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Abstract

There is a large body of evidence that decision makers frequently depart from Bayesian

updating. This paper introduces a model, robust maximum likelihood (RML) updating, where

deviations from Bayesian updating are due to multiple priors/ambiguity. The primitive of the

analysis is the decision maker’s preferences over acts before and after the arrival of new infor-

mation. The main axioms characterize a representation where the decision maker’s probability

assessment can be described by a benchmark prior, which is reflected in her ex ante ranking of

acts, and a set of plausible priors, which is revealed from her updated preferences. When new

information is received, decision makers revise their benchmark prior within the set of plausible

priors via the maximum likelihood principle in a way that ensures maximally dynamically con-

sistent behavior, and update the new prior using Bayes’ rule. RML updating accommodates

most commonly observed biases in probabilistic reasoning.
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1 Introduction

How do decision makers (DMs) update their beliefs when they receive new information? The

answer to this question is critical in economic models and policy analyses where one tries to predict

the consequence of releasing new information to market participants. The standard assumption

in economics is that beliefs are updated using Bayes’ rule. However, there is a large body of

experimental and empirical evidence which shows that decision makers frequently deviate from

Bayesian updating. For example, many decision makers tend to underweight base rates (base rate

neglect), ignore informative signals (conservatism), interpret contrary evidence as supportive of

their original beliefs (confirmation bias).1 This paper introduces a model where deviations from

Bayesian updating are due to ambiguity/multiple priors. The model can accommodate previously

mentioned and other errors in probabilistic reasoning.

To illustrate how deviations from Bayesian updating can be related to multiple priors, consider

the thought experiment due to Ellsberg (1961) where a DM is told that an urn contains 30 red balls

and 60 blue or green balls in an unknown proportion. Let fR, fB, and fG stand for bets which yield

$100 if the ball drawn from the urn is red, blue, and green, respectively, and $0 otherwise. When

no further information is given, many decision makers are indifferent between these bets, which is

consistent with the prior that assigns equal probability to all colors.2

Now suppose the experimenter draws a ball from the urn and conveys to the DM that the ball

is not green. How should the DM update her preferences given this information? In particular,

should she still be indifferent between fR and fB? There are two arguments that can be made.

First, following the principle of dynamic consistency, one can argue that since both fR and fB agree

on the payoff assigned to the unrealized event (green), the information that this event is ruled out

should not affect the original preference. Hence, indifference should be maintained ex post. On the

other hand, the information that the ball is not green may suggest that the number of blue balls in

the urn is greater than the number of green balls. Since there are only 30 red balls in the urn and

60 blue or green balls, one can also argue that fB should be preferred to fR ex post. This preference

1For a review of these findings, see, for example, Camerer (1995), Rabin (1998), Tversky (2004), and Benjamin
(2019).

2Ellsberg argued that most decision makers would prefer to bet on red rather than blue or green. While Ellsberg
style preferences are common, many experimental findings show that a significant number of decision makers are
ambiguity neutral (see Binmore, Stewart, and Voorhoeve, 2012; Charness, Karni, and Levin, 2013; Stahl, 2014). In
this paper, I consider both ambiguity neutral and ambiguity averse decision makers.
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is incompatible with dynamic consistency, which is the key implication of Bayesian updating.

The intuition that decision makers may not perform Bayesian updating when they face am-

biguity is confirmed by experiments and observations of practitioners’ behavior. For example, in

a similar dynamic Ellsberg experiment, Dominiak, Duersch, and Lefort (2012) find that a signifi-

cant number of decision makers whose behavior can be characterized as ambiguity neutral are not

Bayesian. In addition, many statistical tools used in practice (e.g. maximum likelihood estima-

tion, hypothesis testing, etc.) are non-Bayesian even though conceivably many statisticians, and

scientists in general, may be ambiguity neutral.

Most existing models tie the DM’s ambiguity attitude (rather than ambiguity) to her response

to new information, which forces an ambiguity neutral DM to update her beliefs using Bayes’

rule. This is not only inconsistent with the intuition and observations described above but also

unnatural as ambiguity attitude and belief updating are distinct concepts. The model proposed

in this paper allows the DM depart from Bayesian updating when she faces ambiguity even if her

attitude towards ambiguity is neutral.

I adopt a dynamic version of the classical Anscombe and Aumann (1963) setup. Let Ω be a

finite set of states, and denote by ∆(Ω) the set of all probability measures on Ω. An event is a

member of A, which is the collection of all subsets of Ω. The set of prizes (e.g. monetary payments)

is a convex subset of a metric linear space, and an act is a function that assigns a prize to each

state of the world.

The primitive of the analysis is a collection of preferences {<A}A∈A where <A represents the

DM’s preference over acts when she learns that event A occurs. The preference when the DM

receives no information is <Ω, which, for simplicity, is denoted by <. The main axioms in this

paper characterize a representation where the DM is endowed with a benchmark prior π ∈ ∆(Ω),

revealed from ex ante preferences <, and a set of plausible priors N(π), revealed from updated

preferences <A. For example, in the Ellsberg experiment the benchmark prior may assign equal

probability to all colors, while any prior that assigns 1/3 probability to red is plausible. The

benchmark prior π is interpreted as the DM’s initial best guess where π ∈ N(π).

The axioms yield a novel updating rule, robust maximum likelihood (RML) updating, which

can be described by two stages. In the first stage, the DM performs maximum likelihood updating

within the set of plausible priors. That is, when the DM learns that an event A occurs, she restricts
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her attention to the subset of plausible priors which maximize the likelihood of this event. This set

is denoted by

NA(π) = arg max
π′∈N(π)

π′(A).

Next, the DM chooses a new benchmark prior that induces maximally dynamically consistent

behavior among all priors in NA(π) and updates it using Bayes’ rule. Maximal dynamic consistency

ensures that the DM stays as “close” to her original benchmark prior as possible. A similar idea is

also used in robust control literature where the benchmark prior π is treated as an “approximating

model” that is not fully trusted, and models “further away” from π are seen as less appealing (see

Hansen and Sargent, 2001; Strzalecki, 2011). When there is no ambiguity (i.e. N(π) is a singleton),

RML updating reduces to Bayesian updating.

To illustrate how RML updating can accommodate a strict preference for fB over fR after the

realization that the ball drawn from the Ellsberg urn is not green, let π, π′, π′′ ∈ N(π) where π is

the benchmark prior, and π′ and π′′ represent two plausible priors when there are no green and

blue balls in the urn, respectively.

Red Blue Green

π 1/3 1/3 1/3

π′ 1/3 2/3 0

π′′ 1/3 0 2/3

When the DM learns that the ball drawn from the urn is not green, maximum likelihood updating

implies NA(π) = {π′}. The DM endowed with π′ as her posterior prefers fB over fR.

RML updating provides explanations for most commonly observed biases in probabilistic reason-

ing. For example, consider confirmation bias, which is the tendency to interpret contrary evidence

as supportive of original beliefs (see, for example, Rabin and Schrag, 1999, and references therein).

Let S = {s1, s2} be the set of payoff-relevant states, and denote by Σ = {σ1, σ2} the set of signals.

Suppose the DM assesses s1 to be more likely than s2, and σi is considered more likely than σj when

the payoff-relevant state is si. The joint state space Ω and the benchmark prior π are illustrated

below where µ > 1/2 and α > 1/2. A decision maker who displays confirmation bias assigns a

higher probability to s1 than a Bayesian agent with the prior π after observing σ2.
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s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

State Space Ω

s1

s2

σ1 σ2

µα µ(1− α)

(1− µ)(1− α) (1− µ)α

Benchmark Prior π

Imagine that the decision maker is not fully confident in the link between s1 and the signals

given by her benchmark prior and finds it plausible that the true information structure is given

by π′ (illustrated below) where α′ < α. For example, the DM might find it plausible that there is

a “bias” in the information source that is potentially unfavorable towards the state she originally

finds more likely (i.e. the state s1). Now suppose the DM observes the realization σ2. Notice that

under the benchmark prior the probability of observing σ2 is µ + α − 2µα. On the other hand,

under the alternative plausible prior the probability of observing σ2 is µ + α − µα − µα′. Hence,

after observing σ2 the DM performing maximum likelihood updating may change her benchmark

prior from π to π′. This will result in a behavior that is consistent with confirmation bias.

s1

s2

σ1 σ2

µα′ µ(1− α′)

(1− µ)(1− α) (1− µ)α

Alternative Plausible Prior π′

An important question is whether one can identify the benchmark prior π and the set of plausible

priors N(π) from preferences. The identification of π from ex ante preferences can be done as in

Anscombe and Aumann (1963). To illustrate how N(π) can be identified, I first distinguish between

unambiguous and ambiguous events. An event is unambiguous if there is full agreement among all

plausible priors on its likelihood.3 Otherwise, it is ambiguous. A prior is considered plausible if

and only if it agrees with the benchmark prior on the likelihood of all unambiguous events.

Since the main axioms in this paper imply subjective expected utility (SEU) preferences, most

existing approaches in the literature do not help us identify unambiguous events from preferences.4

3Several papers have provided a behavioral definition for unambiguous events. Epstein and Zhang (2001), Zhang
(2002), and Gul and Pesendorfer (2014) define unambiguous events to be the ones which satisfy some versions of
Savage’s Sure Thing Principle. Ghirardato, Maccheroni, and Marinacci (2004) argue for a “relation based” approach
and provide a definition for an act to be unambiguously preferred to another act.

4To be more precise, most existing approaches use only ex ante preferences to reveal ambiguity (see Epstein, 1999;
Ghirardato and Marinacci, 2002). Hence, using the standard terminology, the DM whose ex ante preferences satisfy
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A novelty in this paper is that unambiguous events are identified by comparing ex ante and ex post

preferences. To see how this can be done, notice that the DM may not satisfy dynamic consistency

when an ambiguous event is realized, as illustrated by the Ellsberg example. Dynamic consistency

requires that if two acts f , g agree outside an event E and f is ex ante preferred to g, then f must

still be preferred to g when E is realized. Formally, f(ω) = g(ω) for all ω ∈ Ec and f < g imply

f <E g. Since all plausible priors agree on the likelihood of unambiguous events, preferences are

expected to satisfy dynamic consistency when an unambiguous event occurs. More importantly,

consider an event B ⊇ E where E is unambiguous. Since E is unambiguous and f, g agree on B\E,

one also expects that the DM’s ex ante preference between f and g should be preserved when B

is realized. According to this observation, E is defined to be perfectly dynamically consistent if for

any two acts f , g that agree on Ec and any event B ⊇ E, f is ex ante preferred to g if and only if

f is preferred to g when B is realized.

To identify N(π) from preferences, I first define an event E to be unambiguous when both E

and Ec are perfectly dynamically consistent. The set N(π) consists of all probability measures on

Ω which agree with the benchmark prior π on the likelihood of all unambiguous events. In the

Ellsberg example, if the DM is indifferent between fR and fB ex ante but strictly prefers fB to fR

when she is told that the ball drawn from the urn is not green, the definition implies that both

{R,B} and {G} are ambiguous events, and hence there are multiple plausible priors which differ

on the likelihood of these events.

