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Abstract

We study how the suspicion that communicated information might be deceptive af-

fects the nature of what can be communicated in a sender-receiver game. Sender, who

observes the state of the world, is said to deceive Receiver if she sends a message that in-

duces beliefs that are different from those that should have been induced in the realized

state. Deception is costly to Sender and the cost is endogenous: it increases in the dis-

tance between the induced beliefs and the beliefs that should have been induced. A mes-

sage function that induces the sender to engage in deception is said to be non-credible

and cannot be part of equilibrium. We study credible communication in Bayesian per-

suasion and in cheap-talk games. Importantly, the cost of deception parametrizes the

sender’s ability to commit to her strategy. Through varying this cost, our model spans the

range from no commitment (cheap-talk), to full commitment (Bayesian persuasion).
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1 Introduction

Lying and deception are universally condemned. Philosophers and religious leaders, includ-

ing Aristotle, Confucius, Saint Augustine, Saint Thomas Aquinas and Immanuel Kant, all em-

phasized that lying and deception are wrong as such, even with no consideration of their con-

sequences. It comes as no surprise that lying and deception are also costly to those who en-

gage in them (see Abeler, Nosenzo and Raymond 2019 for a survey of experimental studies

that document this cost).

In this paper we take the position that a lack of integrity is costly only to the extent that it

undermines beliefs. Indeed, a common distinction between lying and deception is that a lie is

“a statement that the speaker believes is false” whereas deception is a “statement – or action

– that induces the audience to have incorrect beliefs” (Sobel, 2020).1 Accordingly, we assume

that deception (rather than mere lying) is costly, and study how the suspicion that communi-

cated information might be deceptive affects the nature of what can be communicated.

We consider this question in the context of a standard model of communication between

an informed Sender (she) and an uninformed Receiver (he). Sender observes a certain vari-

able and sends a message about it to Receiver who, upon receiving the message, takes an

action. The payoffs of both Sender and Receiver depend both on the value of the variable and

on Receiver’s action. We enrich the standard model by assuming that Sender may deceive

Receiver, at a cost.

We measure the cost of deception in terms of difference between beliefs. Specifically, Re-

ceiver forms beliefs about the relevant variable that depend on the prior distribution, Sender’s

message strategy, and the actual message sent. Sender may deceive Receiver by sending a

message that is different from what she was supposed to send given her message strategy, at

a cost that is increasing in the distance between the beliefs induced by the message actually

sent, and the beliefs that would have been induced under the message that was supposed to

be sent. Importantly, this implies that the cost of deception in our model is measured relative

to Receiver’s equilibrium expectations and so is endogenous to the model, because it depends

on the message strategy chosen by Sender.

A message function that induces Sender to engage in deception is not credible, and cannot

be part of equilibrium. We are interested in what can be communicated in equilibrium, via

credible message functions.

The ability of Sender to deceive Receiver is closely related to Sender’s ability to commit to

her message strategy, in the sense of sending the specific message prescribed by the strategy

and not a different message. A sufficiently large cost of deception implies “full commitment”

of Sender to her message strategy. Such commitment is obviously very valuable. It is a stan-

1As emphasized by Sobel (2020), these definitions imply that a lie need not be deceptive, and deception need
not involve lying.
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dard assumption in the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011). In

contrast, costless deception implies that Sender cannot commit to follow her message strat-

egy, and consequently, messages should be interpreted as mere “cheap-talk” (Crawford and

Sobel, 1982). Both of these extreme cases serve as useful benchmarks for us. They have both

been extensively studied in the literature surveyed below. Through varying the cost of decep-

tion in our model, our approach allows us to span the range from cheap-talk, or no commit-

ment, to full commitment.

To illustrate, consider the following stylized example of a candidate for public office, who

tries to persuade the public to elect her for office. The state of the world is either “business as

usual” or “looming crisis,” with prior probabilities two-thirds and a third, respectively. Sup-

pose that the public would like to elect the candidate if it believes that the posterior probabil-

ity that the state is looming crisis, denoted p, is larger than or equal to one-half. If it believes

this probability to be smaller than one-half, then it prefers to elect another candidate. Sup-

pose that the payoff to the candidate from being elected or not is one and zero, respectively,

regardless of the state of the world.

Suppose that the candidate, who observes the state of the world, employs the following

message strategy. If the state is looming crisis, then the candidate sends the message “crisis.”

And, if the state is business as usual, then the candidate randomizes between sending the

message “crisis” and the message “usual” with equal probabilities.

