected to some agent j ∈ M through a path. The adjunct set of M ,
denoted by M̄ , is therefore defined as the set of all agents that are adjuncts to M , that is:

M̄ = {i ∈ N : ∃j ∈M with i ⇒ j}.

Given M,M ′ ∈ C(G), we say that M ′ is adjunct to M if M ′ ⊂ M̄ .
21By a slight abuse of language, we use the terminology “community” for both the subset of agents

involved and the corresponding sub-network.
22More precisely, strongly-connected components (including communities, as well as singletons) form a

partition of the set of agents.
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Note that the definition of the adjunct set of a community M is inclusive in the sense
that M is also part of the adjunct set. In the network of Figure 1(a), M̄1 = M1 = {1, 2, 3}
and M̄2 = M2 ∪M1 = N = {1, 2, 3, 4, 5, 6}.

Interestingly, this definition of adjunct sets induces a partial ordering � on the set of
communities C(G).23 The binary relation � is defined as follows:

M ′ �M if and only if M ′ ⊂ M̄.24 (17)

In other terms, M ′ � M if there exists a path from M ′ to M . As usual, if M ′ � M and
M ′ 6= M , we write M ′ � M . A community M is �-maximal if no community M ′ exists
such that M ′ � M . That is, there is no M ′ that is aware of M . If not, we say that M is
hidden from M ′. Maximal elemevnts with respect to this partial ordering are communities
of which few agents are aware. More precisely, only “isolated” agents (i.e., agents who
are connected to other agents) are aware of them. As we will see, this will allow these
particular communities to grab a large share of resources within their neighborhood. This
“advantage” can be intuitively captured by making the following observation25: given a
PCE x∗, we have

M ⊂ N+(x∗)⇒M ′ ⊂ N+(x∗), ∀M ′ �M.

Let us now illustrate the concept of communities and the �-ordering.
Example 1. Consider the network (N,G) in Figure 1(a) with N = {1, 2, 3, 4, 5, 6}. As
we saw above, there are two communities: M1 = {1, 2, 3} and M2 = {4, 5, 6}. Since there
is a link from 1 to 6, for instance, we have M1 � M2, and, clearly, the community M1 is
�-maximal.

Example 2. Consider now the network (N,G) displayed in Figure 2 withN = {1, 2, · · · , 10}.
There are three communities in this network: M1 = {2, 3, 4}, M2 = {5, 6}, and M3 =
{7, 8, 9, 10}. To check that these three connected subnetworks satisfy (ii) in Definition 3,
note that there is no path from M3 to either M1 or M2, and that there is no path from M2

to M1. However, there is a link from 3 to 5, so that M1 �M2. There is also a link from 5
to 10, so that M2 � M3. Finally, we obtain M1 � M2 � M3. Clearly, the community M1

is �-maximal.

In both examples, the ordering � is complete (every pair of communities is comparable as
per the � ordering). This is not always the case, as we see in the following example, in
which some of the communities are not comparable according to �.

3.4 Characterization of peer-consistent equilibria

Thus far, we have shown that any weakly-connected network (N,G) can be associated with
an ordering in the set of strongly-connected components. In this section, we characterize

23A partial ordering is a reflexive, antisymmetric, and transitive binary relation.
24Note that it is possible that for i, j ∈ M̄ , there is no path from i to j or from j to i.
25It is a direct consequence of the fact that N+(x∗) is closed.
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Figure 2: Network structure in Example 2
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active agents at a PCE in terms of their position in the network, along with the “density”
of the community they belong to.

Definition 5. For each community (M,GM), we refer to its adjunct set M̄ as a candidate
set with root M . A peer-consistent equilibrium x∗ of (N,G) such that N+(x∗) = M̄ for
some community M is called an equilibrium with root M . We refer to any equilibrium
that admits a root as a simple equilibrium.

A candidate set is a set of agents that could naturally be the set of active players at
equilibrium. Indeed, if there is one agent i who is active inM , then all agents in its adjunct
set M̄ will be active. This is because all agents who are path-connected to i are necessarily
active, since the set of active agents at a peer-consistent equilibrium is closed (see (12)).
We obtain the following key result:

Proposition 1. There is at most one peer-consistent equilibrium x∗ with root M . It exists
if and only if

ρ(GM) > max {ρ(GM ′) : M ′ ∈ C(G), M ′ �M} . (18)

In particular, for any �-maximal M , there always exists an equilibrium with root M .

This proposition is simple but very powerful in terms of characterizing the simple
equilibria. Proposition 1 states that, for any communityM , there is at most one PCE with
rootM . This provides a necessary and sufficient condition in terms of the largest-eigenvalue
comparisons for this equilibrium to exist. This condition is automatically satisfied for
maximal communities, because the set {M ′ ∈ C(G) : M ′ � M} is empty. For non-
maximal elements of C(G), however, ascertaining if a PCE with root M exists requires
checking the non-trivial inequality (18).
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Let us now illustrate Proposition 1 for the linear (Tullock) contest games (Section 2.3.1)
with the following examples.26

Example 1: Peer-consistent equilibria
• Consider the network (N,G) in Figure 1(a) with N = {1, 2, · · · , 6}. As we saw above,
there are two strongly-connected components: M1 := {1, 2, 3} and M2 := {4, 5, 6}, with
M1 �M2.

(a) Equilibrium with root M1: since M1 is �-maximal, there is an equilibrium with
root M1, where only agents 1, 2, and 3 are active.

(b) No equilibrium with root M2: Since M1 � M2, and ρ(GM2) = ρ(GM1) = 2, there
is no equilibrium with root M2.
As a result, there is a unique peer-consistent equilibrium such that x∗1 = x∗2 = x∗3 = 2V

9c
and

x∗4 = x∗5 = x∗6 = 0.

• Consider now the network (N,G) displayed in Figure 1(b) with N = {1, 2, · · · , 6}, a
variation of Figure 1(a) in which we deleted the directed edges between agents 1 and 2, so
that the strongly-connected component M1 is now less dense and, thus, its spectral radius
is smaller. The partial order is unchanged compared to the network of Figure 1(a), and
thus we have the same two candidates:

(a) Equilibrium with rootM1: Again,M1 is �-maximal, so that there is an equilibrium
with root M1 = {1, 2, 3}, where only agents 1, 2 and 3 are active, with x∗1 = x∗2 ∼ 0.1715,
x∗3 ∼ 0.2426, and x∗4 = x∗5 = x∗6 = 0.

(b) Equilibrium with root M2: Since ρ(GM2) = 2 >
√

2 = ρ(GM1), there is an equi-
librium with root M2, where all agents in the network are active. At such an equilibrium,
note that efforts are not symmetric. Indeed, x∗1 = V

9c
, x∗2 = 7V

45c
, x∗3 = 2V

15c
, and x∗i = 4V

45c
for

each i ∈ {4, 5, 6}.
There are now two peer-consistent equilibria. Therefore, by removing the links between
agents 1 and 2, we enlarged the set of peer-consistent equilibria from a unique equilibrium
to two PCEs. �

Example 2: Peer-consistent equilibria
Consider the network displayed in Figure 2 with M1 = {2, 3, 4}, M2 = {5, 6}, and
M3 = {7, 8, 9, 10}. Despite the existence of three strongly-connected components, let
us use Proposition 1 to show that there are (only) two peer-consistent equilibria. Each
community’s subnetwork is complete, so that ρ(GM2) = 1 < ρ(GM1) = 2 < ρ(GM3) = 3.
Importantly, we know that M1 �M2 �M3, so that M1 is �-maximal.

26We can perform the same exercise for Cournot Competition (Section 2.3.2) with utility function (10).
It is easily verified that, for the network in Figure 1(a), there is a unique PCE where only firms 1, 2, 3
are active with x∗1 = x∗2 = x∗3 = (ᾱ− c) /4 and X∗ = 3 (ᾱ− c) /4. In the network in Figure 1(b), there
are two PCE. The first one is such that only firms 1, 2, 3 are active with x∗1 = x∗2 = (ᾱ− c) /

[
2
(√

2 + 1
)]

and x∗3 = (ᾱ− c) /
[√

2
(√

2 + 1
)]
, with X∗ = (ᾱ− c) /

√
2. The other PCE is such that all firms are active

with x∗ = (ᾱ−c)
40 (5, 7, 6, 4, 4, 4) and X∗ = 3 (ᾱ− c) /4.
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(a) Equilibrium with root M1: Since M1 is �-maximal, there is an equilibrium with
root M1 (with set of active agents M̄1 = {1, 2, 3, 4}) which, using Theorem 1, is given by:

x∗1 =
2V

21c
, x∗i =

4V

21c
for i ∈ {2, 3, 4}, x∗j = 0 for j ∈ {5, 6, 7, 8, 9, 10}.

The equilibrium payoffs are u(x∗1) = 1
21
V, u(x∗i ) = 2

21
V for i = 2, 3, 4.

(b) No equilibrium with root M2: Since M1 �M2 and ρ(GM2) < ρ(GM1), there is no
equilibrium with root M2.

(c) Equilibrium with root M3: Since ρ(GM3) > max{ρ(GM1), ρ(GM2)}, there is an
equilibrium with root M3 such that the set of active individuals is M̄3 = N . This equilib-
rium is given by:

x∗1 =
21V

364c
, x∗i =

18V

364c
for i ∈ {2, 5, 6}, x∗j =

27V

364c
for j ∈ {3, 4}, and x∗k =

36V

364c
, for k ≥ 7.

The equilibrium payoffs are:

u(x∗1) =
7V

364
, u(x∗i ) =

6V

364
, for i ∈ {2, 5, 6}, u(x∗j ) =

9V

364
for j ∈ {3, 4}, u(x∗k) =

12V

364
for k ≥ 7.

In summary, in the network in Figure 2, there are two PCEs: one in which only agents
1, 2, and 3 are active, and one in which all agents are active. �

Consider the two networks in Figures 1(a) and (b) (Example 1). Nobody is aware of
community M1 = {1, 2, 3}, that is, nobody in the network perceives them as competitors.
Thus, in both cases, there is a PCE in which only agents 1, 2, and 3 are active. However,
agents in M1 are aware of the community M2 = {4, 5, 6}, since agent 1 perceives agent
6 as a competitor, and agent 2 perceives both agents 4 and 6 as competitors. Moreover,
community M1 is less dense in Figure 1(b) than in Figure 1(a). As a result, there is an
additional PCE in which all agents are active in Figure 1(b). Importantly, this additional
PCE (in which all agents are active) is not a symmetric equilibrium: while agents 4, 5,
and 6 all exert the same effort, differences in terms of perceived competition of agents in
the community M1 lead agent 1 and 2 to exert different levels of effort.

Consider now the network displayed in Figure 2 (Example 2). Aside from the isolated
agent 1, no one is aware of the community {2, 3, 4}. In other words, only agent 1 perceives
agents 2, 3, and 4 as her competitor; nobody else in the network does so. Thus, there is an
equilibrium where the only active agents in the network are {1, 2, 3, 4}. On the contrary, all
agents in the network can reach community M3 = {7, 8, 9, 10}, either directly or through
a path; thus, there cannot be an equilibrium where only agents in M3 are active.

More generally, Proposition 1 provides us with a simple way of assessing whether a
given community can be active or not at equilibrium. A community M can be active at a
PCE if (i) the communities that are aware of M are less densely connected than M ; (ii) if
M is aware of other communities, then they are less densely connected than M .
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In order to complete our characterization of peer-consistent equilibria, let us now consider
an interesting superset of the set of semi-connected networks.

Definition 6. A weakly-connected network (N,G) is generic if for any distinct ρ(GM1) =
ρ(GM2) = ρ implies that max {ρ(GM) : M �M1 or M �M2} ≥ ρ.

Hence, generic networks are such that, for any two distinct communities with the same
spectral radius, a community must exist whose spectral radius is at least as large, and
which is aware of one of them. In other words, (i) we exclude weakly-connected networks
for which two PCEs with different roots have the same spectral radius, but (ii) we allow
the existence of two communities with the same spectral radius if one of them is not part of
a PCE. In particular, we exclude networks in which two �-maximal communities have the
same spectral radius. For example, the network displayed in Figure E1 in Appendix E.2 is
not generic because the two �-maximal communities M1 = {2, 3} and M2 = {4, 5} have
the same spectral radius (i.e., ρ(GM1) = ρ(GM2) = 1). On the other hand, the networks
in Figures 1(a) and (b) (Example 1) and in Figure 2 (Example 2) are generic. Observe, in
particular, that in the network displayed in Figure 1(a), the communities M1 = {1, 2, 3}
and M2 = {4, 5, 6} have the same spectral radius (i.e., ρ(GM1) = ρ(GM2) = 2). However,
because M2 is not the root of a PCE, this network is generic.