The axioms imposed on {<A}A∈A ensure that both π and N(π) can be identified. In addition

to SEU axioms and standard axioms relating ex ante and ex post preferences, two main axioms

weakening dynamic consistency are imposed. Consider a minimal unambiguous event E, i.e. any

nonempty D ( E is ambiguous. The first main axiom, robust inference, requires that the DM’s

ex ante willingness to bet on E is identical to her willingness to bet on E when D ( E is ruled

out. This reflects the DM’s cautious attitude when she updates her prior. Since the DM knows the

likelihood of unambiguous events but can only guess the likelihood of ambiguous events, when the

DM receives new information, she wants her posterior not to differ too much from her benchmark

prior on unambiguous events.

SEU axioms can be characterized as ambiguity neutral. The main difference in this paper is that an ambiguity neutral
DM may still have multiple priors which will be reflected in ex post preferences even though it is not reflected in ex
ante preferences.
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The second main axiom, consistency, states that every D ( E is a perfectly dynamically consis-

tent event whenever E is a minimal unambiguous event. As stated earlier, when E is unambiguous

both E and Ec must be perfectly dynamically consistent. On the other hand, consistency requires

that an ambiguous event D ( E is perfectly dynamically consistent. Hence, by definition, the

realization of Dc must lead to a violation of perfect dynamic consistency. The intuition for this

axiom is that when D ( E is realized, the DM does not learn any new information that can

help her make an inference regarding the relative likelihoods of the states within D. To illustrate,

consider a DM who is told that an urn contains 25 red (R) balls and 75 blue (B), green (G), or

yellow (Y) balls in an unknown proportion. Here, {B,G, Y } is a minimal unambiguous event that

is known to occur with 0.75 probability, and hence the axiom implies that the DM’s preferences

are dynamically consistent when, for example, {B,G} is realized. This is because the information

that {B,G} has occurred does not say anything regarding the relative proportion of blue and green

balls. Therefore, fB < fG if and only if fB <{B,G} fG.

This paper lies in the intersection of the literature on non-Bayesian updating and updating

under ambiguity. The two most closely related papers are Gilboa and Schmeidler (1993) and

Ortoleva (2012). Maximum likelihood updating was introduced by Gilboa and Schmeidler (1993)

as a dynamic extension of the maxmin expected utility model. In their model, a DM endowed with

a set of priors evaluates acts according to their minimal expected utility, where the minimum is

taken over all priors in this set, and the DM performs maximum likelihood updating to revise the

set of priors when she receives new information. In Gilboa and Schmeidler (1993), a DM whose

behavior is consistent with the subjective expected utility model must follow Bayes’ rule. On the

other hand, I allow the DM to deviate from Bayesian updating when she faces ambiguity even

if she is ambiguity neutral and also show how violations of dynamic consistency can be used to

identify the set of priors she considers plausible. The second representation in this paper which has

ambiguity averse decision makers is a special case of Gilboa and Schmeidler (1993).

Ortoleva (2012) axiomatizes a novel updating rule, the Hypothesis Testing (HT) model. In his

model, the DM follows Bayes’ rule for “normal” events but deviates from Bayesian updating when

an “unexpected,” small probability event occurs. In addition to allowing deviations from Bayesian

updating, the HT model also imposes a structure on belief updating when a zero probability event

occurs, which is not the case in RML updating. On the other hand, the HT model has two
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assumptions that are more general than RML updating: (i) the HT model imposes no structure on

the set of priors the DM considers, whereas in RML updating every plausible prior must agree with

the benchmark prior on unambiguous events, (ii) in the HT model any subjective second-order

prior over the set of priors is allowed, while in RML updating it is uniform. In addition, when

every state is non-null, as is the case in this paper, the HT model imposes almost no restriction

on posteriors, and hence it is significantly more general than RML updating. Due to its generality,

the HT model does not have the uniqueness properties of RML updating. In RML updating, both

the benchmark prior and the set of plausible priors can be uniquely identified from preferences.

The paper proceeds as follows. Section 2 introduces the updating rule. In Section 3, I take the

DM’s ex ante and ex post preferences over acts as the primitive and provide a set of behavioral

postulates that characterize the updating rule. Section 4 illustrates how the model can explain

many well-known biases in probabilistic reasoning. In Section 5, I extend the model to allow for

ambiguity averse preferences. Section 6 provides additional discussion on related literature. Section

7 concludes. Appendix includes all the proofs omitted from the main text.

2 Updating Rule

Let Ω be a finite set of states, and denote by ∆(Ω) the set of all probability measures on Ω.

The collection of all subsets of Ω (i.e. events) is denoted by A. The decision maker’s probability

assessment is characterized by (π,P) where π ∈ ∆(Ω) is her benchmark prior and P is a partitioning

of Ω that represents the collection of minimal unambiguous events. That is, for any P ∈ P, the

DM assesses that its likelihood is given by π(P ), and for any nonempty D ( P , the likelihood

assigned by π reflects the DM’s best guess. Since π is a probability measure, any arbitrary union

of the events in P is unambiguous. A prior is plausible if it agrees with the benchmark prior on

unambiguous events. The set of all plausible priors NP(π) is

NP(π) = {π′ ∈ ∆(Ω)| π′(P ) = π(P ) for all P ∈ P}.

The set NP(π) is uniquely defined, given the benchmark prior and the collection of minimal unam-

biguous events. Throughout this paper, I will maintain the assumption that π has full support.
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Suppose the DM learns that event A ∈ A is realized. In the model belief updating can be

described by two stages. In the first stage, the DM restricts her attention to the subset of plausible

priors that maximize the likelihood that A occurs. Let NP,A(π) denote this set. Formally,

NP,A(π) = arg max
π′∈NP (π)

π′(A). (1)

Next, the DM chooses a new benchmark prior from NP,A(π) and updates it using Bayes’ rule.

Note that when event A is realized, the new collection of minimal unambiguous events becomes

{A∩P |P ∈ P}. I will require that the benchmark posterior πA preserves the relative likelihood of

any two states within each event in the new set of minimally unambiguous events:

πA(ω)

πA(ω′)
=
π(ω)

π(ω′)
whenever ω, ω′ ∈ A ∩ P for some P ∈ P. (2)

For example, if π ∈ NP,A(π), then condition 2 ensures that the DM’s posterior is the same as

the Bayesian posterior. This is desirable, since the DM has no reason to change her benchmark

prior if it maximizes the likelihood of observing the realized event. As shown in Proposition 2,

condition 2 is equivalent to requiring that among all Bayesian posteriors of the priors in NP,A(π)

the posterior πA is the “closest” to the Bayesian posterior of π, where closeness is defined in terms

of Kullback-Leibler divergence.

Given a probability assessment (π,P), the posterior πA is uniquely defined, and it is potentially

distinct from the Bayesian posterior, which is denoted by π(·|A). The next proposition illustrates

the connection between the posterior πA and the benchmark prior π.

Proposition 1. Let (π,P) stand for the DM’s probability assessment. For any A ∈ A and ω ∈ A,

the posterior πA obtained via equations 1 and 2 satisfies

πA(ω) = π(ω|A ∩ Pω) · π(Pω|
⋃
P∈P:A∩P 6=∅P ) (3)

where Pω is the member of P that contains ω.

Proof. Notice that for any π′ ∈ NP,A(π), π′(A∩P ) = π(P ) for all P ∈ P with A∩P 6= ∅. Since πA

is the Bayesian posterior of some π′ ∈ NP,A(π), for any P, P ′ ∈ P that have nonempty intersections
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with A,

πA(P )

πA(P ′)
=
π′(P |A)

π′(P ′|A)
=
π′(A ∩ P )

π′(A ∩ P ′)
=
π(P )

π(P ′)
.

This together with equation 2 show that the posterior πA satisfies equation 3.

Definition 1. Given a probability assessment (π,P), the robust maximum likelihood (RML)

updating rule assigns every event A ∈ A the posterior πA given by equation 3.

The RML updating rule reflects the DM’s awareness of potential inaccuracy of her benchmark

prior on ambiguous events, which necessitates a revision of the benchmark prior when new infor-

mation is received, and her willingness to stay as “close” to her benchmark prior as possible. If

all events are unambiguous (i.e. P is the collection of singletons), RML and Bayesian updating

coincide. The next proposition provides an alternative representation for the updating rule which

formalizes this intuition.

Proposition 2. Let (π,P) be a probability assessment. Denote by π(·|A) the Bayesian posterior

of π when an event A ∈ A occurs. Then, πA is the RML posterior of π if and only if

πA = arg min
π′A∈B(NP,A(π))

DKL(π(·|A) || π′A)

where

DKL(π(·|A) || π′A) = −
∑
ω∈A

π(ω|A) ln
( π′A(ω)

π(ω|A)

)
and B(NP,A(π)) is the set of Bayesian posteriors of the priors in NP,A(π).

To illustrate the RML updating rule, consider the Ellsberg experiment where the DM is told

that an urn contains 30 red (R) balls and 60 blue (B) or green (G) balls in an unknown proportion.

Let (π,P) stand for the DM’s probability assessment and suppose the benchmark prior π assigns

equal probability to all colors. According to the information given to the DM, the collection of

minimal unambiguous events is P = {{R}, {B,G}}, and the set of plausible priors NP(π) is

NP(π) = {π′ ∈ ∆({R,B,G})| π′(R) = 1/3}.

Suppose the experimenter draws a ball from the urn and tells the DM that the ball is not green.
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In this case, the plausible prior that assigns zero probability to green maximizes the likelihood of

the observation. Therefore, the RML posterior π{R,B} is

π{R,B}(R) = 1/3, π{R,B}(B) = 2/3, π{R,B}(G) = 0.

When the DM is told that the ball is not red, the first stage of RML updating imposes no restriction

on the posterior as all plausible priors agree on the event {B,G}. Hence, in this case the RML

posterior π{B,G} is the same as the Bayesian posterior:

π{B,G}(R) = 0, π{B,G}(B) = 1/2, π{B,G}(G) = 1/2.

3 Representation Theorem

Let X stand for the set of prizes which is assumed to be a convex subset of a metric linear space.

For example, X can be the set of monetary outcomes the agent may receive (X ⊆ R) or it can

be the set of all lotteries over a finite set of outcomes Z (the classical Anscombe and Aumann

(1963) setup). An act assigns a prize to each state of the world. The set of all acts is denoted

by F = XΩ. As is standard, constant acts are identified with X. A mixture of two acts is

defined statewise: i.e. for any f, g ∈ F and α ∈ [0, 1], the act αf + (1 − α)g ∈ F is given by

(αf + (1 − α)g)(ω) := αf(ω) + (1 − α)g(ω) for all ω ∈ Ω. For any event A ∈ A and f, g ∈ F ,

fAg ∈ F is defined by (fAg)(ω) = f(ω) if ω ∈ A and (fAg)(ω) = g(ω) if ω ∈ Ac.