Upon hearing the message “usual,” a public that believes that the candidate is using this

message strategy realizes that the state is business as usual (p = 0) and elects another candi-

date. But upon hearing the message “crisis”, the public believes that the state is looming crisis

with probability one-half (p = 1
2 ) and elects the candidate. As famously shown by Kamenica

and Gentzkow (2011), this is the message function that maximizes the expected payoff of a

candidate who has the ability to fully commit to following her message strategy.

Suppose that the cost of deception to the candidate is given by the difference in induced

beliefs p under the message actually sent and the message that was supposed to be sent under

the message strategy described above. This means that when the state is business as usual,

the cost of sending the message “crisis” (that induces the public to elect the candidate) instead

of the message “usual” (that induces the public to elect another candidate) is one-half.

The public realizes that if it believes that the candidate uses the message strategy de-

scribed above, then the benefit to the candidate of sending the message “crisis” instead of

“usual” is one. So the public understands that the message strategy described above is not

credible, in the sense that it cannot possibly be employed by the candidate in equilibrium.

As explained above, we are interested in what can be communicated through credible

message functions, which can be part of an equilibrium, and that would not induce the can-

didate to deceive the public. In this example, because the benefit that the candidate obtains
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from being and not being elected is one and zero, respectively, as long as the cost of deception

is strictly smaller than one, a message function that induces certain election of the candidate

following some message and election of another candidate following some other message

cannot be credible.

The message function in which the candidate sends the message “crisis” if the state is

looming crisis, and “usual” otherwise, is credible. The ex-ante expected payoff of the can-

didate under this message function is one-third, compared to two-thirds under the message

function the candidate could use if it were able to fully commit to it. This is the optimal credi-

ble message strategy for the candidate in this example. The fact that this strategy fully reveals

the state of the world to the public suggests that the public benefits from the fact that the can-

didate cannot commit to her message strategy. Indeed, as we show, in certain circumstances,

the mistrust that is induced by the possibility of deception can benefit the receiver.2

We provide a formal definition of a credibility along the lines described above, and show

that no loss of optimality is implied by restricting attention to credible message function that

employ no more messages than the number of states of the world.

We study the implications of credible communication in a model of Bayesian persuasion

in which Receiver’s optimal action depends only on the expected state, and Sender’s prefer-

ences over Receiver’s actions are independent of the state of the world. We geometrically char-

acterize Sender’s highest equilibrium payoff in this model. We show that this highest payoff is

obtained on a partial concavification of Sender’s indirect payoff function, which is based on

an upper envelope of Sender’s indirect payoff function with a bounded slope that depends on

the cost of deception. The bound on the slope increases with the cost of deception.

The literature on Bayesian persuasion has already highlighted the link between Sender’s

value and the upper envelope of her indirect payoff function. Kamenica and Gentzkow (2011)

famously characterized Sender’s value in terms of the concave envelope of her indirect payoff

function. Others, such as Lipnowski and Ravid (2020), and Lipnowski, Ravid and Shishkin

(2020), have characterized Sender’s value in terms of the quasi-concave, and a mixture of the

concave and quasi-concave envelopes of Sender’s indirect payoff function. In contrast, we

characterize Sender’s value in terms of the concave envelopes of her indirect payoff function,

with a bounded slope.

We provide conditions that ensure that Sender’s value is continuous and present examples

where it is discontinuous (Lipnowski, Ravid and Shishkin, 2020, interpret discontinuity in the

cost of deception as “collapse of trust”). Finally, we discuss the circumstances under which

productive mistrust arises.

We then study credible communication in a discrete version of the uniform-quadratic

2Lipnowski, Ravid and Shishkin (2020) refer to this as “productive mistrust.” We explain the circumstances
under which it arises below.
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example of Crawford and Sobel’s (1982) model of strategic communication. An important

difference between this setting and the one described above is that, in this setting, Sender’s

payoff does depend on the state of the world. We show that, in contrast to Crawford and

Sobel’s (1982) model where communication induces a partition of the state space into con-

vex sets, in our model Sender may induce a credible partition of the state space with non-

convex elements. However, the optimal partition for Sender consists only of convex sets of

states of the world as in Crawford and Sobel (1982). This result allows us to explicitly solve for

the optimal message function for Sender and describe how it relates to the optimal message

function in Crawford and Sobel (1982). The fact that deception is costly facilitates more in-

formative communication between Sender and Receiver compared to the most informative

equilibrium in Crawford and Sobel (1982), and is akin to decreasing the value of the param-

eter that measures the discrepancy between Sender’s and receiver’s payoff in Crawford and

Sobel’s uniform-quadratic example.