If G is a semi-connected network, then the strongly-connected components of the net-
work are totally ordered, which implies that SemiCN ⊂ LGN.27 The following inclusions
summarize the relative strength of all four notions of connectedness considered here (Defi-
nitions 1 and 6): Strongly Connected (StrCN), Semi-Connected (SemiCN), Generic (GN)
and Weakly Connected (WCN):

StrCN ⊂ SemiCN ⊂ GN ⊂WCN.

We show that, in generic networks, peer-consistent equilibria are always simple, meaning
that Proposition 1 provides a full characterization of the set of equilibria in these networks.

Corollary 1. Let (N,G) be a generic network, and let x∗ be a peer-consistent equilibrium
of (N,G). Then, x∗ is a simple equilibrium. Moreover, equilibrium efforts are proportional
to eigenvector centrality in the sub-network of active players.

The last statement of Corollary 1 must be understood as follows: if x∗ is a PCE, then
the effort of active agents is proportional to their eigenvector centrality in the sub-network
to which they belong. It is important to understand that this result does not say anything
about the eigenvector centrality of agents in the whole network, since inactive agents are
not taken into account. A direct consequence of Corollary 1 is that there is a finite number
of equilibria, because, for any strongly-connected component M of the network, there is at
most one PCE with root M . Actually, the set of peer-consistent equilibria is finite if and
only if the network is generic. This is stated formally in Proposition D1 in Appendix D.1.

27In Section D.1 of the Appendix, we provide a more precise statement for the case where the network
is semi-connected (Corollary D2).
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When the network is not generic, there may exist non-simple equilibria, that is, equilib-
ria such that the set of active agents is not a candidate set, but instead a union of candidate
sets. In this case, the set of peer-consistent equilibria is infinite. In Section E of the Ap-
pendix, we consider this case and show that we can still describe the set of peer-consistent
equilibria in a simple way (see Proposition E6).

In several of our examples, we have seen multiple peer-consistent equilibria (e.g., the
networks in Figure 1(b) and in Figure 2 had two PCEs). Multiplicity of peer-consistent
equilibria is a salient feature of our model. Further, and most importantly, in many such
equilibria, some agents end up being inactive.28

Remark 6 (Equilibrium payoffs). Pick any peer-consistent equilibrium x∗ with root M .
Then, the payoff of each active agent i is given by

πi(x
∗) = (f(X∗)− c)x∗i , (19)

where πi(x∗) = ui
(
x∗i ,x

∗
−i;Wi

)
. Moreover, the sum of utilities of active agents at x∗ is

given by: ∑
i

πi(x
∗) = (f(X∗)− c)X∗ =

−(X∗)2f ′(X∗)

(ρ(G) + 1)
, (20)

since (f(X∗)− c)(ρ(G) + 1) = −X∗f ′(X∗)

This remark shows that the equilibrium utility of each active agent is proportional to her
equilibrium effort and thus the utility of active agents is proportional to their eigenvector
centrality in the sub-network of active agents. This only informs us about the relative
utility of active agents but does not tell us anything on the aggregate utility. However, for
the Tullock context function, we have:∑

i

πi(x
∗
i ) =

V

ρ(G) + 1
,

while, for Cournot competition, we obtain:∑
i

πi(x
∗
i ) =

(X∗)2

ρ(G) + 1
= (ᾱ− c) ρ(G) + 1

(ρ(G) + 2)2
.

In both examples (Tullock and Cournot), we can write the aggregate utility as an explicit
function of ρ(G), the spectral radius of the network associated to the equilibrium. Hence,

28Observe that we have assumed that all agents were ex-ante identical and their only heterogeneity
stemmed from their network position. If we relax this assumption and allow for agents to have different
costs of effort (i.e., c = ci for agent i), then the ordering on communities introduced in the previous section
will be exactly the same, but the link between spectral radius and PCE (Proposition 1) will no longer
hold true. There will be a trade-off between belonging to a densely-connected community and the cost of
effort. Similarly, if we assume a more general sharing rule than the one defined in (4), the ordering will be
unaltered and deliver the same result, but Proposition 1 will be affected. This is because the � ordering
does not rely on any parameter of the model, only on the network topology.
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in these examples, the aggregate utility decreases when the network becomes denser. In
the general case, as can be seen in equation (20), we cannot make such a statement because
X∗ depends on ρ(G).

3.5 Stability and eigenvector centrality

This section is devoted to refining the set of equilibria by characterizing those peer-
consistent equilibria that are stable. Such an approach has two fundamental objectives.
First, it allows us to identify which equilibria are robust to perturbations and provides a
dynamic microfoundation to the concept of peer-consistent equilibrium. Second, refining
the set of equilibria is necessary if one wants to extend the eigenvector centrality micro-
foundation to general networks. Indeed, as noted above, the efforts of active agents are
proportional to their eigenvector centrality in the sub-network of active players. However,
this raises a natural question: Is there a link between eigenvector centrality in the whole
network and PCE? The answer is positive and we show that, in any generic network, ex-
actly one PCE is proportional to the eigenvector centrality of the whole network, and it is
precisely this PCE that we identify as the stable one.

As usual, stability of equilibria is defined through a meaningful dynamical system, the
rest point of which is the equilibria we want to consider. A stable equilibrium is then
defined as a stable rest point of the dynamics, that is, a rest point to which, starting from
conditions close enough to it, the system asymptotically stabilizes. For this purpose, we
introduce perceived best-response dynamics. This captures the idea that agents smoothly
adapt their actions in the direction of their best possible action, given the information
available to them.

3.5.1 The perceived best-response dynamics

We now present the continuous-time dynamics to which we characterize stability. Even
though it is very close—in terms of interpretation—to the classical continuous-time best-
response dynamics,29 we explain how it is related to a simple discrete-time model.

Consider a discrete-time sequence of effort profiles in which, after observing their neigh-
bors’ effort level as well as the local resources in the previous period, agents adapt their
effort levels at each period of time. Specifically, before choosing her effort level at period
t, agent i observes the effort of her neighbors xt−1

−i as well as the realized local parameter
W t−1
i at period t−1. She can then compute her optimal effort level with respect to quantity

W t−1
i by maximizing the map30

bi ∈ [0,+∞[7→ bi · f
(
bi + (Gxt−1)i

W t−1
i

)
− cbi.

29See Fisher (1961), Gilboa and Matsui (1991), Matsui (1992), and, more recently, Bramoullé et al.
(2014) and Bervoets and Faure (2019).

30Observe that (Gx)i =
∑
j∈Ni

x∗j . We use this more compact notation whenever it is convenient.
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We denote by Bri(x
t−1) this maximizer. Since W t−1

i =
xt−1
i +(Gxt−1)i

Xt−1 , the map Bri(·) is
given by

Bri(x) = Argmaxbi≥0 bi · f
(
X(bi + (Gx)i)

xi + (Gx)i

)
− cbi.

Tullock model. In the linear Tullock contest model, we can compute explicitely the
perceived best-response map:31

Bri(x) = max

{
−(Gx)i +

(
V

cX
(Gx)i (xi + (Gx)i)

)1/2

, 0

}
. (21)

Cournot competition. In the Cournot model, we can also compute explicitely the
perceived best-response map:

Bri(x) =
1

2
max

{
−(Gx)i + (ᾱ− c)xi + (Gx)i

X
, 0

}
. (22)

Agent i chooses an effort level equal to a convex combination of her last effort level and
the perceived best response based on what she observed at the last time period:

xti = (1− ε)xt−1
i + εBri(x

t−1) (23)

When ε is small, the sequence generated by (23) is related to the solution curves of the
continuous-time system

ẋ(t) = B(x(t)), (24)
where Bi(x) = −xi +Bri(x), i = 1, ..., N . Indeed, system (23) is a so-called Cauchy-Euler
scheme, designed to approximate the solutions of (24) by choosing a small ε. In other
words, system (24) can be interpreted as a smooth limit version of (23).

Choosing the appropriate state space, the stationary points of this ordinary differential
equation are precisely the peer-consistent equilibria of our problem. We now consider the
stability notion to be naturally associated to the dynamics (24). Stability for a given PCE
x∗ means that the solutions of (24) starting from initial conditions close enough to x∗

converge back to x∗. Formally:

Definition 7. A peer-consistent equilibrium x∗ is said to be asymptotically stable for
(24) if there exists an open neighborhood U of x∗ such that

lim
t→+∞

sup
x0∈U∩S

‖φ(x0, t)− x∗‖ = 0,

where S, defined in (B.5) in Section B.1.3 of the Appendix, contains all the relevant states
of the problem we consider, and (φ(x, t))x∈S,t≥0 is the semi-flow associated to (24) on S.
Specifically, φ(x, t) is equal to the position of the (unique) solution of (24) starting at x.

Definition 7 states that a PCE x∗ is asymptotically stable if it uniformly attracts all
solutions starting in an open neighborhood of itself. This is a standard concept of stability
used in economics (Benaïm and Hirsch, 1999; Weibull, 2003), and in network games in
particular (Bramoullé et al., 2016; Bervoets and Faure, 2019).

31This holds if and only if the action profile x is such that (Gx)i = 0 ⇒ xi = 0.
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3.5.2 Stable PCE: A simple characterization

We now characterize the PCEs that are asymptotically stable with respect to the best-
response dynamics (24). It turns out that being asymptotically stable depends entirely
on the sub-network of active players in this PCE, in a very simple and intuitive way. Let
(N,G) be a generic network.32 Given a PCE x∗, we call ρ(x∗) the largest eigenvalue of the
sub-network (N+(x∗),GN+(x∗)).

Theorem 2. Let (N,G) be a generic network. Then, there is a unique asymptotically
stable equilibrium x∗ such that ρ(x∗) = ρ(G). Moreover, agents’ effort levels at the stable
PCE are proportional to their eigenvector centrality in the whole network (N,G).

The intuition behind the characterization in terms of largest eigenvalues is as follows.
Since the network is generic, there is exactly one PCE for which the largest eigenvalue of
the set of active players is equal to ρ(G). We must show that it is the only asymptotically
stable equilibrium. Suppose that x∗ is a PCE such that ρ(x∗) is strictly smaller than
ρ(G). Then, one can find a community M in which agents are inactive at x∗, while having
ρ(GM) = ρ(G). Now, suppose that we slightly perturb x∗ so that, instead of playing
zero, agents in M play εui, where u is the normalized positive eigenvector associated with
ρ(G). Since, for agents in M , this initial condition is associated with an eigenvalue that is
strictly larger than the eigenvalue associated with x∗, the agents inM will want to increase
their effort and not come back to zero. Thus, it is clear that x∗ cannot be stable.33 We
conclude the proof by showing that the (unique) PCE for which ρ(x∗) = ρ(G) is stable
using standard methods. The last part of the theorem directly follows from the definition
of eigenvector centrality.

Theorem 2 provides a simple and efficient analytic method for checking which PCEs are
stable by looking for communities with the highest spectral radii. First, consider Example
1 with the networks displayed in Figure 1(a) and Figure 1(b) with N = {1, 2, · · · , 6}. There
are two communities: M1 = {1, 2, 3} and M2 = {4, 5, 6}, with M1 �M2 in both networks.
The only difference between these two networks is that the one in Figure 1(a) has two extra
links between agents 1 and 2 compared to the network in Figure 1(b). This is an important
difference because the largest eigenvalue of the �-maximal community, M1, changes: it is
equal to 2 in Figure 1(a), whereas it is equal to

√
2 in Figure 1(b). In Figure 1(a), there

is a unique equilibrium that is clearly stable, in which only agents 1, 2, and 3 are active.
In Figure 1(b), we have seen that there were two PCEs, one with root M1 = {1, 2, 3} and
one with root M2 = {4, 5, 6}. Since ρ(GM1) =

√
2 < ρ(GM2) = 2 = ρ(G), there is a

unique stable PCE for which all agents are active. Thus, disconnecting agents 1 and 2 has
a dramatic impact on the stable peer-consistent equilibria. The fact that the �-maximal
community in Figure 1(b) is less dense than in Figure 1(a) prevents agents 1, 2, and 3 from

32Our main result (Theorem 2) holds under the less restrictive assumption that (N,G) has a unique
dominant component, as properly defined in condition (UDC) in Section A.2 of Appendix A. In fact,
eigenvector centrality is well defined if and only if the network satisfies the condition (UDC).