I impose axioms on the collection of preferences {<A}A∈A where <A reflects the DM’s preference

over acts when she learns that A ∈ A is realized. The DM’s preference over acts when she receives

no information is <Ω, which is simply denoted by <. For notational simplicity, it is assumed that

the DM is indifferent between all acts when the impossible event occurs, i.e. f ∼∅ g for all f, g ∈ F .

The first three axioms are standard Weak Order, Archimedean, and Independence.

Axiom 1. (Weak Order) For any A ∈ A, <A is complete and transitive.

Axiom 2. (Archimedean) For any A ∈ A and f, g, h ∈ F such that f �A g �A h, there exist

α, β ∈ (0, 1) such that αf + (1− α)h �A g and g �A βf + (1− β)h.
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Axiom 3. (Independence) For any A ∈ A, if f �A g and α ∈ (0, 1], then αf + (1 − α)h �A

αg + (1− α)h for all h ∈ F .

Axiom 4 states that there exist best and worst alternatives and the DM is not indifferent between

them. The existence of best and worst alternatives is not necessary for the representation, but it

is assumed for the sake of convenience. The assumption that the DM is not indifferent between all

alternatives is necessary for the benchmark prior to be identified from preferences.

Axiom 4. (Nontriviality) There exist x∗ and x∗ such that x∗ � x∗ and x∗ < x < x∗ for all x ∈ X.

The next axiom states that if f assigns a better prize to every state of the world than g does,

then f must be preferred to g.

Axiom 5. (Monotonicity) For any A ∈ A, if f(ω) <A g(ω) for all ω ∈ Ω, then f <A g. If, in

addition, f is a constant act and f(ω) �A g(ω) for some ω ∈ A, then f �A g.

Axiom 5 also requires that if the prize associated with a constant act is replaced in some state

with a prize that is strictly worse, the DM considers the new act as strictly inferior. In addition to

guaranteeing that the utility function derived from preferences is state independent, Axiom 5 also

ensures that every state is assigned positive probability. Notice that by itself this axiom is weaker

than strict monotonicity, which requires that if f(ω) <A g(ω) for all ω ∈ Ω and f(ω) �A g(ω) for

some ω ∈ A, then f �A g. For example, if the DM evaluates acts according to their worst prize

on A, then Axiom 5 is still satisfied even though strict monotonicity is violated. In the presence of

previous axioms, Axiom 5 and strict monotonicity are equivalent.

The next axiom states that the ranking of two constant acts does not change when new infor-

mation is received. This is because the prize associated with a constant act is the same regardless

of the realized state and the utility of a prize is not affected by new information.

Axiom 6. (Constant Act Preference Invariance) For any A ∈ A\∅ and x, y ∈ X, x < y ⇔ x <A y.

Axiom 7 requires that when A is realized the DM must be indifferent between acts that agree on

A. This axiom is known as consequentialism. In the literature, deviations from consequentialism

are usually allowed to accommodate non-expected utility preferences (e.g. Machina, 1989) or to

model a decision maker with an imperfect understanding of the state space (e.g. Minardi and
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Savochkin, 2017). Since the main goal of this paper is to explore non-Bayesian updating when the

DM has expected utility preferences and perfect understanding of the state space, consequentialism

is retained in the representation.

Axiom 7. (Consequentialism) For any A ∈ A, if f(ω) = g(ω) for all ω ∈ A, then f ∼A g.

If, in addition to Axioms 1–7, one also assumes dynamic consistency, then belief updating must

be Bayesian (e.g. see Ghirardato, 2002).5 Dynamic consistency requires that if two acts agree

outside an event, then the ranking of these acts should not change when this event occurs. In other

words, this says that ex ante optimal plans must be optimal ex post. It can formally be stated as

follows.

Dynamic Consistency: For any non-null A ∈ A and f, g ∈ F , fAg < g ⇔ f <A g.6

Axioms 1–5 guarantee that the benchmark prior can be uniquely revealed from ex ante pref-

erences as in Anscombe and Aumann (1963). If the DM considers the benchmark prior as the

only plausible prior (i.e. no ambiguity), then dynamic consistency is natural. In contrast, if the

DM considers multiple priors plausible, it seems natural to revise the benchmark prior when new

information arrives. Since the new prior may be distinct from the original benchmark prior, pref-

erences may violate dynamic consistency. However, dynamic consistency should still be satisfied

when an unambiguous event is realized. This is because the realization of such an event is not

useful in distinguishing between plausible priors as all priors agree on the likelihood of these events,

and hence there is no reason for the DM to deviate from her benchmark prior. Therefore, every

unambiguous event must be dynamically consistent defined as below.

Definition 2. A ∈ A is dynamically consistent if for any f, g ∈ F , fAg < g ⇔ f <A g.7

5The connection between dynamic consistency and Bayesian updating is very general as shown in Epstein and
Le Breton (1993). They show that if conditional preferences are derived in a way to ensure dynamic consistency and
both ex ante and conditional preferences are “based on beliefs” (i.e. an event A is considered to be more likely than
B if the DM prefers to bet on A rather than B), then standard axioms (Savage (1954) axioms except the Sure Thing
Principle) guarantee that there exists a unique prior that represents beliefs and conditional beliefs are obtained using
Bayes’ rule.

6An event is null if the DM assigns it zero probability. Behaviorally, A is null if the DM is indifferent between
any two acts that agree outside it: A is null if f ∼ g for any f, g ∈ F such that f(w) = g(w) on Ac. Axiom 5 ensures
that the only null event is ∅.

7Notice that dynamic consistency is a feature of preferences, not events. However, I use this terminology for the
sake of brevity. Also note that ∅ is a dynamically consistent event by this definition, since we assumed that f ∼∅ g
for all f, g ∈ F . This only plays a role in simplifying the notation.
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Suppose the analyst observes that the DM’s preferences are dynamically consistent upon real-

ization of an event. Can the analyst conclude that the DM considers this event as unambiguous?

I provide an example which shows that this conclusion may not be accurate and then define a

stronger version of dynamic consistency that captures unambiguous events.

Example 1. Consider a DM who is told that an urn contains 50 red or blue balls and 50 green or

yellow balls in unknown proportions. Let Ω = {R,B,G, Y } where R, B, G, and Y stand for states

when the ball drawn from an urn is red, blue, green, and yellow, respectively. The set of plausible

priors is

{π′ ∈ ∆({R,B,G, Y })| π′(R) + π′(B) = π′(G) + π′(Y ) = 1/2}.

When no further information is given, the DM may choose her benchmark prior as the one

that assigns equal probability to all colors. Now suppose that a ball is drawn from the urn and the

DM is told that the ball is either blue or green. This information does not favor either blue or

green relative to the original information. Hence, it makes sense to assume that the benchmark

posterior also assigns equal probability to blue and green. But then the event {B,G} is dynamically

consistent. On the other hand, given the set of plausible priors, it is not possible to tell the exact

probability that {B,G} occurs.

In Example 1, even though {B,G} is a dynamically consistent event, it is still possible that

{B,G} is ambiguous. Consider two bets fB = (0, 100, 0, 0) and fG = (0, 0, 100, 0). If the DM’s

benchmark prior and posterior are as in the example, it must be that fB ∼ fG and fB ∼{B,G} fG.

Now suppose before learning that the ball drawn from the urn is either blue or green, the DM first

learns that the ball is not yellow. The information that the ball is not yellow may suggest that the

number of green balls in the urn is greater than the number of yellow balls. Since this information

does not say anything regarding the relative proportion of red and blue balls, there is no reason for

the DM to deviate from her original evaluation of the relative likelihood of R and B. But then the

DM strictly prefers fG over fB when she learns that the ball is not yellow. Hence, fG �{R,B,G} fB

even though fB ∼{B,G} fG and fB and fG agree on {R}. This would not be expected if {B,G}

was unambiguous.

This example motivates a new definition that captures unambiguous events via a stronger

version of dynamic consistency
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Definition 3. A ∈ A is perfectly dynamically consistent if for any event B ⊇ A and f, g ∈ F ,

fAg <B g ⇔ f <A g.

For a Bayesian decision maker, every event should be perfectly dynamically consistent. Indeed,

perfect dynamic consistency is implicitly assumed in the previous characterizations of Bayesian

updating as {<A}A∈A satisfies dynamic consistency only if every non-null event is perfectly dy-

namically consistent.8

Example 1 illustrates that when {<A}A∈A does not satisfy dynamic consistency, there may be

events that are dynamically consistent but not perfectly dynamically consistent. Since unambiguous

events are expected to be perfectly dynamically consistent and it is possible to find a violation

of perfect dynamic consistency for ambiguous events as in Example 1, an event is defined to be

unambiguous if the event as well as its complement are perfectly dynamically consistent. The reason

for requiring the complement to be perfectly dynamically consistent comes from the observation

that the complement of an unambiguous event must be unambiguous.

Definition 4. E is an unambiguous event if both E and Ec are perfectly dynamically consistent.

The collection of all unambiguous events is denoted by E. An event that does not belong to E is an

ambiguous event.

The next axiom ensures that the collection of unambiguous events form an algebra. A collection

of events E is an algebra over Ω if (i) Ω ∈ E , (ii) E ∈ E implies Ec ∈ E , and (iii) E,E′ ∈ E implies

E ∩ E′ ∈ E .

Axiom 8. (Algebra of Unambiguous Events) If E,E′ ∈ E, then E ∩ E′ ∈ E.

Intuitively, this axiom requires the following. Suppose events E,Ec, E′, and E′c are perfectly

dynamically consistent so that both E and E′ are unambiguous. Let f and g be two acts which

agree outside E ∩E′. By the definition of perfect dynamic consistency, ex ante preference between

f and g must be preserved when the DM learns either B ⊇ E or B′ ⊇ E′. But then it makes sense

8To see this, suppose {<A}A∈A satisfies dynamic consistency. Let A ∈ A, B ⊇ A and f, g ∈ F be given. Dynamic
consistency implies that fAg < g ⇔ f <A g. On the other hand, since B ⊇ A, fAg = (fAg)Bg. Hence, dynamic
consistency also implies that fAg < g ⇔ (fAg)Bg < g ⇔ fAg <B g. Therefore, A is perfectly dynamically
consistent.
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to assume that ex ante preference between f and g must still be preserved when the DM learns

B and B′ simultaneously. Therefore, perfectly dynamically consistent events are expected to be

closed under intersection.

Since E is an algebra, there exists a unique partitioning of the state space that generates E .

A partition P of Ω generates the algebra E if E ∈ E ⇔ there exist P1, . . . , Pk ∈ P such that

P1 ∪ · · · ∪ Pk = E. Let PE denote the partition that generates E . The members of PE are minimal

unambiguous events, i.e. any nonempty D ( P where P ∈ PE is ambiguous. The next two axioms

rely on PE .

The following definitions will be useful for the statement of the next axiom.

Definition 5. 1. For any event A, a bet on A is an act fA that yields the best prize on A and

the worst prize outside A, i.e. fA = x∗Ax∗.