Related Literature

Sobel (2020) introduces game theoretic definitions of lying and deception. Our definition of

deception is consistent with his in that, in our model too, deception involves inducing “incor-

rect beliefs.” However, we also add a cost of deception that is not explicitly incorporated into

Sobel’s model. More importantly, according to our definition, deception is measured with re-

spect to equilibrium beliefs and is therefore endogenous, whereas in Sobel’s model, deception

is with respect to the true state, and so is determined by an exogenous standard.

Kartik (2009) adds the possibility of costly lying into the communication game considered

by Crawford and Sobel (1982). The cost of lying in Kartik’s model depends only on the sender’s

type and the literal message he uses, which may be interpreted as an announcement about

the sender’s type. Equilibria in his model involve lying, but no deception. The key difference

between Kartik’s model and ours is that we measure the cost of deception in terms of the dif-

ferences in Receiver’s induced beliefs. Other models of lying consider perturbed versions of

games in which, with positive probability, the sender is a behavioral type who always reports

honestly; or the receiver is a behavioral type who interprets messages literally (believing that

the state is m after receiving the message m) (Chen, 2011). Fischbacher and Föllmi-Heusi

(2008) and Gneezy (2005) are examples of experimental papers on communication that asso-

ciate the message to the state and treat messages as lies if they are not equal to the state.

As mentioned above, this paper contributes to the literature on strategic information

transmission. To place our work in context, it is useful to consider the two extreme bench-

marks of full commitment and cheap-talk. Full commitment is assumed in the Bayesian per-

suasion literature (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011; Kamenica,

2019), which studies sender-receiver games in which a sender commits to an information-
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transmission strategy. In contrast, in the case of cheap-talk (Crawford and Sobel, 1982) the

sender has no commitment power whatsover. Lipnowski and Ravid (2020) study cheap talk

games under state-independent sender preferences.3

Lipnowski, Ravid and Shishkin (2020) and Guo and Shmaya (forthcoming) are similar to

our work in that they both bridge the gap between cheap-talk and Bayesian persuasion mod-

els. In Lipnowski, Ravid and Shishkin (2020), a sender commissions a study to persuade a

receiver, but may influence the report with some state-dependent probability. They show

that increasing this probability can benefit the receiver and can lead to a discontinuous drop

in the sender’s payoffs. In Guo and Shmaya (forthcoming) each communicated message is

a distribution of states, which the receiver trusts, and the sender faces a miscalibration cost

that increases in the distance between the message and its induced equilibrium posterior be-

lief. They show that when costs are sufficiently large, the sender attains her full-commitment

payoff under any extensive-form rationalizable play.

Perez-Richet and Skreta (2020) also consider costly falsification of signals. In their model,

an agent can manipulate a Blackwell experiment’s input at a cost. They characterize receiver-

optimal tests under different constraints in this setting. In Nguyen and Tan (2019), a sender

has the opportunity to privately change the publicly observed outcome of a previously an-

nounced experiment, at a cost that depends on the outcome. They describe conditions under

which the sender does not alter the experiment’s outcome in the sender-optimal equilibrium.

The fact that Sender’s payoff depends directly on Receiver’s endogenous beliefs implies

that the game we consider is a psychological game (Geanakoplos, Pearce and Stacchetti, 1989,

Battigalli and Dufwenberg, 2009).4 This literature justifies the distaste for lying through an

aversion to guilt (Battigalli and Dufwenberg, 2007). Other papers consider communication

between an informed Sender and an uninformed Receiver within the framework of psycho-

logical games, as we do, but with a very different focus from ours. See for example Caplin and

Leahy (2004), Ottaviani and Sørensen (2006), and Ely, Frankel and Kamenica (2015).

The rest of the paper proceeds as follows. Section 2 describes the model and introduces

our definition of a credible message function. In this section we also characterize the number

of messages in credible message functions. In Section 3 we study credible message functions

in a model of Bayesian persuasion, and in Section 4 we study credible message functions in

cheap-talk games. As mentioned above, f ormally, the main difference between Sections 3

and 4 is that the former section is devote to the study of state-independent sender prefer-

ences, whereas the latter considers a case with state-dependent sender preferences. Section

5 concludes. All proofs are relegated to the appendix.

3Min (2018) generalizes their work and allows for sender’s preferences to be state dependent. He shows that
allowing the sender to commit with positive probability strictly helps both players in Crawford and Sobel’s (1982)
uniform-quadratic example.