33For ease of presentation, asymptotically stable PCEs are referred to as stable PCEs.
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capturing the entire resource V and thus obliges them to share V with the other players
in the PCE.

Second, consider Example 2 with the network depicted in Figure 2. We have seen that
there were two PCE with roots M1 = {1, 2, 3} and M3 = {6, 7, 8, 9}, respectively. Since
ρ(GM1) = 2 < ρ(GM3) = 3 = ρ(G), the only stable PCE is the equilibrium with root
M3, where all agents are active. Note that in both examples where there exists a peer-
consistent equilibrium x∗ with N+(x∗) = N , x∗ must be the stable equilibrium. This is
actually always true:

Corollary 2. Pick a generic network. If there exists a peer-consistent equilibrium x∗ with
N+(x∗) = N , then x∗ is the asymptotically stable PCE.

In summary, for any (generic) network, we can determine the unique stable peer-
consistent equilibrium. First, we establish the �-ordering as defined in Section 3.3. Second,
we determine the different peer-consistent equilibria by checking, for each community, if
its spectral radius is strictly greater than that of the communities that dominate it as per
the �-ordering (Proposition 1). For each PCE, we can ascertain the effort of each agent,
which is equal to her eigenvector centrality (Theorem 1) in the set of active agents. Fi-
nally, the unique stable peer-consistent equilibrium in the network is the PCE for which
the corresponding root has the same largest eigenvalue as the whole network (Theorem 2).

4 Policy interventions

4.1 Adding links

We now consider the policy implications of our model. We start with the simplest in-
tervention: Given a network and its unique stable peer-consistent equilibrium, what would
happen if we added a link between two agents?

Consider networks with a unique dominant component. We only focus on stable peer-
consistent equilibria, that is, equilibria for which the largest eigenvalue of the root is
equal to that of the whole network (Theorem 2). We examine whether adding a link
from individual i to individual j has an impact on individual efforts. If we do not make
additional assumptions on the payoff structure, adding links does not have a clear impact
on the aggregate equilibrium effort.34 Hence we only obtain results on relative efforts in
the general model:

Proposition 2. Pick a generic network (N,G) with x∗ being the asymptotically stable
peer-consistent equilibrium. Suppose that i, j ∈ N+(x∗), and gij = 0. Let Ĝ be the network
obtained from G by adding a link from i to j. Then, Ĝ admits an asymptotically stable
peer-consistent equilibrium x̂∗ that has the following properties:

34Observe that, in the general case, X∗ is increasing with ρ(G) if (f(X) − c)(−f ′(X) − Xf ′′(X)) +
X(f ′(X))2 > 0. A sufficient condition is that Xf ′(X) is non-increasing. However, it is not necessary. For
example, in the linear Tullock model, Xf ′(X) = −V/X. Nevertheless, (f(X)− c)(−f ′(X)−Xf ′′(X)) +
X(f ′(X))2) = cV/X2 > 0
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(i) N+(x̂∗) ⊆ N+(x∗),

(ii) for any k ∈ N , we have x̂∗i
x∗i
>

x̂∗k
x∗k
.

Since both players i and j initially belong to the set of active agents, there is no reason
why adding a link between them should induce a positive effort from an initially inactive
agent. Indeed, the spectral radius of the subgraph of inactive agents remains the same
while the spectral radius of the set of initially active agents can only increase. In other
words, N+(x̂∗) ⊆ N+(x∗). This is part (i). Additionally, agent i becomes more central
relatively to other agents when adding a link from i to j. This implies that the relative
effort increase is maximal for agent i. This is captured by part (ii) of the proposition.
Note that, if f(·) is such that X∗ increases with the spectral radius of the graph, then part
(ii) of Proposition 2 directly implies that x̂∗i > x∗i .

4.2 Key players

Another possible intervention involves removing one agent as well as all links from the
network. This is known as the key-player policy (Zenou, 2016) and is particularly relevant
in the crime application (Ballester et al., 2006, 2010) but also in the conflict application
(König et al., 2017; Amarasinghe et al., 2020), because governments want to target these
individuals (the key players) in order to reduce total activity X (total crime or total
conflict).

Because there is no clear relationship between network density (captured by the spectral
radius ρ(G)) and total equilibrium effort X∗ (see Remark 6), it is difficult to obtain general
results of the key player policy. However, in specific cases, such as the Tullock contest
function model,35 we can derive some results. Proposition D2 in Appendix D.2.1 shows
that, in the Tullock model, when removing a player, total effort will never increase. This
is because the largest eigenvalue either stays the same or is reduced; the latter decreases
total effort. However, the distribution of efforts may be greatly altered, as shown in the
following example.

Example 3. Key players and the spread of efforts across local neighborhoods
for the (linear) Tullock context function
Consider the network displayed in Figure 1(a) (Example 1). We have shown that there
is a unique stable peer-consistent equilibrium where the only active agents belong to �-
maximal community M1 = {1, 2, 3} with x∗1 = x∗2 = x∗3 = 2V

9c
and thus the total effort is

X∗ = 2V
3c
.

Let us now remove the active agent 1 from the network as well as all of her links. It is
easily verified that the unique stable PCE x[−1]∗ is such that now {2, 3, 4, 5, 6} ⊆ N+(x∗),
even though the total effort remains the same at 2V

3c
. Indeed, by removing agent 1, the

spectral radius of M1 = {1, 2, 3} decreases from 2 to 1 and becomes strictly smaller than
the spectral radius of M2 = {4, 5, 6}, which is equal to 2. As a result, the only stable PCE

35The same is true for the Cournot Competition model.
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is now such that agents 2, 3, 4, 5, and 6 are active. Removing an agent can thus have
the counter-productive effect of making inactive agents active. In the standard key-player
policy (Zenou, 2016), this is not possible since total effort always decreases as all agents
reduce their individual effort. �

4.3 Social mixing

We conclude this section with a brief look at the issue of social mixing. To address this issue,
we need to depart slightly from our initial model in which there was one (generic) network.
Suppose, instead, that we start with two disconnected (generic) networks (N1,G1) and
(N2,G2), each of which has a unique stable PCE. As above, we can obtain results only
for specific cases. We consider here social mixing in the Tullock contest function model.36

Think of social mixing as starting with two fully segregated neighborhoods, each endowed
with their own resources V 1 and V 2. The key question for the planner is whether merging
these two neighborhoods (social mixing) into a connected network (N,G), with N =
N1 +N2, V = V 1 + V 2, leads to an increase in total activity and resources.

Proposition D3 in Appendix D.2.2 shows that the total effort in any new stable PCE of
the connected network (N,G) is higher than the sum of total efforts in each disconnected
neighborhood. Hence, linking the two neighborhoods is beneficial to aggregate effort. On
the other hand, the distribution of resources between agents in N1 and N2 is less clear.
Indeed, distribution in the new equilibrium depends on the specific connections that are
formed between the two groups. It is therefore possible to have some agents who are worse
off following the mixing of the two neighborhoods.

5 Economic and empirical implications of our model

5.1 The concept of perceived competition

We would now like to illustrate our results and to highlight our concept of “perceived” com-
petition. Understanding how community ordering works in combination with community
densities is crucial to detect who is active in a network as well as how much effort agents
exert when they are active. However, these two questions need to be answered separately.

Let us first focus on the question: Who is active in a network? Note that, given a
community M , either all agents in M are active in the stable equilibrium, or none of them
are. In the former case, we will say that the community is active (at the stable equilibrium).
For a given community, being active or not will be determined by a combination of the
two following ingredients: (i) its relative position with respect to other communities in the
network (indeed, the relation � translates into an advantage in terms of competition); and
(ii) its density, in terms of the largest eigenvalue of the corresponding sub-network.

Indeed, according to Proposition 1 and Theorem 2, in order to be active at the stable
equilibrium, a community must satisfy (at least) one of the two following conditions:

36Similar results can be obtained for the Cournot competition model.
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(a) it must exhibit the largest spectral radius among all communities and be “hidden”
from all other communities, if any, that have the same property;37

(b) it must be aware of all communities with the largest spectral radius.38

For obvious reasons, being “denser” makes it more likely for a community to satisfy con-
dition (a), while having a better relative position as per �-ordering makes condition (b)
more likely to hold.

Once the set of active players is established, we can turn to the second question: How
active is an agent among the set of active agents? Here, the answer is simpler, since the
effort level of an active player is determined by her relative position in the sub-network
of active players, which is fully captured by her eigenvector centrality. Consequently, the
more aware of other active players an agent is, the more active she is. Also, the more
“hidden” from other active agents she is, the more active she is. However, this does not
mean that removing links from other active agents will necessarily increase her effort level
because, in doing so, it might be that the community is no longer dense enough, rendering
this community inactive in equilibrium.

5.2 Dynamic competition

In this section, we illustrate how the dynamics of our game works and how it converges to
the unique stable PCE for the Tullock contest function.39

5.2.1 Dynamic competition: An illustration for the (linear) Tullock contest
function

Consider an economy with two sectors A and B that are in competition for a fixed amount
of resources V . To illustrate this situation, consider the network displayed in Figure 1(a)
in which sector A has three firms (firms 1, 2 and 3), whereas sector B also has three firms
(firms 4, 5 and 6). Given this network structure, firms 4, 5, and 6 are not aware that
they are in competition with firms 1, 2, and 3, but firms 1 and 2 are aware that they
are in competition with firm 6. Each firm i = 1, 2, 3, 4, 5, 6 has to decide on a quantity
effort xi (i.e., how much to produce or to invest). The total resource V will be distributed
according to the sharing rule (4) (Tullock contest function), meaning it is proportional to
the (quantity) effort of each firm. At the end of the year, V is shared according to this rule
and all firms observe the (quantity) efforts. In other words, each sector s = A,B obtains
V/2 of the total resources. From the viewpoint of firms from sector B, i.e., M2

1 = {4, 5, 6},
which believe that they are in competition only among themselves, they perceive a revenue
of V/2, which they will share between them; thus, each firm perceives that it will obtain
V/6. On the contrary, the firms from sector A, i.e., M1

1 = {1, 2, 3}, believe that they are
37This means that a path must not exist from another community with the same spectral radius.
38This means a path exists from this community to every community with the largest spectral radius.
39A similar exercise can be done for the Cournot competition model.

29



in competition with not only the other firms from sector A but also firms from sector B.
In particular, since firms 1 and 2 perceive that they are in competition with three other
firms (two from sector A and firm 6 from sector B), both perceive that their resources
are equal to 4V/6, since they know that each firm has received V/6. Since 4V/6 > 3V/6,
compared to the firms from sector B, firms 1 and 2 will exert more (quantity) effort in
the following year to obtain a larger share of V . This pattern continues and reinforces
itself over time, so that firms 1 and 2 make more and more effort, which induces firm 3
(which has no information about the firms from sector B) to also increase its effort. On
the contrary, firms 4, 5, 6, which only observe the other firms from sector B, see their share
of V decreasing over time without knowing why. Indeed, they believe that there are fewer
and fewer resources in the economy over time. After some time, firms 4, 5, and 6 will end
up making no (quantity) effort (and thus exit the market), and all the resources will go to
firms 1, 2, and 3. This is the unique stable PCE.

Consider, now, the network displayed in Figure 1(b) where the links between firms 1
and 2 have been removed. Firms 1 and 2 perceive that they are in competition with only
two firms for firm 1, and only three firms for firm 2. The perceived resources of firm 1 are
equal to V/2, which is different from those of firms 4, 5, 6, which also perceive, like firm 1,
that they have two competitors. Indeed, firms 4, 5, and 6 perceive that their resources are
equal to 2V/5. Thus, in the following year, firms 1, 2, and 3 (sector A) and firms 4, 5, and
6 (sector B) will exert different levels of effort but these efforts will all be positive. This
will persist over time, so the only stable PCE is such that all six firms in this network will
be active even though they exert different quantity efforts.