2. For any f ∈ F and A ∈ A, a certainty equivalent of f given A is a sure outcome

cA(f) ∈ X such that f ∼A cA(f).9

Since the DM knows the likelihood of unambiguous events but can only guess the likelihood of

ambiguous events, she may want her posterior not to differ too much from her benchmark prior

on unambiguous events. The next axiom, robust inference, reflects this cautious attitude when the

DM updates her benchmark prior. Consider a minimal unambiguous event P ∈ PE and let fP

denote a bet on P . Suppose A is realized, and hence A ∩ P is a new minimal unambiguous event.

Robust inference requires that the DM’s willingness to bet on P is not affected when D ( A ∩ P

is ruled out. That is, cA(fP ) ∼ cA\D(fP ). In other words, since D is a proper subset of a minimal

unambiguous event, when it is ruled out, the DM’s considers the plausibility that it was a null

event in the first place.

Axiom 9. (Robust Inference) For any A ∈ A and D ( A ∩ P where P ∈ PE ,

cA(fP ) ∼ cA\D(fP ).

In general, it is desirable if the DM’s preferences are dynamically consistent unless there is a

justifiable reason for deviation. The next axiom, consistency, requires that every D ( P , where P is

9The axioms stated so far and the assumption that X is convex guarantee that every act has a certainty equivalent.
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a minimal unambiguous event, is perfectly dynamically consistent. Since an event E is unambiguous

when both E and Ec are perfectly dynamically consistent and consistency requires an ambiguous

event D ( P to be perfectly dynamically consistent, the implication of the axiom is that Dc is not

perfectly dynamically consistent.

Axiom 10. (Consistency) Every D ( P where P ∈ PE is perfectly dynamically consistent.

Intuitively, when D ( P is realized, the DM does not learn any information that can help

her make an inference regarding the relative likelihoods of the states within D, and hence there

is no reason for the DM to deviate from her original evaluation. To illustrate, suppose the DM

is told that an urn contains 25 red (R) balls and 75 blue (B), green (G), or yellow (Y) balls in

an unknown proportion. Since {B,G, Y } is a minimal unambiguous event that is known to occur

with 0.75 probability, consistency requires that the DM’s preferences are dynamically consistent

when, for example, {B,G} is realized. This is because the information that {B,G} is realized does

not say anything regarding the relative proportion of blue and green balls, and hence there is no

justification for deviation from the benchmark prior. Therefore, if the DM is ex ante indifferent

between betting on blue and betting on green, she should remain indifferent when she learns that

the ball drawn from the urn is either blue or green.

The next theorem provides a characterization result for the RML updating model.

Theorem 1. The collection of preferences {<A}A∈A satisfies Axioms 1-10 if and only if there exist

a non-constant, affine utility function u : X → R with u(X) = [u(x∗), u(x∗)] and a probability

assessment (π,P), where π has full support on Ω, such that for any A ∈ A,

f <A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω)) (4)

and πA is the RML posterior of π. Moreover, u is unique up to a positive affine transformation,

πA is unique for all A ∈ A \ ∅, and P is uniquely revealed as PE unless P = {Ω, ∅}.

Sketch of the Proof

While showing the necessity of Axioms 1–7 is standard, the necessity of Axioms 8–10 is not trivial.

The key step in the proof is showing that if {<A}A∈A can be represented by equation 4, then the
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collection of minimal unambiguous events PE that is derived from preferences is exactly P unless

P = {Ω, ∅}. This is achieved by showing that an event belongs to the algebra generated by P if

and only if both this event and its complement satisfy perfect dynamic consistency. Once this is

shown, Axioms 8–10 directly follow from the representation.

The proof of the claim that when E belongs to the algebra generated by P both E and Ec are

perfectly dynamically consistent can be done using standard arguments. To prove the opposite,

suppose E does not belong to the algebra generated by P. As an illustration, suppose E ( P for

some P ∈ P. Since Axiom 10 is satisfied only if E is perfectly dynamically consistent, it needs

to be shown that Ec is not perfectly dynamically consistent. Consider bets on P and P \ E, i.e.

fP = x∗Px∗ and fP\E = x∗E(x∗Px∗). Using the representation in equation 4, it is possible to find

z̄, z ∈ X such that

fP =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼ z̄ and fP\E =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼

x∗ if ω ∈ E

z if ω ∈ P \ E

z if ω ∈ Ω \ P


where z̄ � z. Now suppose Ec is realized. From the representation, z̄ �Ec z ∼Ec x∗Ez. Since

πEc the RML posterior of π, z̄ ∼Ec fP ∼Ec fP\E . But then, fP\E = x∗E(x∗Px∗) �Ec x∗Ez, in

violation of dynamic consistency. Therefore, Ec is not perfectly dynamically consistent. This shows

that E is an ambiguous event, i.e. E /∈ E . The case when E ∩ P 6= ∅ and E ∩ P ′ 6= ∅ for at least

two distinct P, P ′ ∈ P is similar.

To prove sufficiency, first observe that Axioms 1–5 yield an SEU representation for each A ∈ A

as in Anscombe and Aumann (1963). Moreover, Axiom 6 guarantees that the same utility function

can be used for all <A, and Axioms 5 and 7 guarantee that πA has full support on A and πA(Ac) = 0.

Therefore, it only needs to be shown that each πA is the RML posterior of π. Let E be given by

Definition 4, and PE is the partition that generates E . The DM’s probability assessment is (π,PE).

Since preferences are dynamically consistent on E ∈ E , standard arguments show that updating is

Bayesian when E is realized, consistent with RML updating.

Consider an event A /∈ E . The next step is to construct an unambiguous event B ∈ E such

that B ⊇ A and B is the smallest such event with respect to set inclusion. To construct B, let
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PE = {P1, . . . , Pn} and consider J ⊆ {1, . . . , n} such that Pj ∩ A 6= ∅ for all j ∈ J . The event

B is given by B = ∪j∈JPj . Since B ∈ E , according to the previous paragraph, the DM performs

Bayesian updating when B is realized. Hence, for any j, j′ ∈ J ,

πB(Pj)

πB(Pj′)
=
π(Pj)

π(Pj′)
.

On the other hand, Axiom 9 implies that πA(Pj) = πA∪Pj (Pj) for all j ∈ J . Therefore, iterative

application of Axiom 9 yields πA(Pj) = πB(Pj) for all j ∈ J , which implies

πA(Pj)

πA(Pj′)
=
π(Pj)

π(Pj′)
.

Consider an event A∩Pj where j ∈ J . By Axiom 10, A∩Pj is perfectly dynamically consistent,

and hence standard arguments guarantee that πA∩Pj is the Bayesian posterior of π. Moreover,

perfect dynamic consistency also ensures that πA∩Pj (ω) = πA(ω|Pj) for all ω ∈ A ∩ Pj . Therefore,

for any ω, ω′ ∈ A ∩ Pj ,
πA(ω)

πA(ω′)
=
πA∩Pj (ω)

πA∩Pj (ω
′)

=
π(ω)

π(ω′)
.

This together with the conclusion of the previous paragraph and Proposition 1 show that πA is the

RML posterior of π, concluding the proof of sufficiency.

Lastly, the uniqueness of u up to a positive affine transformation and the uniqueness of πA for

each A ∈ A are standard results. The uniqueness of P is implied by the proof of necessity where

the equivalence of P and PE is shown.

4 Applications

In this section, I show how the RML updating rule can help explain commonly observed biases

in probabilistic reasoning. While all the examples in this section only use the first (maximum

likelihood) stage of RML updating, in more realistic examples with a larger state space the first

stage of RML updating by itself will not produce a unique posterior in general, and hence the

second stage of RML updating is needed to make meaningful predictions.

Let Ω ≡ S × Σ where S = {s1, s2} is the set of payoff-relevant states and Σ = {σ1, σ2} is the
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set of possible signals. The DM’s benchmark prior π is represented by two parameters (µ, α) where

µ > 1/2 is the probability that the payoff relevant state is s1 and α > 1/2 denotes the probability

that the DM receives signal σi when the payoff-relevant state is si. µ > 1/2 reflects the DM’s initial

evaluation that s1 is more likely.

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

State Space Ω

s1

s2

σ1 σ2

µα µ(1− α)

(1− µ)(1− α) (1− µ)α

Benchmark Prior π

4.1 Confirmation Bias

I now revisit the confirmation bias phenomenon illustrated in the introduction. The DM who

displays confirmation bias interprets contrary evidence as supportive of her original beliefs (Rabin

and Schrag, 1999). That is, when the DM observes σ2, she may find s1 to be at least as likely as

before.10 Formally,

πconf. bias(s1|σ2) ≥ µ > µ− µα
µ+ α− 2µα

= π(s1|σ2).

Confirmation bias is frequently reported in experiments (e.g. see Lord, Ross, and Lepper, 1979;

Darley and Gross, 1983).

To see how RML updating can accommodate confirmation bias, suppose the DM finds it plau-

sible that there is a “bias” in the information source that is potentially unfavorable towards the

state she originally finds more likely. Even though such a DM unambiguously knows the probability

that the payoff-relevant state is s1, the event that σi occurs when s1 is the payoff-relevant state is

ambiguous. Therefore, when the DM observes σ2, she revises her benchmark prior to account for

the possibility that σ2 might be more likely than σ1 when the payoff-relevant state is s1. Notice

that the DM might find the existence of a bias plausible even though it is not her benchmark

belief. Once the bias is seen as plausible, the DM is endowed with multiple priors and uses signal

realizations to distinguish between plausible priors.

10The milder version of confirmation bias states that after observing σ2 the agent finds s1 more likely than a
Bayesian agent with the prior π. RML updating can accommodate both the milder version of confirmation bias and
the more extreme version as illustrated in this section.
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To formalize the intuition, let P stand for the set of minimal unambiguous events in this

example, which is given by

P = {{ω11, ω12}, {ω21}, {ω22}}.

In RML updating, the DM uses the maximum likelihood method to make an inference regarding

the direction of the bias. Given the benchmark prior and the set of minimal unambiguous events,

the RML posterior πσ2 is

πσ2(s1) =
µ

µ+ α− µα
and πσ2(s2) =

α− µα
µ+ α− µα

Hence, the DM performing RML updating believes that s1 is strictly more likely than before when

she observes σ2, consistent with confirmation bias.

4.2 Other Behavioral Biases

I consider three other commonly observed deviations from Bayesian updating: base rate neglect,

conservatism, and overconfidence.

Base Rate Neglect: In a series of experiments, Kahneman and Tversky (1973) and Bar-Hillel

(1980) show that decision makers tend to ignore the base rate µ in their predictions. In the well-

known “cab problem,” DMs are told that there are two cab companies, Blue and Green, one of

which has been involved in a hit-and-run accident. The proportion of Blue cabs in the city is 85%,

and the cab involved in the accident was identified as Green by a witness who is accurate 80% of

the time. When DMs are asked to predict the probability that the car involved in the accident is

Green, the median and modal response is 0.8, much higher than the Bayesian posterior (≈ 0.41).