4For a recent survey of the literature on psychological games see Battigalli and Dufwenberg (forthcoming).
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2 Model

We begin by describing a two-player communication game in Section 2.1. We then enrich

the model by adding costly deception and define our notion of credibility in Section 2.2. In

Section 2.3 we analyze the number of messages employed by a credible sender.

2.1 The Communication Game

Consider a two-player game, with Sender (S, she) and Receiver (R,he). Players’ payoffs de-

pend on a state of the world and on Receiver’s action. The state of the world is drawn from a

setΩ×Θ. The setΩ= {ω1, . . . ,ωN } is finite and represents the “payoff relevant” part of the state

of the world. The set Θ= [0,1] is used in order to incorporate lotteries into Sender’s choice of

messages as described below. The prior probability of the payoff relevant part of the state is

denoted by π ∈∆(Ω), where π(ω) is the probability of state ω.5 For simplicity, we assume that

π(ω) > 0 for all ω ∈Ω. Without loss of generality, we assume that the prior distribution over Θ

is uniform. These two prior distributions are stochastically independent.

Sender chooses a finite set of messages M ⊂R and a measurable message functionσ(ω,θ) :

Ω×Θ→ M that is monotone non-decreasing in θ ∈ Θ.6 Given a message function σ, we de-

note the probability that message m is sent in state ω by qσ (m,ω) = ∫
{θ:σ(ω,θ)=m} dθ, and the

probability that message m is sent by the message functionσ by qσ (m) =∑
ω∈Ω qσ (m,ω)π(ω).

Receiver’s beliefs about the payoff relevant part of the state are determined according to

Bayes rule, whenever possible. If Sender does not send any message, or sends a message that

was not supposed to be sent by σ, then Bayes rule cannot be applied and we assume that

Receiver believes that the “worst has happened”. Namely, Receiver’s posterior belief is the one

that induces the worst possible indirect payoff for Sender, as defined below. We denote by

pσ
m ≡ qσ (·|m) ∈ ∆(Ω) the posterior distribution over Ω that is induced by message m, given

the message function σ.

Receiver chooses an action from a compact set A ⊂ R. The payoff for Receiver is given by

uR (a,ω). The payoff for Sender is given by her material payoff uS(a,ω), and if she deceives

Receiver then she also incurs a cost of deception which is described below. The functions

uR (a,ω) and uS(a,ω) are assumed to be continuous in a.

Both Receiver and Sender are expected utility maximizers. Upon observing a message m,

Receiver takes the action a ∈ A that maximizes his expected payoff given the posterior belief

5We denote by ∆(X ) the set of probability distributions over a set X .
6The assumption that the M is a subset of R imposes a convenient order on the set of messages and entails no

loss of generality. The assumption that σ(ω,θ) is monotone in its second parameter also involves no loss of gen-
erality because payoffs do not depend on θ. For any non-monotone message function there exists a monotone
message function that induces identical payoffs and beliefs.
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induced by m. For any posterior belief p ∈∆(Ω), Receiver’s optimal action is given by

a∗(p) = argmax
a∈A

{ ∑
ω∈Ω

p(ω) ·uR (a,ω)

}

where p(ω) is the probability that the belief p assigns to the stateω. If Receiver has more than

one best response, then we assume that he chooses the one that is best for Sender.7, 8

We define ûi (p) to be the indirect (material) payoff of player i ∈ {S,R} under posterior be-

liefs p ∈∆(Ω). That is, ûi (p) is the material payoff of player i when Receiver takes his optimal

action under beliefs p ∈∆(Ω), or:

ûi (p) = ∑
ω∈Ω

p(ω) ·ui (a∗(p),ω). (1)

2.2 Credibility

Sender’s material payoff when she sends message m′, the state of the world is (ω,θ), and she is

believed to be sending her messages according to the message functionσ is therefore given by

uS(a∗(pσ
m′),ω). In state (ω,θ) Receiver expects message m =σ(ω,θ) to be sent. If m′ 6=σ(ω,θ),

then Sender is said to deceive Receiver because message m′ induces the "wrong" posterior

belief pσ
m′ instead of pσ

m .

We assume that deception is costly to Sender. Suppose that the state of the world is (ω,θ).

The cost to Sender from sending message m′ instead of message m = σ(ω,θ), given message

function σ, is

c
(
m′ |m,σ

)=α ·d
(
pσ

m′ , pσ
m

)
,

where d : ∆ (Ω)×∆ (Ω) → R+ is a distance function between beliefs over Ω, and α ≥ 0 is a

parameter that scales the cost of deception.9 That is, the cost of sending a message m′ when

the state of the world is (ω,θ) is proportional to the distance between the posterior belief pσ
m

that should have been induced by the message m = σ(ω,θ) and the posterior belief that is

actually induced by the message m′, which is pσ
m′ .