Technically, as illustrated by this example, to calculate the agents’ efforts at the PCE,
one needs to understand the underlying dynamic process in which, at each period of time
t, each agent i best replies to the observed W t−1

i . See equation (23) or (24). This process
converges to a unique fixed point when Wi =

x∗i +
∑

j∈Ni
x∗j∑

j∈N x∗j
, for each agent i. This unique

fixed point is the unique stable PCE of this game.

5.2.2 Dynamic competition: Numerical simulations for the (linear) Tullock
contest function

To understand the underlying dynamics of our model, consider the network displayed in
Figure 1(a). As stated above, each agent i best replies to the observed W t−1

i . When
ε = 0.1, this is described by the following equation (see (23)):

xti =
9

10
xt−1
i +

1

10
εBri(x

t−1), (25)

Indeed, at time t, each agent i does not know V or the efforts of all agents in the network.
She only observes W t−1

i , her own payoff from the previous period, and (Gx)i =
∑

j gijx
∗
j ,

her neighbors’ effort.
By taking the initial conditions x0

i = 0.1 for all i = 1, . . . , 6, we obtain Figure 3.40 The
40For simplicity, in all numerical simulations, we take V/c = 1.
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green, blue, and red curves correspond to the effort of agents 2, 1, and 3, respectively, while
the cyan curve corresponds to that of agent 4, 5, or 6. By using (25), agents best respond
to their neighbors’ efforts and their perceived resources up to the point when this dynamic
process converges to the unique stable PCE in which agents 1, 2, and 3 make 2V/9c = 2/9

effort while agents 4, 5, and 6 exert zero effort.41 At this equilibrium, Wi =
x∗i +

∑
j∈Ni

x∗j∑
j∈N x∗j

,
for each agent i ∈ N . In other words, perceived and real resources are equal. Observe that
agents 4, 5, and 6 start with the wrong perception that there are large local resources W 0

i ;
over time, they observe that these resources decrease and thus reduce their effort until it
reaches zero, since there are no resources left to grab.

Figure 3: Convergence to the unique stable PCE in the network of Figure 1(a)

If we now turn to the network in Figure 1(b) and consider the same dynamic system
given by (25), starting with the same initial conditions, we obtain Figure 4. Here, agents
adjust their effort and reach the interior equilibrium in which x∗1 = 1/9 (blue), x∗2 = 7/45
(green), x∗3 = 2/15 (red), and x∗i = 4/45 for i = 4, 5, 6 (cyan). Agents 4, 5, and 6 do not
end up making zero effort because W 0

i ; their perception of local resources at t = 0 is not
too far from the reality and thus they slightly change their effort over time.

These two examples illustrate the fact that local perceived resources vary over time,
which makes agents change their effort in order to best reply to what they observe (that
is, their local resources and their neighbors’ effort from the previous period) at each period
of time.

In Section 3.4, we showed that, in the network of Figure 1(b), there were two PCEs:
one in which all agents are active and one in which only agents 1, 2, and 3 are active, with

41This is independent of the initial conditions.
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Figure 4: Convergence to the unique stable PCE in the network of Figure 1(b)

x∗1 = x∗2 ∼ 0.1715 and x∗3 ∼ 0.2426. We showed that the latter was asymptotically unstable.
To understand this, let us start with initial conditions very close to this equilibrium, that
is, x0

1 = x0
2 = 0.1715, x0

3 = 0.2426, and x0
i = 0.001. Figure 5 shows the dynamics of the

system and the convergence to the unique stable PCE in which all agents are active. This
clearly illustrates that the equilibrium in which agents 4, 5, and 6 are inactive is unstable.
Moreover, since the initial conditions are very close from another equilibrium, it takes
some time for agents to adjust their effort and to converge back to the unique stable PCE
discussed above. The fact that this equilibrium is unstable does not change the fact that
the drift is very small around it and, thus, the dynamical system moves very slowly.

5.3 Evidence on PCE: Education in schools

5.3.1 Evidence on the mechanisms of the PCE

Let us now show that PCE is conceptually compelling. Indeed, PCE is based on the
idea that there is some form of ignorance from the player, that is, players will never
know the behavior of the set of all players N . In particular, PCE assumes long-lived
misperceptions that are robust and that do not stand up to much scrutiny by the players.
For example, an agent’s perceived and actual marginal utilities differ. In a PCE, this
implies that the players are not able to falsify their misperceptions with a minimal amount
of experimentation. Furthermore, in terms of dynamics, PCE assumes that players do not
update their neighbors Ni but do update Wi. In this section, we would like to provide an
example where indeed competitors persistently misperceive who their opponents are and
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Figure 5: Convergence to the unique stable PCE in the network of Figure 1(b) when
starting from the unstable PCE

act accordingly and do not change their neighbors over time.
Consider education in schools. Students have different (internal) assessments during

the year on each subject they take. These assessments take place on a regular basis. For
each internal assessment, each student obtains a grade. However, she does not know her
exact ranking (her utility) in the classroom because all the grades in the classroom are not
disclosed by the teacher. She may ask her friends or friend of friend or anybody that she
perceives as her direct competitors about their grades to have a sense of her ranking in the
classroom. This is not necessarily reciprocal. For example, if I ask my friend which grade
her own friend got, it is not necessarily true that this person will ask our common friend
about my grade. Then, depending of her ranking in a particular subject, each student
will obtain a “perceived” utility (since this is not her real or objective ranking) and will
decide upon her education effort xi, that is, how much hours she will spend working on
this subject.

This application to education displays two key features that are consistent with the
definition of a PCE. First, even with experimentation, each student will never know the
grades of all her competitors (classmates) in the classroom, especially in developing coun-
tries where classroom size can be as large as 100.42 Thus, each student will not know her
exact ranking and, therefore, her “objective” utility. She will only know her “perceived”
utility by comparing herself to her “perceived” competitors (i.e., neighbors). This means
that there is some form of ignorance from each student because she will never know the

42For example, in Bangladesh, Hahn et al. (2020) and Islam et al. (2021) document that each school has
only one class for each grade, a single teacher, and a large class size (40 students on average), with some
classrooms having as much as 100 students.
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grades of all students in her classroom and therefore the behavior of all students N in the
classroom. This would be even more true for external assessments. Indeed, in many coun-
tries, at the end of year 12, students take a final exam on all their subjects and obtain a
national score (SAT score in the US, ATAR in Australia, etc.). This score, which provides
a ranking of each student in the country or state, allows the student to get into university
programs. Clearly, it is impossible to know in advance this ranking (even with experi-
mentation) and each student makes education effort based on their perceived competitors,
mostly their friends and students they interact with.

Second, in terms of dynamics, in the context of education, it is reasonable to assume
that the set of student i’s neighbors Ni is the same over time, since it is easier to ask again
the same students (who may be your friends or friends of friends) their grades because they
already gave you their grades in the previous exam.

5.3.2 Does the PCE organize the data better than other concepts?

Let us now provide some convincing evidence that PCE can help organize real world
observations.

One of the unique predictions of PCE is provided in Theorem 2, which says that,
at the unique stable PCE, each student makes an (education) effort proportional to her
eigenvector centrality in the whole network. Thus, even the “inactive” students will be the
students with very low education effort. In other words, we can rank the education effort of
all students by their eigenvecor centrality in the network. This prediction is unique to our
concept of equilibrium, the PCE, since it is due to consistency requirement of Definition
2(ii). In particular, this prediction cannot be obtained in the models mentioned in the
Introduction that focus on imperfect information about the network with new equilibrium
concepts (self-confirming equilibrium and peer-confirming equilibrium) related to our PCE
(McBride, 2006; Lipnowski and Sadler, 2019; Battigalli et al., 2020).

Let us provide some evidence of this. Islam et al. (2021) collect the networks of students
in Bangladesh and study their education outcomes (both in cognitive skills, i.e., test scores,
and non-cognitive skills) using some field experiments. They show that friendships are not
always reciprocated (i.e., directed networks)43 and that the eigenvector centrality of each
student is a strong predictor of their education outcomes, in particular, their test scores
(see their Table 8).44

Observe that the fact that, in Islam et al. (2021), the education effort of each student is
shown to be proportional to her eigenvector centrality proves that students cannot experi-
ment in order to discover their “objective” utility (i.e., their “real” or “objective” ranking in

43This is a standard empirical result in friendship networks where it is documented that about 50%
to 60% of friendship relationships are not reciprocated (see e.g., Calvó-Armengol et al. (2009); Huitsing
et al. (2012); Almaatouq et al. (2016); Algan et al. (2020)), in particular in the education context (Calvó-
Armengol et al., 2009; Algan et al., 2020).

44Eigenvector centrality has also been showed to be relevant in other contexts. For example, investigating
microfinance diffusion in 43 villages in India, Banerjee et al. (2013) find that the eigenvector centrality and
diffusion centrality of the first contacted individuals (i.e., the set of original injection points in a village)
are the only significant predictors of the eventual diffusion.
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the classroom), as predicted by the PCE. Indeed, if students could experiment and discover
their “real” ranking and thus maximize their “objective” rather than their “perceived” util-
ity, then the equilibrium would be Nash and not PCE. As shown in the paper, in this case,
agents would then know all their competitors, which is equivalent to say that the network
would be complete (Remark 3). This would imply that all agents would have the same
eigenvector centrality and, thus, the latter could not be a predictor of education effort (or
test scores).

6 Conclusion
In this paper, we consider an aggregative game of competition in which agents have an
imperfect knowledge of their competitors. We model this imperfect knowledge by a network
by assuming that each agent only has information on the activities of their direct neighbors,
that is, their perceived competitors. We develop a new concept of equilibrium, which we
refer to as peer-consistent equilibrium (PCE). Each agent chooses an effort level that
maximizes her perceived utility. However, at the PCE, effort levels of all agents have to
be consistent: for each agent, her perceived subjective utility and resource has to be equal
to her objective payoff and resource.

We first show that, at any PCE, the effort of an active agent is proportional to her
eigenvector centrality. This is true for any network. We then introduce the concept of
community: within each community, all agents have the same propensity to exert positive
effort. We construct an ordering of the communities in terms of active agents. Agents in the
better ranked communities are more likely to be active because few agents are “aware” of
them, and agents in these communities can therefore grab a significant amount of resources
within their neighborhood. Then, we determine all peer-consistent equilibria by comparing
the spectral radius of these communities and that of their adjunct set (i.e., agents that
can reach them through a path) in the whole network. We show that, to be active in
equilibrium, one needs to belong either to a �-maximal community (because few agents
are aware of these individuals) or to communities of large size. Finally, we demonstrate that
there is a unique stable PCE in each network. This PCE corresponds to the community
that has the largest spectral radius in the network. Depending on the network structure, at
the unique stable PCE, either all or only a subset of agents are active. We illustrate all our
results with two well-known applications of aggregative games: Tullock contest function
(rent-seeking games) and Cournot oligopoly competition.

Lastly, we study the policy implications of our model. We show that adding a link
can reduce the number of active agents in the network because it creates a new path that
makes some agents more likely to be reached; in turn, this may lower their status in terms
of community. We also study the key-player policy and show that, by removing an agent
from the network, we may make several inactive agents active. Further, we examine social
mixing by merging two different disconnected networks, highlighting that total activity is
higher than the sum of total activity in each network.

In many real-world situations, agents are not aware of the full set of agents with whom
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they are in competition and thus only take into account their “perceived” local competitors
when deciding which actions to take. In this paper, we shed some light on this issue
by foregrounding the importance of individual network position and the community to
which each agent belongs. More generally, we believe that the concept of “perceived”
competition is important to understand and explain many situations in which competition
is not perceived as reciprocal and agents only care about their local competitors, even
though competition is global.
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Appendix

A Non-negative matrices and eigenvector centrality

A.1 The Frobenius normal form

A matrix is called nonnegative if all its elements are nonnegative. Here we consider only
nonnegative square matrices of order n, i.e., matrices that have n rows and n columns.
A nonnegative matrix A is called irreducible if the associated directed graph is strongly
connected. For convenience any one-by-one matrix is regarded as irreducible.