To see how RML updating can explain this phenomenon, imagine that the DM has full confi-

dence in the likelihood information α but does not have full confidence in the base rate µ. Even

when the DM does not have full confidence in the base rate, the event that consists of states in

which she gets “correct” signals is still unambiguous and known to occur with α = 0.8 probability.

Similarly, the event that corresponds to states in which she gets “wrong” signals is unambiguously

assigned 1−α = 0.2 probability. Given this set of minimal unambiguous events, the RML posterior

is exactly equal to the median response in the cab problem (see the figure below).
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Conservatism: DMs display conservatism bias when they overweight the base rate and un-

derweight the likelihood information (see Edwards, 1968, for the classical experimental findings).

RML updating results in conservatism bias when decision makers have full confidence in the base

rate information but not in the likelihood information. This is exactly the mirror image of the base

rate neglect phenomenon.

Overconfidence: Decision makers who treat their private information as more precise than

it actually is are described as overconfident (see Odean, 1998, for a review of psychology lit-

erature on overconfidence and its implications for asset markets). Suppose s1 = good market,

s2 = bad market, σ1 = good jobs report, and σ2 = bad jobs report. Overconfident investors tend

to over-invest when they observe good jobs report and under-invest when they observe bad jobs

report. RML updating results in overconfidence when the DM has full confidence in the likelihood

information but is not completely sure whether the “correct” signal is more likely when the state

is s1 or s2.

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Confirmation Bias

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Base Rate Neglect

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Conservatism

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Overconfidence

Figure 1: Behavioral biases. This figure illustrates partitions used to explain each behavioral bias.
States connected by a line belong to the same partition element.

5 Ambiguity Averse Preferences

In Section 3, ambiguity is reflected in the DM’s belief updating even though the DM’s preferences

display neutral attitude towards ambiguity. In this section, I consider an ambiguity averse DM

whose preferences are consistent with the maxmin expected utility model of Gilboa and Schmeidler

(1989).

An ambiguity averse DM is expected to satisfy all the axioms that characterize the subjective

expected utility model in Section 3 except independence and consistency. An ambiguity averse

DM may not satisfy independence due to strict preference for randomization, which may arise as
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randomization potentially limits exposure to ambiguity. In the Ellsberg example, the DM may

be indifferent between betting on blue (fB) and betting on green (fG) but may strictly prefer the

50-50 randomization of these bets, in violation of independence (see below). This is because the

50-50 randomization of fB and fG gives the DM the same monetary outcome regardless of whether

the ball drawn from the urn is blue or green, and hence it can be seen as a perfect hedge against

ambiguity.

fB

$0

$100

$0

∼ fG

$0

$0

$100

≺ 1
2fB + 1

2fG

$0

$50

$50

R

B

G

R

B

G

R

B

G

Figure 2: Preference for randomization due to ambiguity aversion.

To illustrate why an ambiguity averse DM may not satisfy consistency, recall the example where

the DM is told that an urn contains 25 red (R) balls and 75 blue (B), green (G), or yellow (Y)

balls in an unknown proportion. Here, {B,G, Y } is a minimal unambiguous events, and hence

consistency implies that {B,G} is dynamically consistent. Let f1 be the act that yields $100 if the

ball drawn from the urn is blue, and $0 otherwise. Let f2 be the act that yields $25 if the ball

drawn from the urn is either blue or green, and $0 otherwise. When the DM learns that {B,G} is

realized, she may have a strict preference for f2 over f1 as f2 perfectly hedges against ambiguity

but f1 does not. Should this DM have a strict preference for f2 over f1 ex ante as required by

consistency? This is not obvious because ex ante f2 is not a perfect hedge against ambiguity and

it has much lower expected value than f1 for many plausible priors.

In addition to the axioms in Section 3 except for independence and consistency, I impose two

new axioms on preferences that characterize RML updating for ambiguity averse DMs. Let E stand

for the collection of unambiguous events as in Definition 4, and PE is the collection of minimal

unambiguous events. Acts that are constant on minimal unambiguous events are unambiguous

acts.

Definition 6. f ∈ F is an unambiguous act if f(ω) = f(ω′) whenever ω, ω′ ∈ P for some

P ∈ PE . The set of all unambiguous acts is denoted by Fua ⊆ F .

Axiom 11 imposes independence on the set of all unambiguous acts. Since unambiguous acts
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have no exposure to ambiguity, strict preference for randomization between unambiguous acts

cannot be justified by ambiguity aversion.

Axiom 11. (Weak Independence) For any A ∈ A, f, g, h ∈ Fua and α ∈ (0, 1], f �A g implies

αf + (1− α)h �A αg + (1− α)h.

Weak independence is consistent with both ambiguity averse and ambiguity loving attitude.

The next axiom imposes that the DM is ambiguity averse.

Axiom 12. (Ambiguity Aversion) For any A ∈ A, D ( A ∩ P where P ∈ PE , and f ∈ F ,

x∗Df ∼A f .

Consider a minimal unambiguous event P and suppose A is realized. After this realization,

A ∩ P is a minimal unambiguous event, and hence D ( A ∩ P is ambiguous. Axiom 12 requires

that the DM is indifferent between an act f and an act which agrees with f outside D and yields

the best prize on D. This is an extreme attitude that completely disregards that in the second act

the DM receives the best prize when D occurs. This is due to two assumptions: (i) in the model,

every D ( A ∩ P is treated as maximally ambiguous, (ii) given the set of plausible priors, the DM

evaluates acts according to their worst case utility as in Gilboa and Schmeidler (1989).11

The next theorem provides a characterization for RML updating for ambiguity averse DMs.

Theorem 2. The collection of preferences {<A}A∈A satisfies Axioms 1, 2, 4-9, 11, and 12 if and

only if there exist a non-constant, affine utility function u : X → R with u(X) = [u(x∗), u(x∗)],

and a probability assessment (π,P), where π has full support on P, such that for any A ∈ A,

f <A g ⇔ min
πA∈B(NP,A(π))

∑
ω∈Ω

πA(ω)u(f(ω)) ≥ min
πA∈B(NP,A(π))

∑
ω∈Ω

πA(ω)u(g(ω)) (5)

where B(NP,A(π)) is the set of Bayesian posteriors of the priors in NP,A(π). Moreover, u is unique

up to a positive affine transformation, P is uniquely revealed as PE , and the set NP,A(π) is unique

for all A ∈ A \ ∅.

When the DM’s preferences are consistent with the maxmin expected utility model, the bench-

mark prior can no longer be identified from preferences. In fact, the only role of the benchmark

11A natural extension of the model analyzed here may impose a less extreme version of ambiguity aversion. For
example, the DM may perform maxmin within a subset of plausible priors rather than the full set. Analysis of such
extensions is left for future work.
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prior in Theorem 2 is to define the likelihood of unambiguous events. Since the DM uses the worst

case scenario to evaluate acts, even if she has a guess for the likelihood of ambiguous events, this

will not be reflected in her preferences. This distinguishes Theorem 2 from Theorem 1 where the

benchmark prior can be revealed from ex ante preferences. Because of the limited role the bench-

mark prior plays in Theorem 2, with maxmin expected utility preferences RML updating coincides

with the maximum likelihood updating rule of Gilboa and Schmeidler (1993).

Recall that an event E is defined to be unambiguous if and only if both E and Ec are per-

fectly dynamically consistent, which holds for both ambiguity neutral and ambiguity averse DMs.

Example 1 shows that an event may fail to be perfectly dynamically consistent even when it is

dynamically consistent. However, if {<A}A∈A satisfies the axioms in Theorem 2, then every dy-

namically consistent event is perfectly dynamically consistent. Therefore, if the DM is ambiguity

averse, it is possible to identify unambiguous events via dynamic consistency.

Proposition 3. If the collection of preferences {<A}A∈A can be represented by equation 5, then

every dynamically consistent event is perfectly dynamically consistent, and hence an event E is

unambiguous if and only if both E and Ec are dynamically consistent.

6 Related Literature

This paper lies in the intersection of the literature on non-Bayesian updating and updating under

ambiguity. As discussed in the introduction, the two most closely related papers are Gilboa and

Schmeidler (1993) and Ortoleva (2012). In this section I provide a discussion on other related work.

Non-Bayesian Updating

Epstein (2006) and Epstein, Noor, and Sandroni (2008) axiomatize a non-Bayesian updating model

where decision makers may be tempted to update their beliefs using a prior different from their

original prior. For example, they might be tempted to overreact to new information. In RML

updating, decision makers also revise their original prior when they receive new information, but

this is not due to temptation but rather due to ambiguity and willingness to make an inference. In

addition, the primitive of the analysis is different in these papers.
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Zhao (2017) proposes a model that allows DMs to update their beliefs when they receive new

information of the form “event A is more likely than event B.” In his model, the posterior minimizes

Kullback-Leibler (KL) divergence from the prior subject to the constraint that the posterior assigns

a higher probability to A than B.12 In RML updating, the idea is similar as the DM chooses her

posterior by minimizing KL divergence from the Bayesian posterior of the benchmark prior subject

to the constraint that the new prior assigns the maximal likelihood to the observed event among

all plausible priors. However, the main focus in Zhao (2017) is different from the one in this paper,

and these papers use different primitives of analysis.

A few recent decision theoretic papers axiomatize models that can accommodate belief updating

biases. Zhao (2018) axiomatizes a non-Bayesian updating model, called similarity-based updating,

that builds on the representativeness heuristic of Kahneman and Tversky (1972). Kovach (2021b)

axiomatizes an updating rule, called conservative updating, where the DM’s posterior is a mixture

of her prior and Bayesian posterior as in Epstein, Noor, and Sandroni (2010). As opposed to

RML updating, conservative updating may violate both consequentialism and dynamic consistency.

While similarity-based updating, conservative updating, and RML updating can accommodate

some of the same behavioral biases, the underlying behavioral motivations for these models are

completely different.

Many behavioral models in the literature explain non-Bayesian updating by assuming some

type of bounded rationality. This includes assuming imperfect memory (Mullainathan, 2002a;

Gennaioli and Shleifer, 2010; Wilson, 2014), coarse thinking (Mullainathan, 2002b; Mullainathan,

Schwartzstein, and Shleifer, 2008), the use of representativeness heuristic (Kahneman and Tversky,

1972), or incorrect modeling (Barberis, Shleifer, and Vishny, 1998; Rabin and Schrag, 1999) by

decision makers. All of these models are non-axiomatic and focus on particular applications.

A natural setup where the DM might have a benchmark prior and a set of plausible priors is

when the DM receives forecasts or recommendations from different experts. Levy and Razin (2021)

study the problem of a DM who receives forecasts from multiple Bayesian forecasters and uses the

maximum likelihood method to form an explanation for these forecasts. The decision maker then

forms her posterior by applying Bayes’ rule to the most likely explanation. They show that this

12More recently, Dominiak, Kovach, and Tserenjigmid (2021) consider more general forms of information structures
and more general distance measures.
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updating can lead to reliance on extreme forecasts and ignoring moderate forecasts. Ke, Wu, and

Zhao (2021) take a decision theoretic approach and study a problem where recommendations may

not necessarily come from a Bayesian agent. They show that there exists no updating rule that

satisfies certain desirable axioms. The main difference in this paper is that I impose axioms on the

DM’s preferences which allows me to derive the set of plausible priors endogenously from the DM’s

preferences.