Hence, the total payoff of Sender from sending message m′ when the state of the world is

(ω,θ), when she is believed to be using the message function σ, is the difference between her

material payoff and her cost of deception. I.e.,

uS(a∗(pσ
m′),ω)− c

(
m′ |σ (ω,θ) ,σ

)
.

7This tie-breaking assumption does not necessarily work in favor of Sender. We discuss this issue further in
the context of Example 3 below.

8a∗(pm) exists because uR is continuous in a, and A is compact.
9A distance function d(x, y) satisfies four properties: it is non-negative, symmetric, d(x, x) = 0 for every x, and

it satisfies the triangle inequality.
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As mentioned above, what distinguishes our approach is that in our model the cost of

deception is endogenous. It depends on the "true state" of the world and on Sender’s chosen

message function σ, as opposed to only the true state. (cf., Sobel, 2020).

A message function σ is credible if for any two messages m and m′, where m 6= m’, Sender

does not benefit from sending the message m′ when, according toσ, she should have sent the

message m. Formally,

Definition 1 (Credibility) A message function σ is credible if for any state of the world (ω,θ) ∈
Ω×Θ and message m =σ(ω,θ) deception is not profitable:

uS(a∗(pσ
m),ω) ≥ uS(a∗(pσ

m′),ω)− c
(
m′ |m,σ

)
(2)

for every message m′ ∈ M.

Credibility imposes an incentive compatibility constraint on Sender. If the cost of decep-

tion c(m′|σ(ω,θ),σ) is infinite, then Sender has full commitment power. That is, she would

never deviate from any message function she chooses, and so this incentive compatibility

constraint is never binding. Otherwise, Sender may benefit from deviating from certain mes-

sages. In this case, Sender has only partial commitment power because she can commit only

to those message functions from which she would not want to deviate. Partial commitment

limits Sender’s ability to communicate. However, as famously shown by Crawford and So-

bel (1982), nontrivial communication is possible even when the cost of deception is zero and

Sender has no commitment power whatsoever.

Because Sender may want to deviate from non-credible message functions and this is an-

ticipated by Receiver, a non-credible message function cannot be part of equilibrium. There-

fore, henceforth, we restrict our attention to credible message functions.10

Sender’s problem is to choose a message set M and a credible message function σ that

maximizes her expected payoff. That is:

max
〈M ,σ〉

∑
ω∈Ω

∑
m∈M

uS
(
a∗(pσ

m),ω
) ·qσ(m,ω) ·π(ω) (SP)

s.t. σ is a credible message function.

2.3 An Upper Bound on The Number of Messages

With full commitment, no loss of optimality is implied by restricting attention to message

functions that employ no more than |Ω| messages. However, the optimal message function

with full commitment may violate credibility. Moreover, there exist (sub-optimal) message

10Because a constant message function (e.g. "silence") is credible, a credible message function exists.
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functions whose payoffs cannot be obtained with only |Ω| messages.11 It is therefore not a

priori clear what is the number of messages that are required to support the optimal credible

message function. On the one hand, employing a small number of messages decreases the

number credibility constraints. On the other hand, it may be the case that the way to achieve

the optimal credible outcome is to employ a large number of messages such that the gain

from deviating from one message to another is small.

The next proposition implies the following two results: No loss of generality is implied

by restricting attention to credible message functions that send no more messages than the

number of states |Ω| plus one. And, no loss of optimality is implied by restricting attention to

credible message functions that send no more messages than the number of states |Ω|.

Proposition 1 (i) For any credible message function, there exists another credible message

function that generates an identical ex-ante expected payoff to Sender and employs no more

than |Ω|+1 messages. (ii) For any credible message function, there exists another credible mes-

sage function that generates a weakly higher ex-ante expected payoff to Sender and employs no

more than |Ω| messages.

The proof of part (i) of the proposition starts with the observation that by Carathéodory’s

Theorem (Rockafellar, 1997), for any message function there exists another (possibly non-

credible) message function that generates an identical ex-ante expected payoff with no more

than |Ω| +1 messages. The challenge is to show that given a credible message function that

employs more messages, it is possible to reduce the number of messages in such a way that

preserves credibility. To prove this, we show that in the process of reducing the number of

messages, it is never the case that a message that was not sent in state ω under the original

message function is sent in ω under the message function with the smaller number of mes-

sages. The proof of part (ii) of the proposition relies on the observation that the expected

payoff that is generated by a credible message function that employs |Ω|+1 messages can be

written as an average of the expected payoffs generated by two credible message functions

that each employs no more than |Ω| messages. The argument that ensures credibility is the

same as in part (i).