Lemma A1. (Perron-Frobenius Theorem) Let A be an irreducible matrix. Then

(i) A has a positive eigenvalue ρ(A) such that the value of ρ(A) is not less than the
absolute value of any other eigenvalue of A;

(ii) the eigenvalue ρ(A)is simple, and corresponds to a positive eigenvector x(A);

(iii) any non-negative eigenvector is a multiple of x(A).

The vector x(A) and the number ρ(A) that appear in this lemma are called the Perron-
Frobenius vector and the Perron-Frobenius eigenvalue of A, respectively.

The following lemma extends some conclusions of the Perron-Frobenius Theorem to non-
negative matrices (not necessarily irreducible).

Lemma A2. Let A be a nonnegative matrix; then

a) A has a nonnegative eigenvalue ρ(A) such that the value of ρ(A) is not less than the
absolute value of any other eigenvalue of A.

b) To eigenvalue ρ(A) corresponds a nonnegative eigenvector x(A).

c) If there exists a positive eigenvector, then it is necessarily associated to eigenvalue
ρ(A).

Note that if x is a non-negative eigenvector of A, x is not necessarily associated with
ρ(A). Also there could exist eigenvectors with both negative and positive entries, associated
to ρ(A).
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Lemma A3. Any nonnegative matrix A can be put in an upper-triangular block form as
follows:1

A =



A1 A12 ... ... ... ... ... A1r

0 A2 A23 ... ... ... ... A2r

... ... ... ... ... ... ... ...
0 ... 0 As Ass+1 ... ... Asr
0 ... ... 0 As+1 0 ... 0
... ... ... ... ... ... ... ...
0 ... ... ... ... 0 Ar−1 0
0 ... ... ... ... ... 0 Ar


(A.1)

such that:

(i) each block matrix Ai is square and irreducible;

(ii) for any i = 1, ...s, there exists j ∈ {i + 1, ..., r} such that the block matrix Aij is not
zero.

This upper triangular block form is known as the Frobenius normal form. It is unique
up to a permutation. We have ρ(A) = maxi=1...r ρ(Ar). We call Vi the set of nodes
corresponding to the block matrix Ai.

Definition A1. A nonnegative matrix A is strongly nonnegative if we have

ρ(Ar) = ρ(Ar−1) = ... = ρ(As+1) > max
i=1,...,s

{ρ(Ai)}

Obviously, any irreducible matrix is strictly nonegative because the Frobenius normal form
then consists of one block. The next results can be found in Rothblum (2014) or Hu and
Qi (2016).

Lemma A4. A nonnegative matrix A admits a positive eigenvector if and only if A is
strongly nonnegative.

Note that, if A is an irreducible nonnegative matrix, then the conclusion of Lemma A4
directly implies point (ii) of Lemma A1, i.e., the Perron Frobenius Theorem.

We illustrate the Frobenius normal form for network (N,G) displayed in Figure 2,
with N = {1, 2, · · · , 10} and with three communities: M1 = {2, 3, 4}, M2 = {5, 6}, and
M3 = {7, 8, 9, 10}.

Let C(m) be the adjacency matrix of the complete m-agents network.2 Keeping the
1Up to a permutation of indices.
2That is, C(m)ii = 0, C(m)ij = 1 for i 6= j
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indexing of agents as it is, we have

G =



0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1 1 0


=


0 A12 0 A14

0 A2 A23 A24

0 0 A3 A34

0 0 0 A4

 ,

where A1 = 0, A2 = GM1 = C(3), A3 = GM2 = C(2), and A4 = GM3 = C(4), while
A12 = [0 0 1], A13 = [0 0], A14 = [1 0 0 0], etc. In particular, Aij is distinct from the
null matrix, except for A13 (there is no link from group 1, i.e., agent 1, to community
M2, i.e., agents {5, 6}). Consequently we have s = 3 and r = 4 and ρ(A4) = 3 while
ρ(A1) = 0, ρ(A2) = 2 and ρ(A3) = 1. Hence, G is strongly nonnegative and thus admits a
positive eigenvector. Now, remove agent 9 from this network. Then, the Frobenius normal
form has the same structure, except that ρ(A4) = 2 = maxi=1,...,3 ρ(Ai). Hence, the matrix
is no longer strictly nonnegative and, thus, there is no positive eigenvector.

It might be useful to clarify the relationship between the Frobenius normal form and
the �-ordering on communities. In the Frobenius normal form of G, any Ai corresponds
to the submatrix of a strongly connected component, which can either be a community,
or a singleton. Note that, by the no-isolation assumption, Ai cannot be a size one matrix
for i = s + 1, ..., r; it then necessarily corresponds to a community for these indexes. If
M ′ � M , then there exists some i, i′ such that i′ < i, GM = Ai and GM ′ = Ai′ . In other
words the indexes in the Frobenius normal form are inversely ordered in accordance with
the � ordering.

The Frobenius normal form does not help us to characterize the peer-consistent equi-
libria (i.e., which agents are active and which are not) but will be very useful for some of
our proofs because of Lemma A4, which can be applied to any closed set, as we will see in
the proof section.

A.2 Eigenvector centrality in weakly connected networks

Eigenvector centrality has been informally introduced by Bonacich (1972) to measure popu-
larity in friendship networks. Given a weighted network (N,G), it was originally defined as
any non-negative vector e having the property that the centrality of agent i is proportional
to the average centrality of her neighbors:

λei =
∑
j

Gijej, ∀i. (A.2)
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In the particular case of strongly connected networks, this vector is well-defined because
there is a unique solution to the system (A.2), given by the eigenvector associated to the
largest eigenvalue λ ofG. More generally, there is a consensus consisting in regarding eigen-
vector centrality as being the normalized eigenvector associated to the largest eigenvalue
of the network (see e.g., Jackson (2008)).3

In weakly connected networks, however, eigenvector centrality cannot be defined in the
same way because the largest eigenvalue of a weakly connected network is not always simple.
For instance, consider the network in Figure E1 in Appendix E, where ρ(G) = 1. The
eigenspace associated to ρ(G) is generated by normalized vectors (1/3, 1/3, 1/3, 0, 0) and
(1/3, 0, 0, 1/3, 1/3). Hence, any convex combination of these two vectors is a non-negative
eigenvector, which means that eigenvector centrality is not defined for this network.

Consequently, we focus on an (arguably large) subset of weakly connected graphs, in
which the notion of eigenvector centrality can be naturally extended. A weakly connected
network has a unique dominant component if

∀M,M ′ ∈ C(G), ρ(GM) = ρ(GM ′) = ρ(G)⇒M �M ′ or M ′ �M. (UDC)

Obviously any generic network has a unique dominant component. A simple adaptation
of the proof of Proposition D1 shows that a weakly connected network admits a unique
normalized eigenvector associated to ρ(G) if and only if it has a unique dominant compo-
nent.

Definition A2 (Eigenvector centrality). Suppose that (N,G) has a unique dominant com-
ponent. Then, the eigenvector centrality of agent i is the i-th component of the normalized
eigenvector associated to ρ(G).

In some networks, it may be the case that some agents in the network exhibit a null
eigenvector centrality, and one may wonder what it means, and whether or not this defini-
tion makes sense when this happens. As we show now, this definition is indeed meaningful,
because our definition of eigenvector centrality is robust to any small perturbations of the
network, in the following sense:

Lemma A5. Suppose that (N,G) has a unique dominant component and call e the nor-
malized eigenvector associated to ρ(G). Let (Gn)n be a sequence of irreducible matrices
such that limn→+∞Gn

ij = Gij. Then en → e, where en is the normalized eigenvector
associated to ρ(Gn).

In other words, the sequence of centrality measures always converge to the same vector,
regardless of how Gn converges toG. The implication of this observation is that eigenvector
centrality is unambiguously defined in networks having a unique dominant component.

Observe that the network (N,G) depicted in Figure E1 in Appendix E does not exhibit
such a property; thus, defining an eigenvector centrality for such a network would imply
making an arbitrary choice. Indeed, it can be shown that, for any λ ∈ [0, 1], one can find

3meaning the eigenvector whose components sum to one.
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a sequence of strongly connected weighted networks (N,Gn) such that en converges to
1
3
(1, λ, λ, 1− λ, 1− λ).
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B Proofs of all results in the main text

B.1 Proof of results in Section 3

B.1.1 Proof of results in Section 3.1

Proof of Theorem 1. Let x∗ ∈ Rn
+ be a PCE. We first show that X∗ > 0. Assume, by

contradiction, that X∗ = 0, i.e. x∗ = 0. Then for each i ∈ N , agent i’s subjective utility
is equal to

l := lim
x→0+

xf(nx).

Now consider the situation where some agent i deviates and exerts some effort ε > 0, for ε
small, while the others j 6= i each exert xj = 0. Then agent i’s subjective utility is equal
to εg

(
nε

1+|Ni|

)
− cε. However εg

(
nε

1+|Ni|

)
∼ε→0+ (1 + Ni)l. Since 1 + |Ni| ≥ 2, for small

enough ε, this is a profitable deviation. Therefore, x∗ is not an equilibrium effort vector.
Hence X∗ > 0.

We next show that
Gx∗ =

c− f(X∗)− f ′(X∗)X∗

f(X∗)− c
x∗ (B.1)

in three steps:

• Suppose first that (Gx∗)i = 0. We must then show that that x∗i = 0. Assume, by
contradiction, that x∗i > 0. Then Wi > 0. Since (Gx∗)i = 0, we have that ui(xi,x∗−i;Wi) =

xif
(
xi
Wi

)
−cxi for any xi > 0, contradicting the fact that x∗i maximizes xi 7→ ui(xi,x−i,Wi).

• Let now i be such that x∗i > 0. We just showed that (Gx∗)i > 0. Since

x∗i = Argmaxbi≥0 bif

(
bi + (Gx∗)i

Wi

)
− cbi

and using the assumptions on f , it necessarily implies that x∗i satisfies the first-order
condition

f

(
x∗i + (Gx∗)i

Wi

)
+ f ′

(
x∗i + (Gx∗)i

Wi

)
x∗i
Wi

= c.

Using the consistency condition (ii) in the definition of a peer-consistent equilibrium, this
translates to,

(Gx∗)i =

(
c− f(X∗)− f ′(X∗)X∗

f(X∗)− c

)
x∗i .

As a consequence, we obtain that,

c− f(X∗)− f ′(X∗)X∗

f(X∗)− c
> 0.
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• Finally suppose that we have (Gx∗)i > 0. We must show that x∗i > 0 and the proof will
be complete. By condition (i) of the definition of a PCE,

x∗i = Argmaxbi≥0 bif

(
bi + (Gx∗)i

Wi

)
− cbi.

Again, x∗i > 0 if and only if the first order condition

(Gx∗)i =

(
c− f(X∗)− f ′(X∗)X∗

f(X∗)− c

)
x∗i .

admits a positive solution, which is the case since we proved that c−f(X∗)−f ′(X∗)X∗
f(X∗)−c is strictly

positive.

We now prove the reverse implication. Suppose that x∗ ∈ Rn
+ is different from zero and

satisfies identity (B.1). For each agent i for whom (Gx∗)i > 0, x∗i satisfies the first-
order condition associated to the maximization problem (i) of the PCE definition, with
Wi =

x∗i +(Gx∗)i
X∗

. Meanwhile, for each agent i for whom (Gx∗)i = 0, x∗i = 0 solves the
optimization problem (i) of the PCE definition, with Wi = 0. This proves the reverse
implication.

In order to conclude the proof, we finally prove existence of a peer-consistent equilibrium.
A nonnegative matrix always admits a nonnegative eigenvector u associated to eigenvalue
λ > 0 such that

∑
i ui = 1, (see Lemma A2 in Appendix A.1). Let X̄ be the (unique)

positive real number such that f(X̄) = c. Note that the map X ∈]0, X̄[ 7→ c−f(X)−f ′(X)X
f(X)−c

can take any value in [0,∞[. Hence there exists X̃ ∈]0, X̄[ such that c−f(X̃)−f ′(X̃)X̃

f(X̃)−c = λ.

Then X̃u is a PCE by construction. �

Lemma B6. If x is a peer-consistent equilibrium then N+(x) is a closed set of (N,G).