Updating Under Ambiguity

There is a growing literature on updating under ambiguity, as reviewed in Machina and Siniscalchi

(2014) and Gilboa and Marinacci (2016). As an alternative to maximum likelihood updating, one

natural way to update under ambiguity is updating each prior according to Bayes’ rule. This

method is known as full Bayesian updating and was axiomatized by Pires (2002) using the maxmin

expected utility model. Epstein and Schneider (2007) propose another model where the DM applies

Bayes’ rule only to a subset of priors that are considered sufficiently likely. A few recent papers

axiomatize updating rules that generalize full Bayesian and maximum likelihood updating (see, for

example, Cheng, 2021; Hill, 2021; Kovach, 2021a). The main difference between these papers and

RML updating is that when the DM has subjective expected utility preferences, these updating

rules coincide with Bayesian updating.

As discussed in Section 3, updating rules under ambiguity that satisfy consequentialism may

violate dynamic consistency. Dynamic consistency is usually considered a desirable property, and

the fact that it may not be satisfied under ambiguity has been a subject of criticism in the literature

(Al-Najjar and Weinstein, 2009). Epstein and Schneider (2003) retain dynamic consistency by

restricting the set of events on which the DM can update her beliefs. Hanany and Klibanoff (2007)

characterize dynamically consistent maxmin expected utility preferences without any restriction

on the set of conditioning events and show that updated preferences must depend on the initial

menu the DM is offered. Siniscalchi (2011) allows deviations from dynamic consistency but assumes

that the DM can anticipate her future deviations. Gul and Pesendorfer (2018) impose a weaker

version of dynamic consistency which can be interpreted as “not all news can be bad news” and

show that neither maximum likelihood updating nor full Bayesian updating satisfies this property.

RML updating also treats dynamic consistency as a desirable property by ensuring that the DM is
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maximally dynamically consistent. That is, any deviation from dynamic consistency is due to the

DM’s willingness to use new information to make an inference on the set of plausible priors.

A few recent papers use ambiguity to explain deviations from Bayesian updating. Baliga,

Hanany, and Klibanoff (2013) show that belief polarization can arise when decision makers are

ambiguity averse. Fryer, Harms, and Jackson (2018) explain confirmation bias by assuming that

when decision makers receive ambiguous signals they interpret it as favorable to their original beliefs.

In a social learning experiment, Filippis, Guarino, Jehiel, and Kitagawa (2016) find that decision

makers frequently deviate from Bayesian updating when they receive private information that

contradicts their original beliefs. Their explanation for this phenomenon assumes multiple priors.

All of these papers are non-axiomatic and address specific deviations from Bayesian updating.

7 Conclusion

Many real life economic problems involve ambiguity. In this paper, it is argued that departing from

Bayesian updating is natural when one faces ambiguity. I axiomatize a non-Bayesian updating

model, robust maximum likelihood (RML) updating, where the DM’s probability assessment can be

represented by a benchmark prior, which reflects the DM’s initial best guess, and a set of priors the

DM considers plausible. The DM responds to new information by revising the benchmark prior via

the maximum likelihood principle in a way that ensures maximally dynamically consistent behavior,

and updates the new prior using Bayes’ rule. I show that RML updating can accommodate many

commonly observed deviations from Bayesian updating.

I take the DM’s preferences over acts before and after the arrival of new information as the

primitive of the analysis. In addition to standard axioms, the two main axioms imposed on pref-

erences are robust inference and consistency. Robust inference requires that when a proper subset

of a minimal unambiguous event is ruled out, the DM’s willingness to bet on this minimal un-

ambiguous event is not affected. This reflects the DM’s cautious attitude when she updates her

benchmark prior. Consistency states that every proper subset of a minimal unambiguous event is

perfectly dynamically consistent. This reflects the intuition that when such an event is realized, the

DM does not learn any new information that can help her make an inference regarding the relative

likelihoods of the states within this event. I show that if the DM satisfies these axioms, both the
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benchmark prior and the set of plausible priors are uniquely identified from preferences. Lastly, I

provide a characterization of RML updating with ambiguity averse preferences.

A Proof of Theorem 1

A.1 Necessity

The necessity of Axioms 1–5 is standard. The necessity of constant act preference invariance

follows from the observation that the same utility function is used for all <A in the representation.

Consequentialism is necessary as the RML posterior satisfies πA(ω) > 0 only if ω ∈ A.

Let (π,P, u) be a representation of {<A}A∈A given by Theorem 1. To prove the necessity of

Axioms 8–10, it needs to be shown that the set of unambiguous events, as defined in Definition 4

and denoted by E , is equal to σ(P), the algebra generated by the partition P, as long as P is not

degenerate (i.e. P 6= {Ω, ∅}). This is proved in Claim 3 after two preliminary observations. The

next claim shows that if A ⊆ B and πA and πB are the RML posteriors of π, then πA is the RML

posterior of πB where the partition of B is given by {B ∩ P | P ∈ P}.

Claim 1. Let (π,P) represent the probability assessment and suppose for any non-null A ∈ A, πA

is the RML posterior of π. Then for any non-null A ⊆ B, πA is the RML posterior of πB where

the partition of B is given by {B ∩ P | P ∈ P}.

Proof. Notice that since A ∩ (B ∩ P ) = A ∩ P for any P ∈ P, it suffices to show that for any

P, P ′ ∈ P with A ∩ P 6= ∅ and A ∩ P ′ 6= ∅,

πA(P )

πA(P ′)
=
πB(P )

πB(P ′)

and for any ω, ω′ ∈ A ∩ P where P ∈ P,

πA(ω)

πA(ω′)
=
πB(ω)

πB(ω′)
.

The second equation follows from the observation that since πA and πB are the RML posteriors

of π and A ⊆ B, the above ratio is equal to π(ω)
π(ω′) . Similarly, the first equation follows from the

observation that B ∩ P 6= ∅ whenever A ∩ P 6= ∅, and hence the above ratio is equal to π(P )
π(P ′) .
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Consider an act that gives the best prize on P \ E, where P is a minimal unambiguous event

and E ( P , and the worst prize outside P \ E, i.e. fP\E = x∗E(x∗Px∗). The next claim shows

that for any realized event A ⊇ P , we can find a sure outcome zA such that the DM is indifferent

between fP\E and an act that gives the worst prize on E and zA outside E.

Claim 2. Let E ( P for some P ∈ P and fP\E = x∗E(x∗Px∗). Then for any A ⊇ P , there exists

zA ∈ X such that fP\E ∼A x∗EzA.

Proof. Let zA be defined by

zA =
πA(P \ E)

1− πA(E)
x∗ +

1− πA(P )

1− πA(E)
x∗.

By assumption, A ) E and πA(ω) > 0 for each ω ∈ A. Hence, πA(E) < 1. Since X is convex,

zA ∈ X. Moreover, since u is affine,

u(zA) =
πA(P \ E)

1− πA(E)
u(x∗) +

1− πA(P )

1− πA(E)
u(x∗).

Let UA be a representation of <A given by Theorem 1. By the representation,

UA(fP\E) = πA(P \ E)u(x∗) + (1− πA(P \ E))u(x∗)

= πA(P \ E)u(x∗) + (1− πA(P ))u(x∗) + πA(E)u(x∗)

= (1− πA(E))

[
πA(P \ E)

1− πA(E)
u(x∗) +

1− πA(P )

1− πA(E)
u(x∗)

]
+ πA(E)u(x∗)

= (1− πA(E))u(zA) + πA(E)u(x∗).

Therefore, fP\E ∼A x∗EzA.

The next claim is the key step in concluding the necessity of axioms by showing that unambigu-

ous events are fully revealed from preferences unless all proper nontrivial events are ambiguous.

The case when all proper nontrivial events are ambiguous is treated in the same way in the model as

the case when no event is ambiguous. Hence, unambiguous events cannot be revealed if P = {Ω, ∅}.

Claim 3. Suppose P 6= {Ω, ∅}. Then E ∈ E if and only if E ∈ σ(P).

Proof. Suppose E /∈ σ(P). It needs to be shown that E /∈ E . There are two cases to consider.
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Case 1: E ( P for some P ∈ P. Let x∗ � x∗ be given and define fP\E = x∗E(x∗Px∗). Let z

be such that fP\E ∼ x∗Ez as in the previous claim, and let z̄ be such that fP = x∗Px∗ ∼ z̄.

fP =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼ z̄ and fP\E =


x∗ if ω ∈ E

x∗ if ω ∈ P \ E

x∗ if ω ∈ Ω \ P

 ∼

x∗ if ω ∈ E

z if ω ∈ P \ E

z if ω ∈ Ω \ P


Since each state in Ω is non-null, π(P ) > π(P \ E)/(1− π(E)). Hence, u(x∗) > u(x∗) implies

u(z̄) = π(P )u(x∗) + (1− π(P ))u(x∗) >
π(P \ E)

1− π(E)
u(x∗) +

1− π(P )

1− π(E)
u(x∗) = u(z).

Therefore, by the representation, z̄ � z and z̄ �Ec z. Moreover, since πEc is the RML posterior of

π, πEc(P ) = π(P ). This implies fP ∼Ec z̄ because

UEc(fP ) = πEc(P )u(x∗) + (1− πEc(P ))u(x∗) = u(z̄).

In addition, since πEc(E) = 0, fP\E ∼Ec fP ∼Ec z̄ and z ∼Ec x∗Ez. Therefore, z̄ �Ec z implies

fP\E �Ec x∗Ez. On the other hand, fP\E ∼ x∗Ez and fP\E and x∗Ez agree on E, violating

dynamic consistency. Since Ec is not dynamically consistent, neither E nor Ec belongs to E .

Case 2: There are P, P ′ ∈ P such that P ∩ E 6= ∅, P ′ ∩ E 6= ∅ and either P ∩ Ec 6= ∅ or

P ′ ∩ Ec 6= ∅. Without loss of generality, assume that P ∩ Ec 6= ∅. Let A = E ∪ P . As before,

let x∗ � x∗ be given. Consider a bet on P ∩ E given by fP∩E = x∗P \ E(x∗Px∗). Let zA be

as in the previous claim such that x∗P \ E(x∗Px∗) ∼A x∗P \ EzA, and let z̄A ∈ X be such that

fP = x∗Px∗ ∼A z̄A. Note that z̄A � zA as in the previous case.

fP =


x∗ if ω ∈ P \ E

x∗ if ω ∈ P ∩ E

x∗ if ω ∈ Ω \ P

 ∼A z̄A and fP∩E =


x∗ if ω ∈ P \ E

x∗ if ω ∈ P ∩ E

x∗ if ω ∈ Ω \ P

 ∼A

x∗ if ω ∈ P \ E

zA if ω ∈ P ∩ E

zA if ω ∈ Ω \ P


By Claim 1, πE is the RML posterior of πA with the partition {A ∩ P | P ∈ P}. Now note that

if P ′′ ∈ P has a nonempty intersection with A, it must also have a nonempty intersection with E:

if P ′′ ∩ A 6= ∅, then either P ′′ = P in which case P ′′ ∩ E 6= ∅ follows by assumption or P ′′ ⊆ P c
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in which case P ′′ ∩ E 6= ∅ follows from A = E ∪ P . Hence, it must be that πE(P ) = πA(P ).