Corollary 1 If there exists an optimal solution to Sender’s problem (SP), then there exists a mes-

sage function that attains the maximal ex-ante expected payoff to Sender and employs no more

than |Ω| messages. Otherwise, it is possible to approximate the upper bound on the ex-ante

expected payoff to Sender with a message function that employs no more than |Ω| messages.12

11Consider the following example. Suppose that Ω = {0,1} and π0 = π1 = 1
2 . The set of receiver’s actions is

given by A = {a1, a2, a3}. Sender’s and receiver’s payoffs are uS (a1,ω) = uS (a3,ω) = 1 and uS (a2,ω) = 0, and
uR (a1,ω) = 1

3 −ω, uS (a2,ω) = 0, and uR (a1,ω) = ω− 2
3 , respectively. It is possible for Sender to achieve the

expected payoff 2
3 with three messages, but not with two.

12Optimal credible message functions might not exist for some specifications of uR and uS . However, the ex-
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3 Credible Bayesian Persuasion

In this section we incorporate our notion of costly deception into a simple model of Bayesian

persuasion (Kamenica and Gentzkow, 2011, hereafter KG). For simplicity of exposition, we

impose the following three assumptions. First, we assume that the payoff-relevant part of

the state ω is a real-valued random variable. Next, we assume that Receiver’s optimal action

depends only on the expected state. That is, given a posterior belief p the optimal action

a∗(p) depends only on the mean of p, denoted µp ≡ Ep [ω]. Finally, we assume that Sender’s

preferences over Receiver’s actions do not depend on the state.13

To facilitate the comparison between our model and that of KG, we start by writing

Sender’s problem as a constrained maximization problem over distributions of posterior be-

liefs, rather than message functions.

Recall that, given a message function σ, every message m that is sent in σ induces a pos-

terior belief pσ
m over the payoff relevant part of the stateω. Accordingly, the message function

σ induces a distribution over posterior beliefs. We denote such a distribution of posterior

beliefs by τ ∈∆ (∆ (Ω)), and the probability that τ induces a posterior p ∈∆ (Ω) by τ
(
p

)
. Thus:

τ
(
p

)= ∑
{m:pσm=p}

∑
ω∈Ω

qσ (m,ω)π (ω) .

A distribution of posterior beliefs τ is said to be Bayes plausible if the expected posterior

belief it induces is equal to the prior. As famously shown by (KG) and Aumann and Maschler

(1995), a distribution over posterior beliefs τ can be induced by some message function σ if

and only if τ is Bayes plausible. We can therefore rewrite Sender’s problem (SP) as follows:

max
τ

∑
p∈Supp(τ)

ûS
(
p

) ·τ(
p

)
(SP1)

s.t.
∑

p∈Supp(τ)
p ·τ(

p
)=π (Bayes Plausibility)

ûS
(
p

)≥ ûS
(
p ′)−α ·d

(
p, p ′) , ∀p, p ′ ∈ Supp(τ) (Credibility)

where Supp(τ) denotes the support of τ. A distribution of posterior beliefs τ that is Bayes

plausible and credible is said to be feasible. Note that the “standard" problem of Bayesian

persuasion involves maximizing the same objective function, under the same Bayes plausi-

bility constraint. The new component that is introduced in our costly deception framework is

ante expected payoff to Sender is bounded. Therefore, if a credible optimal message function does not exist, then
there exists a sequence of credible message functions that employ no more than |Ω| messages and that generate
an ex-ante expected payoff to Sender that converges to this upper bound.

13Kamenica and Gentzkow (2011) refer to this case as one in which the “sender’s payoff depends only on the
expected state.” This holds, for example, if uR (a,ω) = −(a −ω)2 and uS (a,ω) = a. It is easy to verify that in this
case a∗ (

p
)=µp and Sender’s payoff from inducing the belief p is therefore ûS (p) =µp .

10



the credibility constraint.

We now proceed to characterize the solution to Sender’s problem. Given Sender’s indirect

payoff function ûS , the convex hull of the graph of ûS , denoted co(ûS), consists of all the

convex combinations of elements in the graph of ûS . That is,

co(ûS) =
{ (

p, y
)

: ∃p1, . . . , pk , pi ∈∆(Ω) for all i , and ∃λ1, . . . ,λk ≥ 0,
∑k

i=1λi = 1

such that p =∑k
i=1λi pi and y =∑k

i=1λi ûS
(
pi

) }
.