Proof. Let j ∈ N+(x) and i be connected to j through a path: there exists p ∈ N∗ such
that Gp

ij > 0. By Theorem 1 there exists ρ > 0 such that Gx = ρx. We then have

xi =
1

ρp
(Gpx)i ≥

1

ρp
Gp
ijxj > 0.

This concludes the proof. �

Proof of Remark 5. Since Remark 5 is a special case of Theorem 1, we will prove
Proposition 5 as the following corollary of Theorem 1.

Corollary B1. Let (N,G) be a strongly connected network. Then, there exists a unique
peer-consistent equilibrium.
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Proof. Suppose that (N,G) is a strongly connected network. Then G is irreducible and,
by Perron-Frobenius Theorem, there exists a positive eigenvector y associated to ρ(G).
Moreover any non-negative eigenvector of G is a multiple of y. By Theorem 1, x∗ is a PCE
if and only if it is a non-negative eigenvector ofG, associated to eigenvalue c−f(X∗)−f ′(X∗)X∗

f(X∗)−c .

Hence x∗ is a PCE if and only if x∗ is a multiple of y and ρ(G) = c−f(X∗)−f ′(X∗)X∗
f(X∗)−c . Such

a vector exists and is uniquely defined.

B.1.2 Proof of results in Section 3.4

We start by providing some insights on the relationship between the � ordering and the
Frobenius normal form.

Lemma B7. Let (N,G) be a weakly connected network. Consider its Frobenius normal
form (A.1). For any i = 1, ..., r either |Vi| = 1 or Vi ∈ C(G). As a consequence

ρ(G) = max
i=1,...,r

ρ(Ai) = max
M∈C(G)

ρ (GM) (B.2)

Proof. Suppose that |Vi| > 1. By construction of the Frobenius normal form, (Vi, Ai) is
a strongly connected component of (N,G). Hence Vi belongs to the set of communities
C(G). Since ρ(G) = maxi=1...r ρ(Ai) and ρ(Ai) = 0 if |Vi| = 1 this concludes the proof of
(B.2). �

For any closed set N ′ ⊂ N , note that C(GN ′) = {M ∈ C(G) : M ⊂ N ′}. Hence we have

ρ(GN ′) = max
M ′∈C(G): M⊆N ′

ρ(GM ′) (B.3)

Lemma B8. Suppose that A is a nonnegative matrix that admits a Frobenius normal form
(A.1) with r = s+ 1 and ρ(As+1) > maxi=1,...,s {ρ(Ai)}. Then A admits a unique positive
eigenvector.4

Proof. We only need to show that, if x and y are two positive eigenvector of A then
x = αy for some α > 0. We can write A as follows:

A =

[
A′ B
0 As+1

]
, where A′ =


A1 A12 ... ... A1s

0 A2 A23 ... A2s

... ... ... ... ...

... ... ... ... ...
0 ... ... 0 As

 and B =


A1s+1

A2s+1

...

...
Ass+1

 .
Let us write x as (x′,x[s+1]), according to the decomposition of A we just wrote and let
ρ := ρ(As+1) = ρ(A). We have[

x′

x[s+1]

]
= ρ−1

[
A′ · x′ + B · x[s+1]

As+1 · x[s+1]

]
,

4Uniqueness is up to multiplication by a constant.
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so that, in particular, (I− ρ−1A′)x′ = ρ−1Bx[s+1]. Since ρ(A′) < ρ by construction, the
matrix I− ρ−1A′ is invertible and we have

x′ = ρ−1
(
I− ρ−1A′

)−1
Bx[s+1] (B.4)

Now the matrix As+1 being irreducible and x[s+1],y[s+1] both being positive eigenvectors of
As+1 we must have x[s+1] = αy[s+1] Since identity (B.4) holds for both x and y, we obtain
that x′ = αy′, concluding the proof. �

Proof of Proposition 1. First note that if x is a PCE with rootM then its restriction to
M̄ is a positive eigenvector of GM̄ . By definition of M̄ , the matrix GM̄ admits a Frobenius
normal form as follows:

GM̄ =


A1 A12 ... ... A1s+1

0 A2 A23 ... A2s+1

... ... ... ... ...
0 ... 0 As Ass+1

0 ... ... 0 As+1

 , with As+1 = GM .

Note that the set V := ∪si=1Vi is closed and, by definition of M̄ we necessarily have
{M ′ ∈ C(G) : M ′ ⊂ V } = {M ′ ∈ C(G) : M ′ �M}. Hence

ρ(GV ) = max
i=1,...,s

ρ(Ai) = max
M ′∈C(G): M ′�M

ρ(GM ′).

If ρ(GM) > maxM ′∈C(G):M ′�M ρ(GM ′) then

ρ(As+1) = ρ(GM) > max
M ′∈C(G):M ′�M

ρ(GM ′) = max
i=1,...,s

ρ(Ai),

Consequently, we are in the conditions of Lemma B8. Thus GM̄ then admits a unique
positive eigenvector y = (yi)i∈Dk

l
, such that

∑
i∈Dk

l
yi = V

c
ρ

1+ρ
. Let then x be defined as

xi = yi if i ∈ M̄ and xi = 0 if i ∈ N \ M̄ . By construction, x is a PCE with root M and
there can be no other one.
Now suppose that ρ(GM) ≤ maxM ′∈C(G):M ′�M ρ(GM ′). Then

ρ(As+1) = ρ(GM) ≤ max
M ′∈C(G):M ′�M

ρ(GM ′) = max
i=1,...,s

ρ(Ai),

meaning that GM̄ admits no positive eigenvector, by Lemma A4. This concludes the proof.
�

Proof of Corollary 1. Suppose that x is a non simple PCE. Then, by Propositions E4
and E5, we have N+(x) = ∪ni=1M̄i, with n ≥ 2, M1, ...,Mn being distinct elements of C(G)
and

ρ (GMi
) = ρ > max

M ′∈C(G):M ′�Mi

ρ(GM ′), ∀i = 1, ..., n,

which contradicts the fact that G is generic. �
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B.1.3 Proof of the results in Section 3.5

Let us show that the system (24) is well-behaved on the set

S := {x 6= 0 : xi ≥ 0 ∀i, f(X) > c} (B.5)

in the sense that, for any initial condition in S, there exists a unique solution (x(t))t≥0

which forever remains in S.
Given a PCE x∗, we have x∗ ∈ S, because the expression c−f(X)−Xf ′(X)

f(X)−c is either unde-
fined or negative when f(X) ≤ c. As a consequence S contains all the relevant states of
the problem we consider. We denote by (φ(x, t))x∈S,t≥0 the semi-flow associated to (24) on
S. Namely φ(x, t) is equal to the position of the (unique) solution of (24) starting in x.

Lemma B9. System (24) induces a semiflow on S.

Proof. We need to check that the vector field B points inward on the boundary of S. Sup-
pose that x ∈ S, with f(X) = c. Then Bri(x−i) = Argmaxbi≥0 bi

(
f
(
X bi+(Gx)i

xi+(Gx)i

)
− c
)
.

Since f(X) = c, this map is equal to zero in bi = xi, negative when bi > xi and positive
when bi < xi. Hence Bri(x−i) < xi for all i such that xi > 0 and Ẋ < 0 in x. �

For the Tullock model, on the positively invariant set S, system (24) writes

ẋi(t) = −xi(t)− (Gx)i(t) +

(
V

cX(t)
(Gx)i(t) (xi(t) + (Gx)i(t))

)1/2

for i = 1, ..., N.

For the Cournot model we have

ẋi(t) = −xi(t)−
1

2
(Gx)i(t) +

1

2
(ᾱ− c)xi(t) + (Gx)i(t)

X(t)
for i = 1, ..., N.

The following result will be useful to prove that a point is not asymptotically stable. It
directly follows from the definition of asymptotic stability.

Lemma B10. Suppose that there exists an open neighborhood U0 of x∗ with the property
that, for any open neighborhood U of x∗ and any T > 0 , there exists x ∈ U such that
φ(x, t) /∈ U0, for any t ≥ T . Then x∗ is not asymptotically stable.

Lemma B11. Let x∗ be a PCE such that ρ(x∗) < ρ(G). Then x∗ is not asymptotically
stable.

Proof. Recall that x∗ is an eigenvector of G, associated to eigenvalue ρ(x∗), given by

ρ(x∗) =
c− f(X∗)− f ′(X∗)X∗

f(X∗)− c
.

In what follows, let ρ∗ := ρ(x∗) and ρ := ρ(G).
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Let M∗ ∈ C be the root of x∗. For any M � M∗ we necessarily have ρ(GM) < ρ∗. Let
C := N \ M̄∗. By construction, GC is a nonnegative matrix with largest eigenvalue ρ, and
we call u the eigenvector associated to ρ, whose components sum to one.
Define aε as follows:

aεi = εui ∀i ∈ C, and aεi = x∗i ∀i ∈ M̄∗,

where ε is a positive number. We claim that, for any i ∈ C, Bi(a
ε) > 0. By definition of

C, we have gij = 0 for any i ∈ C and any j ∈ M̄∗. Consequently

(Gaε)i =
∑
j∈C

gija
ε
j = (GCa

ε)i = ρεui.

Define, for i ∈ C and bi > 0,

Hε
i (bi) := g

(
Aε(bi + ρεui)

(1 + ρ)εui)

)
+

biA
ε

(1 + ρ)εui
g′
(
Aε(bi + ρεui)

(1 + ρ)εui)

)
− c.

where A(ε) =
∑

i a(ε)i = X∗ + ε. Then Bri(a
ε) is the unique zero of Hi, and Hi(bi) <

0 ∀bi > Bri(a
ε) (resp. Hi(bi) > 0 ∀bi < Bri(a

ε)). We have

Hε
i (a

ε
i) = f(Aε) +

Aε

1 + ρ
f ′(Aε)− c.

Since ρ > ρ∗ = c−f(X∗)−f ′(X∗)X∗
f(X∗)−c , we have

f(X∗) +
X∗

1 + ρ
f ′(X∗)− c > 0.

Hence, for small enough ε > 0, we have Hε
i (a

ε
i) > 0, and thus aεi < Bri(a

ε), i.e. Bi(a
ε) > 0.

This concludes the proof that x∗ is not asymptotically stable for dynamics (24).

We now prove the following lemma, which completes the proof of Theorem 2:

Lemma B12. Let x∗ be a PCE such that ρ(x∗) = ρ(G). Then x∗ is asymptotically stable.

Proof. We prove this lemma in the particular case of Tullock contest. The proof is similar
in the case of Cournot contest. However, writing a general proof without relying on the
explicit formulation of map f(·) would be extremely tedious and lengthy. We believe that
illustrating the spirit of the proof on a concrete example is more illminating. If B(.) in (24)
is differentiable in an open neighborhood of a PCE, then a simple sufficient condition for
an interior equilibrium to be asymptotically stable is that the eigenvalues of the Jacobian
matrix of B(.), evaluated at x∗, have negative real parts. Unfortunately the map B is not
differentiable at a non-interior PCE, and we then cannot use this result. However we can
compute the directional derivatives of B at any PCE: let u 6= 0 be such that ui ≥ 0 ∀i.
Then the directional derivative of B in x∗ along u, namely the quantity

DuB(x∗) := lim
h→0,h>0

B(x∗ + hu)

h
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exists, and we can compute it: given h > 0,

Bi(x
∗+hu) = −(x∗i+hui+(G(x∗+hu))i)+

(
V

c(X∗ + hU)
(G(x∗ + hu))i)(x

∗
i + hui + (G(x∗ + hu))i)

)1/2

The term in the square root can be written

V

cX∗

(
1− h U

X∗

)
[(Gx∗)i(x

∗
i + (Gx∗)i) + h [(Gx∗)i(ui + (Gu)i) + (Gu)i(x

∗
i + (Gx∗)i)]] +O(h2)

=
V

cX∗
(Gx∗)i(x

∗
i + (Gx∗)i)

(
1− h U

X∗

)[
1 + h

[
ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

=
V

cX∗
(Gx∗)i(x

∗
i + (Gx∗)i)

[
1 + h

[
− U

X∗
+

ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

Observing that ( V
cX∗ (Gx∗)i(x

∗
i +(Gx∗)i))

1/2 = x∗i +(Gx∗)i, the square root of the above quantity
is equal to

(x∗i + (Gx∗)i)

[
1 +

h

2

[
−U
X∗

+
ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

Hence, since (x∗i + (Gx∗)i) = V
V−cX∗x

∗
i , we obtain

Bi(x
∗ + hu) = −(hui + h(Gu)i) +

h

2

[
−UV

X∗(V − cX∗)
x∗i + (ui + (Gu)i) +

V

cX∗
(Gu)i

]
+O(h2)

=
h

2

[
−UV

X∗(V − cX∗)
x∗i − ui +

V − cX∗

cX∗
(Gu)i

]
+O(h2)

Consequently

lim
h→+∞,h>0

Bi(x
∗ + hu)

h
=

1

2

[
−UV

X∗(V − cX∗)
x∗i − ui +

V − cX∗

cX∗
(Gu)i

]
=

1

2
(DF (x∗)u)i ,

which proves that

DuB(x∗) =
1

2

(
−IN +

1 + ρ(x∗)

X∗
L(x∗) +

1

ρ(x∗)
G

)
· u,

where L(x∗) is the matrix where every column is equal to x∗.