Therefore, the representation implies fP∩E = x∗P \ E(x∗Px∗) ∼E z̄A �E zA. On the other hand,

x∗P \ EzA ∼E zA. Hence, x∗P \ E(x∗Px∗) ∼A x∗P \ EzA but x∗P \ E(x∗Px∗) �E x∗P \ EzA,

violating perfect dynamic consistency. This proves that E /∈ E .

Now suppose E ∈ σ(P). It needs to be shown that E ∈ E . Let A ⊇ E be given. By Claim 1,

πE is the RML posterior of πA with the partition {A∩P |P ∈ P}. To prove that E ∈ E , it suffices

to show that for any ω ∈ E,

πE(ω) =
πA(ω)

πA(E)
.

Since E ∈ σ(P), ∪P∈P: E∩P 6=∅P = E. By Proposition 1 and Claim 1,

πE(ω) = πA(ω|Pω) · πA(Pω| ∪P∈P: E∩P 6=∅ P ) = πA(ω|Pω) · πA(Pω|E) =
πA(ω)

πA(E)

as desired. This concludes the proof of the claim.

Since E ∈ E if and only if E ∈ σ(P), the necessity of Axiom 8 is obvious. To see the necessity

of Axiom 9, let A ∈ A and D ( A ∩ P for some P ∈ P. Since πA\D is the RML posterior of πA

with the partition {A ∩ P |P ∈ P}, we have πA\D(P ) = πA(P ). Hence, Axiom 9 follows. Lastly, to

see the necessity of Axiom 10, let D ( P for some P ∈ P, A ⊇ D and ω ∈ D be given. Since πD is

the RML posterior of πA,

πD(ω) = πA(ω|D) · πA(P |P ) = πA(ω|D).

Hence, D satisfies perfect dynamic consistency.

A.2 Sufficiency

The first claim is a standard result. For a proof, see Fishburn (1970) or Kreps (1988).

Claim 4. Suppose Axioms 1–5 are satisfied. Then, for any A ∈ A, there exist a subjective proba-

bility measure πA ∈ ∆(Ω) and a non-constant, affine utility function uA : X → R such that for any

f, g ∈ F ,

f <A g ⇔
∑
ω∈Ω

πA(ω)uA(f(ω)) ≥
∑
ω∈Ω

πA(ω)uA(g(ω)).
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By constant act preference invariance, <A and < agree on all constant acts for all A ∈ A \ ∅.

Using the standard uniqueness result, for any A ∈ A \ ∅, uA is a positive affine transformation of

uΩ, which is denoted by u. Hence, it is without loss to let uA = u for all A ∈ A \ ∅. Moreover,

Axioms 4 and 6 imply that <A is nontrivial, and hence πA is unique for each A ∈ A \ ∅ as in

Anscombe and Aumann (1963). By consequentialism, for any f ∈ F , fAx∗ ∼A fAx∗. Since by

the representation u(x∗) > u(x∗), we must have πA(Ac) = 0. Moreover, by monotonicity, for any

ω ∈ A, x∗ �A x∗ωx
∗. Hence, the representation implies that πA(ω) > 0 for all ω ∈ A. This

establishes the following claim.

Claim 5. Suppose Axioms 1–7 are satisfied. Then, there exist a non-constant, affine utility function

u : X → R with u(X) = [u(x∗), u(x∗)] and a family of probability measures {πA}A∈A such that for

any f, g ∈ F and A ∈ A,

f <A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω)).

Moreover, πA has full support on A and is unique for all A ∈ A\∅, and u is unique up to a positive

affine transformation.

Let E be the collection of events which are perfectly dynamically consistent and whose com-

plements are also perfectly dynamically consistent as in Definition 4. By definition, E is closed

under complements. By Axiom 8, E is closed under intersections. Moreover, Ω ∈ E . Hence, E is

an algebra over Ω. Let PE be the partitioning of the state space that generates E , and let (π,PE)

denote the probability assessment. To establish the representation, it suffices to show that each πA

is the RML posterior of π.

Claim 6. For any non-null A ∈ A, πA is the RML posterior of π.

Proof. First, consider A ∈ E . By definition, f <A g ⇔ fAg < g. fAg < g is equivalent to

∑
ω∈A

π(ω)u(f(ω)) ≥
∑
ω∈A

π(ω)u(g(ω)) ⇔
∑
ω∈A

π(ω)

π(A)
u(f(ω)) ≥

∑
ω∈A

π(ω)

π(A)
u(g(ω)).
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By the uniqueness of πA in the representation, for all ω ∈ A,

πA(ω) =
π(ω)

π(A)
= π(ω|A).

That is, πA is the Bayesian posterior of π, which also corresponds to the RML posterior since A is

unambiguous.

Now consider A /∈ E . Let PE = {P1, . . . , Pn} and choose an index set J ⊆ {1, . . . , n} such

that Pj ∩ A 6= ∅ ⇔ j ∈ J . Let B = ∪j∈JPj . Since B ∈ E , by the first part of the claim, πB is

the Bayesian posterior of π. Moreover, by Axiom 9, for any j ∈ J , cA(fPj ) ∼ cA∪Pj (fPj ) where

fPj = x∗Pjx∗. Given the representation in Claim 5, this is possible only if πA(Pj) = πA∪Pj (Pj).

Hence, iterative application Axiom 9 implies that πA(Pj) = πB(Pj) for all j ∈ J . Therefore, for

any j, j′ ∈ J ,

πA(Pj)

πA(Pj′)
=
πB(Pj)

πB(Pj′)
=
π(Pj)

π(Pj′)
.

Let A∩ Pj for some j ∈ J be given. By Axiom 10, A∩ Pj is a perfectly dynamically consistent

event. Hence, using the same reasoning as in the first part of the claim, we get

π(ω|A ∩ Pj) = πA∩Pj (ω) = πA(ω|Pj).

But then for any ω, ω′ ∈ A ∩ Pj ,

π(ω)

π(ω′)
=
πA∩Pj (ω)

πA∩Pj (ω
′)

=
πA(ω)

πA(ω′)
.

This together with the conclusion of the previous paragraph and Proposition 1 imply that πA is

the RML posterior of π. This concludes the proof of sufficiency.

Lastly, to show that P is uniquely revealed as PE , assume that P is not degenerate (P 6= {Ω, ∅}).

By Claim 3, P and PE are two partitions of the state space that generate the same algebra E . But

then P = PE . �
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B Proof of Proposition 3

Let (π,P, u) be a representation of {<A}A∈A given by Theorem 2. Observe that for any A,

πA ∈ B(NP,A(π))⇔ πA(Ac) = 0 and πA(P ) =
π(P )∑

P ′∈P:P ′∩A 6=∅ π(P ′)
for any P ∈ P with A∩P 6= ∅.

That is, all plausible posteriors agree on minimal unambiguous events. Moreover, the utility func-

tion defined by

UA(f) =
∑
P∈P

πA(P ) min
ω∈A∩P

u(f(ω)),

where πA ∈ B(NP,A(π)), represents <A.

Let E be a dynamically consistent event. Suppose E is not perfectly dynamically consistent so

that there exist A ⊇ E and f, g ∈ F such that fEg <A g and g �E f . Let h and h′ be given as

below.

h =


f(ω) if ω ∈ E

g(ω) if ω ∈ A \ E

x∗ if ω ∈ Ac

 and h′ =


g(ω) if ω ∈ E

g(ω) if ω ∈ A \ E

x∗ if ω ∈ Ac


Then, the representation implies h <A h′ and h′ �E h. Also note that h(ω) = h′(ω) for all

ω ∈ Ec. Next, it is shown that h <A h′ implies h < h′. Let P = {P1, . . . , Pn} and J ⊆ {1, . . . , n}

be the index set such that j ∈ J ⇔ Pj ∩ E 6= ∅. Then, for any i /∈ J , Pi ∩ E = ∅, and hence

minω∈A∩Pi u(h) = minω∈A∩Pi u(h′). Therefore, by the representation, h <A h′ implies

∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(g(ω)).

Notice that since h(ω) = h′(ω) = x∗ for all ω ∈ Ac, for any j ∈ J , minω∈A∩Pj u(h(ω)) =

minω∈Pj u(h(ω)) and minω∈A∩Pj u(h′(ω)) = minω∈Pj u(h′(ω)). In addition, for i /∈ J , minω∈Pi u(h) =

minω∈Pi u(h′) since h and h′ agree on Ec. Lastly, for any j ∈ J , π(Pj) = c · πA(Pj) where
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c =
∑

P ′∈P:P ′∩A 6=∅ π(P ′). Hence,

∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(g(ω))

⇒
∑
j∈J

c · πA(Pj) min
ω∈A∩Pj

u(h(ω)) ≥
∑
j∈J

c · πA(Pj) min
ω∈A∩Pj

u(h′(ω))

⇒
∑
j∈J

π(Pj) min
ω∈Pj

u(h(ω)) ≥
∑
j∈J

π(Pj) min
ω∈Pj

u(h′(ω))

⇒
∑
Pi∈P

π(Pi) min
ω∈Pi

u(h(ω)) ≥
∑
Pi∈P

π(Pi) min
ω∈Pi

u(h′(ω)),

which implies h < h′. But then since h(ω) = h′(ω) for all ω ∈ Ec and h′ �E h, this contradicts

the original hypothesis that E is dynamically consistent. Hence, E must be perfectly dynamically

consistent. �

C Proof of Theorem 2

C.1 Necessity

The necessity of Axioms 1, 2, 4, 5, 6, and 7 is standard. To prove the necessity of Axioms 8, 9, 11,

and 12, it is shown that E = σ(P), where σ(P) is the algebra generated by P, as in the proof of

Theorem 1.

Claim 7. Let (π,P, u) be a representation of {<A}A∈A given by equation 5. Then E ∈ E if and

only if E ∈ σ(P).

Proof. First, I show that if E /∈ σ(P), then E /∈ E . Notice that since E /∈ σ(P), there exists P ∈ P

such that P ∩ E 6= ∅ and P \ E 6= ∅. Let f = x∗P ∩ Ex∗. Then the representation implies that

f ∼ x∗ but f �E x∗ even though f(ω) = x∗ for ω ∈ Ec. f �E x∗ holds because of the assumption

that π(P ) > 0, which implies πE(P ) > 0 for all πE ∈ B(NP,E(π)). Hence, E is not a dynamically

consistent event. By definition, E /∈ E .