Given α≥ 0, we define the set coα (ûS) similarly to co(ûS), with one difference: it consists

of all the convex combinations of elements in the graph of ûS that satisfy an additional set of

pairwise restrictions that are parametrized by α:

coα (ûS) =


(
p, y

)
: ∃p1, . . . , pk , pi ∈∆(Ω) for all i , and ∃λ1, . . . ,λk ≥ 0,

∑k
i=1λi = 1

such that p =∑k
i=1λi pi and y =∑k

i=1λi ûS
(
pi

)
, and

|y j−yi |
d(p j ,pi ) ≤α for every i , j

 .

with the convention that 0
0 = 0, so that if y = ûS(p) then

(
p, y

) ∈ coα (ûS) for all α≥ 0.

If ûS(p) = y then we say that p is the underlying posterior belief that induces y . The set

coα (ûS) contains all the pairs (p, y) for which the value y can be achieved by randomization

over indirect payoffs that are in the graph of ûS , provided that: (i) the weights of the random-

ization are such that the associated underlying posteriors average to p, and (ii) the random-

ization does not involve indirect payoffs whose difference, divided by the distance between

their underlying posteriors, is “too large" (i.e. exceeds α), which would make deception at-

tractive to Sender.

Given α≥ 0, define the value of belief p as follows:

V
(
p,α

)≡ sup
{

y :
(
p, y

) ∈ coα (ûS)
}

.

If (π, y) ∈ coα (ûS) then, by definition, there exists a Bayes plausible distribution τ (namely,

a collection p1, . . . , pk , such that pi ∈ ∆(Ω) for all i , and probabilities λ1, . . . ,λk such that∑k
i=1λi pi = π) that is credible and induces the expected payoff y . Furthermore, given π, if

y can be induced by some Bayes plausible and credible distribution τ then (π, y) ∈ coα (ûS).

The next result follows immediately:

Proposition 2 For every α≥ 0, the highest value that Sender can achieve in the problem (SP1)

is given by V (π,α).14

It may be naively expected that lower deception costs are better for Sender because they

14When the set
{

y :
(
p, y

) ∈ coα (ûS )
}

does not constain its supremum, by “achieve" we mean that it is possible
to approximate V (π,α) arbitrarily closely.
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make it easier for Sender to deceive in a way that benefits her. But deception never happens

in equilibrium in our model, and lower deception costs weaken Sender’s ability to commit,

which hurts Sender. In fact, higher deception costs only expands the domain of message func-

tions that are deemed credible, from which Sender can pick her preferred one. Thus, higher

deception costs are always beneficial for Sender (indeed, if α < α′ then coα (ûS) ⊆ coα′ (ûS)

which implies that V (π,α) ≤ V (π,α′) for any prior π). If deception costs are sufficiently high,

then the credibility constraint becomes non-binding and Sender’s problem becomes identical

to that of the Bayesian persuader of KG.15 The next corollary summarizes these observations:

Corollary 2 For any priorπ, Sender’s value is weakly increasing in the deception cost parameter

α. For high enoughα, Sender’s value becomes identical to that of the Bayesian persuader of KG.

The structure of the set coα (ûS) depends on the distance function d . To proceed, we as-

sume that the distance between any two beliefs p, p ′ ∈ ∆(Ω) is measured by the difference

between the means induced by these distributions, that is:

d
(
p, p ′)= ∣∣µp −µp ′

∣∣ . (3)

Since Receiver’s action and Sender’s payoff depend only on the expected state, we slightly

abuse notation and write ûS(µp ) instead of ûS(p). Thus, the credibility constraint in Sender’s

problem (SP1) can be rewritten as follows:∣∣∣∣ ûS(µp )− ûS(µp ′)

µp −µp ′

∣∣∣∣≤α. (4)

It follows that for any two posterior beliefs that Sender induces in equilibrium, it must be the

case that the gain from deviating from one posterior belief to the other, divided by the distance

between the means of the two posteriors, does not exceed α.

Example 1. Suppose that the payoff relevant part of the state space is binary, with Ω = {0,1}.

In this case, a distribution p over Ω can be represented by the probability q that the state is

ω= 1, and the mean of p is given by µp = q .