LetD(x∗) := 1
2

(
−IN + 1+ρ(x∗)

X∗
L(x∗) + 1

ρ(x∗)
G
)
. We first show that all eigenvalues ofD(x∗)

have a negative real part. Suppose that D(x∗) · u = λ · u, with u 6= 0. Call U :=
∑

i∈N ui.
Then we have

−u− 1 + ρ

X∗
Ux∗ +

1

ρ
Gu = 2λu

which gives (
IN −

1

ρ(1 + 2λ)
G

)
u = − 1 + ρ

X∗(1 + 2λ)
Ux∗.
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Suppose that Re(λ) > 0 or that λ is pure imaginary. Then |1 + λ| > 1 and the matrix
G/(ρ(1+2λ))’ spectral radius is strictly smaller than one. As a consequence IN− 1

ρ(1+2λ)
G

is invertible and (
IN −

1

ρ(1 + 2λ)
G

)−1

=
+∞∑
p=0

1

ρp(1 + 2λ)p
Gp.

Consequently

u = − 1 + ρ

X∗(1 + 2λ)
U

(
IN −

1

ρ(1 + 2λ)
G

)−1

x∗

= − 1 + ρ

X∗(1 + 2λ)
U

+∞∑
p=0

1

ρp(1 + 2λ)p
Gpx∗

= − 1 + ρ

X∗(1 + 2λ)
U

+∞∑
p=0

1

(1 + 2λ)p
x∗

= − 1 + ρ

2X∗λ
Ux∗

Since u 6= 0, this equality implies that U 6= 0 and summing the coordinates of u we obtain
that 2λ = −(1 + ρ) < 0, a contradiction.
Suppose now that λ = 0. Then we have(

IN −
1

ρ
G

)
u = −1 + ρ

X∗
Ux∗.

Suppose that U 6= 0. Then, multiplying both sides of the equality by
∑K

k=0
1
ρk
Gk, we

obtain the identity(
IN −

1

ρK+1
GK+1

)
u = −1 + ρ

X∗
U

K∑
k=0

1

ρk
Gkx∗ = −1 + ρ

X∗
UKx∗

The modulus of the left-hand is bounded above by 2|u|, while the modulus of the right-
hand side term grows to infinity with K, which is a contradiction. Hence U = 0. This
means that

Gu = ρu,

i.e. that u is in fact an eigenvector associated to the largest eigenvalue of G. Since∑
i ui = 0, this contradicts the fact that (N,G) is a generic network.

We proved that the real part of every eigenvalue of DF (x∗) is strictly negative.

As we proved above, for x ∈ X, we have

B(x) = D(x∗) · (x− x∗) + ‖x− x∗‖2g(‖x− x∗‖)
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Denote by (λ1, ..., λ1, λ2, ..., λ2, ..., λP , ..., λP ) the eigenvalues of D(x∗), and call np the mul-
tiplicity of eigenvalue λp. Let us first put D(x∗) in its Jordan form:

DF (x∗) = PJP−1,

where J is diagonal by blocks, i.e.

J = Diag (J1, ...,JP ) :=


J1 0 ... 0
0 J2 ... 0
... ... ... ...
0 ... 0 JP

 , with Jp =


λp 1 0 ... 0
0 λp 1 ... 0
... ... ... ...
0 ... 0 λp 1
0 ... ... 0 λp


Define now Q := Diag (Q1, ...,QP ), with Qp = Diag(1, ε, ..., εnp−1). We then have

Q−1
p JpQp =


λp ε 0 ... 0
0 λp ε ... 0
... ... ... ... ...
0 ... 0 λp ε
0 ... ... 0 λp


Thus, defining R := PQ we obtain

R−1D(x∗)R = Q−1JQ = D(λ) + εB,

where D(λ) is the diagonal matrix filled with the eigenvalues of D(x∗).
Now define V : S→ R+ as follows:

V (x) :=
∣∣R−1(x− x∗)

∣∣2 =
〈
R−1(x− x∗) | R−1(x− x∗)

〉
We have

V̇ (x) =
〈
R−1ẋ | R−1(x− x∗)

〉
+
〈
R−1ẋ | R−1(x− x∗)

〉
=

〈
(D(λ) + εB)R−1(x− x∗) | R−1(x− x∗)

〉
+
〈

(D(λ) + εB)R−1(x− x∗) | R−1(x− x∗)
〉

+ ‖x− x∗‖2h(‖x− x∗‖),
where h(a)→a→0 0. Hence we have

V̇ (x) =
〈

(D(λ) + D(λ))R−1(x− x∗) | R−1(x− x∗)
〉

+ 2εRe
(〈

BR−1(x− x∗) | R−1(x− x∗)
〉)

+ ‖x− x∗‖2h(‖x− x∗‖)
Let α := maxp=1,...,P Re(λp) < 0. We have〈

(D(λ) + D(λ))R−1(x− x∗) | R−1(x− x∗)
〉
≤ 2α|R−1(x− x∗)|2 = 2αV (x).

As a consequence, choosing ε small enough and x close enough of x∗ we obtain that

V̇ (x) ≤ αV (x),

which proves that V (x(t)) goes to zero exponentially fast, as t goes to infinity, and this
concludes the proof. �
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B.2 Proofs of results in Section 4

Proof of Proposition 2. Let M be the root of x∗, meaning that N+(x∗) = M̄ , and
ρ := ρ(GM̄) = ρ(G). The network Ĝ also has a unique dominant component, M̂ . Either
M̂ = M5, or M̂ is a community which did not exist in G. When it is the case, we have
i, j ∈ M̂ , M̂ ⊂ M̄ and ρ(GM̂) ≥ ρ. Hence there is a unique stable equilibrium x̂ (with
root M̂) in Ĝ, N+(x̂) ⊂ N+(x) and ρ̂ := ρ(ĜM̂) = ρ(Ĝ).

We now prove that (ii) holds. Note that x̂∗ 6= x∗: suppose by contradiction that x∗ = x̂∗.
Let k 6= i with k ∈ N+(x∗). Then ρx∗k = (Gx∗)k = (Ĝx∗)k = ρ̂x̂∗v, implying that ρ = ρ̂.
Thus ρx∗i = (Gx∗)i = (Ĝx∗)i − x∗j = ρx∗i − x∗j , a contradiction. Consider the following
subsets of agents:

K+ :=

{
k ∈ M̂ :

x̂∗k
x∗k
≥ x̂∗l
x∗l
∀l ∈ M̂

}
, K− :=

{
k ∈ M̂ :

x̂∗k
x∗k
≤ x̂∗l
x∗l

l ∈ M̂
}
.

We actually prove a stronger property, namely that i ∈ K+. Note that if k 6= i and k ∈ K+

then x̂∗k
x∗k

=
∑

w∈Nk
x̂∗w∑

w∈Nk
x∗w

. Hence w ∈ K+ for all w ∈ Nk. By a recursive argument this implies
that, if k is connected to w through a path then w ∈ K+. The same property also holds for
K−. As a consequence i ∈ K+ ∪K−. If this were not the case there would exist two nodes
k+ 6= i and k− 6= i such that k+ ∈ K+ and k− ∈ K−, which would imply that elements of
M belong to both K+ and K−, a contradiction.
Suppose first that we are in the case where ρ̂ > ρ, and let k 6= i. Suppose that k ∈ K+.
Then

1

ρ̂
=

x̂∗k
(Ĝx̂∗)k

=
x̂∗k∑

w∈Nk
x̂∗w
≥ x∗k∑

w∈Nk
x∗w

=
x∗k

(Gx∗)k
=

1

ρ
,

a contradiction. Hence K+ = {i}.
Suppose now that ρ̂ = ρ. Showing that i ∈ K+ is equivalent to showing that i /∈ K−.
Suppose by contradiction that i ∈ K−. Then

1

ρ
=

x̂∗i

(Ĝx̂∗)i
=

x̂∗i∑
w∈Ni

x̂∗w + x̂∗j
<

x̂∗i∑
w∈Ni

x̂∗w
≤ x∗i∑

w∈Ni
x∗w

=
x∗i

(Gx∗)i
=

1

ρ
,

where the strict inequality follows from the fact that j ∈ N+(x̂) (see above). This is a
contradiction. Thus i ∈ K+. �

5If, for instance there is no path from j to i.
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C Cournot with non-linear demand
Consider a standard homogeneous good Cournot oligopoly game on a network with n firms
competing in quantities but with a demand that is not given by (8) but by the following
non-linear demand:

p = (ᾱ− h (X))+ ,

where h : [0,+∞( is non-decreasing, such that h(0) = 0, limx→+∞ h(x) ≥ α, and x ∈
]0,+∞[7→ xh

(
x+z
W

)
is quasi-concave for any z ≥ 0,W > 0. Hence, firm i’s perceived utility

can be written as

ui(xi,x−i;Wi) =

[
ᾱ− h

(
xi +

∑
j gijxj

Wi

)]
xi − cxi.

Again, the map f satisfies the assumptions required in Section 2.1. That is, f(0) =
α > c, limy→+∞ f(y) = 0 < c and x 7→ x

(
α− h

(
x+z
W

))
+

is quasiconcave. Finally,
limx→0+ xf(x) = 0.

First, given Wi, each firm i chooses quantity x∗i that maximizes her perceived utility.
This leads to:

ᾱ− h
(
xi +

∑
j gijxj

Wi

)
− xi
Wi

h′
(
xi +

∑
j gijxj

Wi

)
= c.

Second, Definition 2(ii) requires that quantity choices are consistent at a PCE by im-
posing that

Wi =
x∗i +

∑
j gijx

∗
j∑

j x
∗
j

.

By plugging this value in the FOC above, we obtain:

ᾱ− h (X∗)− x∗iX
∗

x∗i +
∑

j gijx
∗
j

h′ (X∗) = c.

or equivalently ∑
j

gijx
∗
j =

(
h(X∗) +X∗h′ (X∗)− ᾱ + c

ᾱ− c− h(X∗)

)
x∗i .

In matrix form, we have

Gx∗ =

(
h(X∗) +X∗h′ (X∗)− ᾱ + c

ᾱ− c− h(X∗)

)
x∗, and x∗ ∈ Rn

+ \ {0}.

It is easily verified that, when h(X) = X, we obtain the result with linear-demand (equation
(16)).
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D Additional results

D.1 Peer-confirming equilibria

Corollary D2. If the network (N,G) is a semi-connected network then there are at most
n peer-consistent equilibria, where n is the number of communities.

Proof of Corollary D2. If the network is semi-connected then the communities are
totally ordered: M1 �M2 � ... �Mn. Hence the number of PCE is equal to

Card

{
s = 1, ..., n : ρ(GMs) > max

k=1,...,s−1
ρ(GMk

)

}
.

�

Proposition D1. Let (N,G) be a weakly-connected network. The following are equivalent:

(i) The set of peer-consistent equilibria is finite.

(ii) For any pair (x1∗,x2∗) of peer-consistent equilibria, ρ
(
GN+(x1∗)

)
6= ρ

(
GN+(x2∗)

)
.

(iii) (N,G) is a generic network.