Now suppose E ∈ σ(P). To show that E ∈ E , let A ⊇ E be given. It needs to be shown that

fEg <A g if and only if f <E g. Let P = {P1, . . . , Pn}. Since E ∈ σ(P), there exists an index

set J ⊆ {1, . . . , n} such that E = ∪j∈JPj . Notice that if i /∈ J , then minω∈A∩Pi u(fEg(ω)) =
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minω∈A∩Pi u(g(ω)). Hence, fEg <A g if and only if

∑
j∈J

πA(Pj) min
ω∈Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈Pj

u(g(ω))

where πA is an arbitrary member of B(NP,A(π)). On the other hand, it is easy to see that for any

πE ∈ B(NP,E(π)), πE(Pj) > 0 if and only if j ∈ J , and πE(Pj) = c · πA(Pj) where c = 1∑
j∈J πA(Pj) .

Hence, the above inequality holds if and only if

∑
j∈J

πE(Pj) min
ω∈Pj

u(fEg(ω)) ≥
∑
j∈J

πE(Pj) min
ω∈Pj

u(g(ω))

which is true if and only if f <E g.

Since E = σ(P), the necessity of Axiom 8 is obvious. The necessity of Axiom 9 is the same

as in Theorem 1. To see the necessity of Axiom 11, let Γ : Ω → S be a surjective mapping that

satisfies Γ(ω) = Γ(ω′) for all ω, ω′ ∈ P and Γ(ω) 6= Γ(ω′) whenever ω ∈ P and ω′ ∈ P ′ for distinct

P and P ′. Now for each A ∈ A, define a probability measure on S by πA ◦ Γ−1 where πA is an

arbitrary member of B(NP,A(π)). Let F̂ be the set of all acts XS . Then, F̂ is isomorphic Fua.

Since (πA◦Γ−1, u) is an SEU representation of <A restricted to F̂ , Axiom 11 follows. Lastly, Axiom

12 is necessary because within each partition element only the minimal payoff matters.

C.2 Sufficiency

Axiom 8 implies that E is an algebra and PE is a partitioning of the state space. As in Claim 5, it

is easy to see that the axioms imply the following claim.

Claim 8. Suppose Axioms 1, 2, 4-8, and 11 are satisfied. Then there exist a non-constant, affine

utility function u : X → R with u(X) = [u(x∗), u(x∗)] and a family of subjective probability measures

{πA}A∈A on σ(PE) such that for any f, g ∈ Fua and A ∈ A,

f <A g ⇔
∑
P∈P

πA(P )u(f(P )) ≥
∑
P∈P

πA(P )u(g(P )).

Moreover, πA(P ) > 0 for any P ∈ PE with A ∩ P 6= ∅ and πA(P ) = 0 whenever A ∩ P = ∅.

36



The second part of the claim is implied by Axioms 5 and 7. Extend πA to σ(PE ∪ A) (i.e. the

algebra generated by sets of the form A \ P , A ∩ P , and P \ A) by letting πA(A ∩ P ) = πA(P )

whenever A ∩ P 6= ∅.

The next claim shows that for any f ∈ F and A ∈ A, there exists an unambiguous act fua ∈ Fua

such that the DM is indifferent between f and fua given A.

Claim 9. Suppose Axioms 1, 2, 4-8, 11, and 12 are satisfied. Then, for any A ∈ A and f ∈ F ,

there exists fua ∈ Fua such that f ∼A fua.

Proof. Let P ∈ PE and ω∗ = arg minω∈A∩P u(f(ω)). By Axioms 7 and 12, x∗P\{ω∗}f ∼A f(ω∗)Pf .

On the other hand, by Axiom 5, x∗P \ {ω∗}f <A f <A f(ω∗)Pf . Hence, f ∼A f(ω∗)Pf . Now let

fua denote an act that assigns the worst prize of f in A ∩ P to P for all P ∈ PE with A ∩ P 6= ∅.

Let fua be constant on P ′ with A ∩ P ′ = ∅. This act belongs to Fua, and f ∼A fua by iterative

application of the previous argument and Axiom 7.

For any f ∈ F , let

UA(f) =
∑
P∈P

πA(A ∩ P ) min
ω∈A∩P

u(f(ω)).

Notice that for fua defined as in Claim 9, UA(f) = UA(fua). We already know that UA represents

<A on Fua. Hence, f <A g if and only if fua <A gua if and only if UA(fua) ≥ UA(gua) if and only

if UA(f) ≥ UA(g). Hence, UA represents <A on all F .

The only thing left to prove is that πA ∈ B(NP,A(π)). This is implied by Axiom 9. The proof is

identical to the first part of Claim 6. Lastly, the uniqueness result for u is standard. The uniqueness

of P is a consequence of Claim 7, and NP,A(π) is uniquely defined given π on P. �

D Proof of Proposition 2

Notice that π′A ∈ B(NP,A(π)) if and only if for all P ∈ P with A ∩ P 6= ∅,

∑
ω∈A∩P

π′A(ω) =
π(P )∑

P ′∈P:A∩P ′ 6=∅ π(P ′)
. (D.1)
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The objective is to minimize Kullback-Leibler divergence DKL(π(·|A) || π′A) subject to these con-

straints for each P ∈ P with A ∩ P 6= ∅. The Lagrangian for the minimization problem is

L
(
{π′A(ω)}ω∈A, {λP }P∈P:A∩P 6=∅

)
=−

∑
ω∈A

π(ω|A) ln
( π′A(ω)

π(ω|A)

)
+

∑
P∈P:A∩P 6=∅

λP

( ∑
ω∈A∩P

π′A(ω)− π(P )∑
P ′∈P:A∩P ′ 6=∅ π(P ′)

)
.

The first order conditions imply that for any P ∈ P with A ∩ P 6= ∅ and any ω, ω′ ∈ A ∩ P ,

π(ω|A)

π′A(ω)
= λP =

π(ω′|A)

π′A(ω′)
, and hence

π′A(ω)

π′A(ω′)
=
π(ω|A)

π(ω′|A)
=
π(ω)

π(ω′)
. (D.2)

Since the objective function is strictly convex, equations D.1 and D.2 characterize the solution to

the minimization problem. �
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Springer International Publishing, Cham, 385–439.

Gilboa, I. and D. Schmeidler (1989): “Maxmin Expected Utility with Non-Unique Prior,” Journal

of Mathematical Economics, 18(2), 141–153.

(1993): “Updating Ambiguous Beliefs,” Journal of Economic Theory, 59(1), 33–49.

40



Gul, F. and W. Pesendorfer (2014): “Expected Uncertain Utility Theory,” Econometrica, 82(1),

1–39.

(2018): “Evaluating Ambiguous Random Variables and Updating by Proxy,” Working

Paper, Princeton University.

Hanany, E. and P. Klibanoff (2007): “Updating Preferences with Multiple Priors,” Theoretical

Economics, 2(3), 261–298.

Hansen, L. and T. J. Sargent (2001): “Robust Control and Model Uncertainty,” American Economic

Review, 91(2), 60–66.

Hill, B. (2021): “Updating Confidence in Beliefs,” Journal of Economic Theory, 105209.

Kahneman, D. and A. Tversky (1972): “Subjective Probability: A Judgment of Representative-

ness,” Cognitive Psychology, 9, 430–454.

(1973): “On the Psychology of Prediction,” Psychological Review, 80(4), 237.

Ke, S., B. Wu, and C. Zhao (2021): “Learning from a Black Box,” Available at SSRN 3848205.

Kovach, M. (2021a): “Ambiguity and Partial Bayesian Updating,” arXiv preprint

arXiv:2102.11429.

(2021b): “Conservative Updating,” arXiv preprint arXiv:2102.00152.

Kreps, D. M. (1988): Notes on the Theory of Choice, Westview Press: Underground Classics in

Economics.

Levy, G. and R. Razin (2021): “A Maximum Likelihood Approach to Combining Forecasts,” The-

oretical Economics, 16(1), 49–71.

Lord, C. G., L. Ross, and M. R. Lepper (1979): “Biased Assimilation and Attitude Polarization:

The Effects of Prior Theories on Subsequently Considered Evidence,” Journal of Personality and

Social Psychology, 37(11), 2098–2109.

Machina, M. J. (1989): “Dynamic Consistency and Non-Expected Utility Models of Choice Under

Uncertainty,” Journal of Economic Literature, 27(4), 1622–1668.

41



Machina, M. J. and M. Siniscalchi (2014): “Ambiguity and Ambiguity Aversion,” in Handbook of

the Economics of Risk and Uncertainty, ed. by M. Machina and K. Viscusi, North-Holland, 729

– 807.

Minardi, S. and A. Savochkin (2017): “Subjective Contingencies and Limited Bayesian Updating,”

HEC Paris Research Paper No. ECO-SCD-2017-1203.

Mullainathan, S. (2002a): “A Memory-Based Model of Bounded Rationality,” Quarterly Journal

of Economics, 117(3), 735–774.

(2002b): “Thinking Through Categories,” Unpublished Paper.

Mullainathan, S., J. Schwartzstein, and A. Shleifer (2008): “Coarse Thinking and Persuasion,”

Quarterly Journal of Economics, 123(2), 577–619.

Odean, T. (1998): “Volume, Volatility, Price, and Profit When All Traders Are Above Average,”

Journal of Finance, 53(6), 1887–1934.

Ortoleva, P. (2012): “Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected

News,” American Economic Review, 102(6), 2410–36.

Pires, C. P. (2002): “A Rule for Updating Ambiguous Beliefs,” Theory and Decision, 53(2), 137–

152.

Rabin, M. (1998): “Psychology and Economics,” Journal of Economic Literature, 36(1), 11–46.

Rabin, M. and J. L. Schrag (1999): “First Impressions Matter: A Model of Confirmatory Bias,”

Quarterly Journal of Economics, 114(1), 37–82.

Savage, L. J. (1954): The Foundations of Statistics, Wiley, New York.

Siniscalchi, M. (2011): “Dynamic Choice Under Ambiguity,” Theoretical Economics, 6(3), 379–421.

Stahl, D. O. (2014): “Heterogeneity of Ambiguity Preferences,” Review of Economics and Statistics,

96(4), 609–617.

Strzalecki, T. (2011): “Axiomatic Foundations of Multiplier Preferences,” Econometrica, 79(1),

47–73.

42



Tversky, A. (2004): Preference, Belief, and Similarity: Selected Writings, MIT Press, 193–402.

Wilson, A. (2014): “Bounded Memory and Biases in Information Processing,” Econometrica, 82(6),

2257–2294.

Zhang, J. (2002): “Subjective Ambiguity, Expected Utility and Choquet Expected Utility,” Eco-

nomic Theory, 20(1), 159–181.

Zhao, C. (2017): “Pseudo-Bayesian Updating,” Working Paper, The University of Hong Kong.

(2018): “Representativeness and Similarity,” Working Paper, The University of Hong

Kong.

43


	Introduction
	Updating Rule
	Representation Theorem
	Applications
	Confirmation Bias
	Other Behavioral Biases

	Ambiguity Averse Preferences
	Related Literature
	Conclusion
	Proof of Theorem 1
	Necessity
	Sufficiency

	Proof of Proposition 3
	Proof of Theorem 2
	Necessity
	Sufficiency

	Proof of Proposition 2