Proof of Proposition D1. (i)⇒ (ii) : suppose that (ii) does not hold. Then there exists
two PCE x1,x2 such that ρ(x1) = ρ(x2) =: ρ. For λ ∈ [0, 1] and define xλ := λx1+(1−λ)x2.
Then Xλ = X1 = X2. Hence

Gxλ = λGx1 + (1− λ)Gx2 = λρx1 + (1− λ)ρx2 =
cX

V − cX
xλ,

and xλ is a PCE. Thus there is a continuum of PCE, contradicting (i).
(ii) ⇒ (i) : this implication follows from the fact that the set of eigenvalues of subgraphs
of G is finite.
(ii) ⇒ (iii) : Suppose that (iii) does not hold. Then there exists M1,M2 such that
ρ(GM1) = ρ(GM ′1

), maxM ′∈C(G):M ′�M1 ρ(GM ′) < ρ(GM1) and maxM ′∈C(G):M ′�M2 ρ(GM ′) <
ρ(GM2). The last two strict inequalities mean that there exists a PCE with root M1, and
a PCE with root M2, contradicting (ii).
(iii) ⇒ (ii) : Assume that (ii) does not hold, and let M1 (resp. M2) be the root of x1

(resp. x2). Being both PCE, it follows that we have maxM ′∈C(G):M ′�M1 ρ(GM ′) < ρ(GM1)
and maxM ′∈C(G):M ′�M2 ρ(GM ′) < ρ(GM2), contradicting (iii).
Finally we obtain (i)⇔ (ii)⇔ (iii) and the proof is complete. �
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D.2 Policy interventions

D.2.1 Key players

Proposition D2. Consider the (linear) Tullock contest game. Let x∗ be the (unique)
asymptotically stable equilibrium of the generic network (N,G) and x̂∗ the (unique) asymp-
totically stable equilibrium of the generic network (N\{i},GN\{i}). Then, X̂∗ ≤ X∗.

Proof of Proposition D2. We have X∗ = V ρ(G)
c[1+ρ(G)]

and X̂∗ ≤ V ρ(GN\{i})

c[1+ρ(GN\{i}]
. By standard

results, ρ(G) ≥ ρ(GN\{i}). Hence X̂∗ ≤ X∗. �

D.2.2 Social mixing

Proposition D3. Consider the (linear) Tullock contest game. Let (N1,G1) and (N2,G2)
be two generic networks endowed with resources equal to V1 and V2, respectively. Let x1∗

(resp. x2∗) be the unique stable PCE of (N1,G1) (resp. (N2,G2)), with root M1 (resp.
M2).Let also (N,G) be the network obtained from (N1,G1) and (N2,G2) in which N =
N1 ∪N2, V = V 1 + V 2, with gij = 1 and gk` = 1 for some (i, `) ∈M1, (j, k) ∈M2. Then,
there is a unique stable PCE x∗ of (N,G) satisfying ρ(x∗) = ρ(G), and X∗ > X1∗ +X2∗.

Proof of Proposition D3. We have

X1 =
V 1

c

ρ(G1)

ρ(G1) + 1
; X2 =

V 2

c

ρ(G2)

ρ(G2) + 1
; X =

V 1 + V 2

c

ρ(G)

ρ(G) + 1

We have ρ(G) = ρ(M1 ∪M1) > max {ρ(G1), ρ(G2)}. Hence

X1 +X2 =
V 1

c

ρ(G1)

ρ(G1) + 1
+
V 2

c

ρ(G2)

ρ(G2) + 1

V 1 + V 2

c
<

ρ(G)

ρ(G) + 1
= X.

�
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E Beyond generic graphs
In this section we assume that G is a weakly connected directed graph satisfying the no
isolation assumption. As mentioned in the text, the PCE set can be infinite if we drop the
genericity assumption.

E.1 Structure of the equilibrium set

We say that two distinct communities M1 and M2 are disconnected if neither M1 � M2

nor M2 �M1.

Proposition E4. Let x∗ be a PCE. Then, there exists a family of pairwise disconnected
communities {Mi}i=1,...,n such that

N+(x∗) = ∪ni=1M̄i. (E.1)

Proof of Proposition E4. Since N+(x∗) is a closed set of G, we have that x∗ is a positive
eigenvector of GN+(x), associated to eigenvalue ρ > 0. By Lemma A4, that implies that
GN+(x) is strongly nonnegative, and thus can be written

GN+(x) =



A1 A12 ... ... ... ... ... A1r

0 A2 A23 ... ... ... ... A2r

... ... ... ... ... ... ... ...
0 ... 0 As Ass+1 ... ... Asr
0 ... ... 0 As+1 0 ... 0
... ... ... ... ... ... ... ...
0 ... ... ... ... 0 Ar−1 0
0 ... ... ... ... ... 0 Ar


(E.2)

where r > s, ρ(Ar) = ... = ρ(As+1) = ρ, and ρ(Ai) < ρ for i = 1, ..., s. Each As+i being
such that |Vs+i| ≥ 2 for i = 1, ..., r − s, we have Vs+i ∈ C(G). Hence, taking n := r − s,
there exists M1, ...,Mn ∈ C(G) such that As+i = GMi

for i = 1, ..., n.
We now show that N+(x∗) = ∪ni=1M̄i. Since N+(x∗) is closed and Mi ⊂ N+(x) we have
M̄i ⊂ N+(x∗). Hence ∪ni=1M̄i ⊂ N+(x). Now pick j ∈ N+(x∗). By property (ii) of
the Frobenius normal form (see Definition A3), there exists some i ∈ {1, ..., n} such that
j ⇒Mi, meaning that j ∈ M̄i. This concludes the proof. �

Proposition E5. Let (Mi)i=1,...,n be a family of pairwise disconnected communities. There
exists a peer-consistent equilibrium (PCE) x∗ with N+(x∗) = ∪ni=1M̄i if and only if

ρ (GM1) = ... = ρ (GMn) > max
i=1,...,n

max
M ′∈C(G): M ′�Mi

ρ (GM ′) . (E.3)
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Proof of Proposition E5. The Frobenius normal form of G∪ni=1M̄i
can be written as

G∪ni=1M̄i
=



A1 A12 ... ... ... ... ... A1s+n

0 A2 A23 ... ... ... ... A2s+n

... ... ... ... ... ... ... ...
0 ... 0 As Ass+1 ... ... Ass+n
0 ... ... 0 GM1 0 ... 0
0 ... ... .... ... ... ... ...
0 ... ... ... ... 0 GMn−1 0
0 ... ... ... ... ... 0 GMn


. (E.4)

By Lemma A4, this matrix admits a positive eigenvector (and therefore there exists a PCE
x∗ such that N+(x∗) = ∪ni=1M̄i) if and only if

ρ (GM1) = ... = ρ (GMn) > max
i=1,...,s

ρ(Ai).

Note that V = ∪i=1,...,sVi is a closed set and thus

{M ′ ∈ C(G) : M ′ ⊂ V } = {M ′ ∈ C(G) : M ′ �Mi for some i = 1, ..., n}.

Hence
max
i=1,...,s

ρ(Ai) = ρ (GV ) = max
i=1,...,n

max
M ′∈C(G): M ′>Mi

ρ (GM ′)

This concludes the proof. �

In full generality, even if the set of peer-confirming equilibria is no longer finite, we can
still describe it in a simple way; it is always a finite union of convex sets. Recall that the
set of simple equilibria is finite: there is at most one PCE with root M , for M ∈ C. Let
{ρ1, ..., ρP} be the set of positive eigenvalues of G. The set of simple equilibria can be
written as

P⋃
p=1

Sp, where Sp := {x∗ : x∗ is a simple PCE with root M such that ρ(GM) = ρp} ,

Proposition E6. Given any network G the set of peer-consistent equilibria can be written
as

PCE =
P⋃
p=1

Λp,

where Λp is the convex polytope generated by Sp: Λp = Conv (Sp).

Proof of Proposition E6. We first show that
⋃P
p=1 Λp ⊂ PCE. It amounts to showing

that, if Sp = {x1, ...,xn}, and λ1, ..., λp are nonnegative numbers that sum to one then
x :=

∑
j=1 λjx

j is a PCE. We have

Gx =
n∑
j=1

λjGxj =

p∑
j=1

λjρpx
j = ρpx.
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Moreover X =
∑

i xi =
∑

i

∑n
j=1 λjx

j
i =

∑n
j=1 λj

∑
i s
j
i =

∑n
j=1 λj

ρp
ρp+1

= ρp
ρp+1

. Hence
ρp = cX

V−cX and this concludes this implication.

We now turn to the other inculsion. Let x be a PCE. Then, by Proposition E5, there
exists p ∈ {1, ..., P} and a family of pairwise disconnected communities {Mi}i=1,...,n such
that N+(x) = ∪ni=1M̄i, and ρ (GMi

) = ρp > maxM ′�Mi
ρ (GM ′) , ∀i = 1, ..., n. Call xi the

simple equilibrium with root Mi, for i = 1, ..., n. We first define the following objects:

M̃i := M̄i \
(
∪j 6=iM̄j

)
; M̃ := ∪ni=1M̄i \

(
∪ni=1M̃i

)
; λi :=

∑
j∈M̃i

xj∑
i∈M̃i

xij
.

Note that, by construction, the family
{
M̃, M̃1, ..., M̃n

}
constitutes a partition of ∪ni=1M̄i.

Call Ai := GM̃i
and A := GM̃ . Then we can write

G∪ni=1M̄i
=


A B1 ... ... Bn

0 A1 0 ... 0
... ... ... ... ...
0 ... 0 An−1 0
0 ... ... 0 An


Be aware that this is not a Frobenius normal form because matrices A and Ai are in
general not irreducible. However we know the following: ρ(Ai) = ρp for i = 1, ..., n and
ρ(A) < ρp. Moreover, for j = 1, ..., p, xi|M̃i

is, by definition, a positive eigenvector of matrix
Ai. This is also true for x|M̃i

. The Frobenius normal form of Ai verifies the conditions of
Lemma B8, (As+1 corresponding here to Mi). As a result x|M̃i

and xi|M̃i
are proportionnal:

x|M̃i
= αix

i
|M̃i
. (E.5)

Since x|∪ni=1M̄i
is an eigenvector of G∪ni=1M̄i

associated to ρp we have

ρpx|M̃ = Ax|M̃ +
n∑
i=1

Bix|M̃i
,

and thus, since I− ρ−1
p A is invertible,

ρpx|M̃ =
(
I− ρ−1

p A
)−1

n∑
i=1

Bix|M̃i
=
(
I− ρ−1

p A
)−1

n∑
i=1

αiBix
i
|M̃i
.

On the other hand xi|M̃∪M̃j
is an eigenvector of G|M̃∪M̃j

associated to ρp. Hence

ρpx
i
|M̃ = Axi|M̃ + Bix|M̃i

,

that is,
ρpx

i
|M̃ =

(
I− ρ−1

p A
)−1

Bix|M̃i
.
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Finally we get

ρpx|M̃ =
n∑
i=1

αiρpx
i
|M̃i
,

i.e. x|M̃ =
∑n

i=1 αix
i
|M̃i

. Combining this equality with (E.5) and the fact that xm|M̃i
= 0

when i 6= m, we obtain that

x =
n∑
i=1

αix
i

Now x and xi being all associated to the same eigenvalue ρp we necessarily have X = X i =
ρp
ρp+1

for i = 1, ..., n. As a result
∑n

i=1 αi = 1 and this concludes the proof. �

Remark E1. When G is a generic network, then every component is degenerate, i.e., they
reduce to a singleton. In full generality, in a given component, the largest eigenvalue of the
subgraph of active players is invariant.

E.2 Example

We illustrate this in the following example for the linear Tullock contest game.

Example E1. Non-finiteness of equilibria

Figure E1: Infinite set of PCE in a non generic network

2

3

1

5

4

Consider the network (N,G) in Figure E1 with N = {1, 2, · · · , 5}. Both M1 = {2, 3},
and M2 = {4, 5} are �-maximal communities. Moreover we have ρ(GM1) = ρ(GM2) = 1.
Consequently, the set of peer-consistent equilibria is not finite since the network is non
generic. More precisely:

PCE =

{
V

12c
(1, λ, λ, 1− λ, 1− λ) : λ ∈ [0, 1]

}
.

�
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