Condition (4) has a geometric interpretation. To see it, consider the indirect payoff func-

tion ûS that is depicted in Figure (1a). Suppose that the prior distribution is given by some π ∈
[0,1]. In Bayesian persuasion with full commitment (α=∞) Sender optimizes by “spliting” π

into two probabilities, q and q ′, that are such thatλ·q+(1−λ)·q ′ =π for someλ ∈ [0,1] (Bayes

plausibility) so as to maximize the value of the objective functionλ·ûS
(
q
)+(1−λ)·ûS

(
q ′). The

15To see this, note that co∞ (ûS ) = co(ûS ) and thus V (π,∞) = sup
{

y :
(
p, y

) ∈ co(ûS )
}
, which is exactly the value

of Sender’s problem in KG, for any prior π.

12
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(c) V (π,α) with α ∈ [0,∞]

Figure 1: A Geometric Illustration of Credibility

credibility constraint (4) implies that the slope of the line that connects the payoffs associated

with these two probabilities, ûS
(
q
)

and ûS
(
q ′), cannot exceed α.

Figure (1b) depicts Sender’s value V (π,α) (in Blue) for a fixed deception cost α and differ-

ent values of π. Note that the graph of this function comprises of parts that coincide with the

graph of ûS and parts that are line segments between points on the graph of ûS with slope that

does not exceed α.

Figure (1c) illustrates what happens to V (π,α) when α is varied between zero and infinity.

The uppermost dotted line in the figure corresponds to the graph of V when deception costs

are infinite, i.e., α = ∞ (or are just high enough to be non binding). On the other extreme,

the flat dotted line corresponds to the case where deception is costless. In that case Sender

can only induce posterior beliefs that have identical indirect payoffs. This is the case that is

analyzed by Lipnowski and Ravid (2020). The dotted lines in between correspond to different

values of α; higher lines correspond to higher values of α.

3.1 Continuity and Discontinuity of Sender’s Value Function

We now turn to discuss the continuity of the value function V (π,α). When V is discontinu-

ous, Sender’s expected payoff is highly sensitive to small changes in the prior beliefs and/or

deception costs α.

Our first result shows that continuity of Sender’s indirect payoff function implies conti-

nuity of her value function. The challenge in proving this result is to overcome the fact that

the correspondence that maps the parameters (π,α) into the set of feasible distributions τ is

not lower hemi-continuous (and therefore Berge’s Maximum Theorem does not apply in our

case). This implies that for a given distribution of posterior beliefs τ, a small change in α may

imply that there is no feasible distribution of posterior beliefs in the neighborhood of τ. The

next example 2 illustrates this difficulty.

13
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Figure 2: Continuity of the Distribution of Posteriors

Example 2. Consider an example with two states Ω= {0,1} with equal prior probabilities π=
( 1

2 , 1
2 ), and whereα= 1

2 . Suppose that the function ûS is given by the bold curved line depicted

in Figure (2a). The optimal credible distribution of posterior beliefs in this example is τ =
(0.1,0.9; 1

2 , 1
2 ) and it gives Sender an expected value that is equal to 0.4. To see that credibility

is satisfied, notice that the slope of the line that connects the two points (0.1,0.2) and (0.9,0.6)

(depicted in light blue) is 1
2 , which is smaller than or equal to α.

Suppose now that α is slightly decreased. Observe that it is impossible to find two pos-

terior beliefs close to 0.1 and 0.9, respectively, that satisfy the credibility constraint (i.e., such

that the line that connects the two points associated with these posteriors has a slope smaller

than or equal to the new value of α, which is smaller than 1
2 ). Thus, the correspondence that

maps the parameters (π,α) into the set of feasible distributions is not lower hemi-continuous

at (π,α) = (( 1
2 , 1

2 ), 1
2 ).

To overcome this difficulty, we show that even if a feasible distribution τ is such that for

some small change in (π,α) there is no feasible distribution that is close to τ, then there must

exist another feasible distribution τ̂, that achieves the same expected value for Sender as τ,

and τ̂ is such that for small changes in (π,α) there is a feasible distribution that is close to τ̂.

Example 2 (continued). As illustrated in Figure (2b), there exists a feasible distribution

τ̂= (0.1,0.7; 1
3 , 2

3 ) that generates the same expected value for Sender of 0.4 as τ= (0.1,0.9; 1
2 , 1

2 ).

Note that for any parameters (π′,α′) that are close to (π,α) = (( 1
2 , 1

2 ), 1
2 ), there exists a distribu-

tion over posteriors that is feasible with respect to (π′,α′) and is close to τ̂. For example, it is

possible to pick a binary distribution of posterior beliefs that is supported on 0.1 and 0.7−ε
for some small ε> 0 that depends on α′ and the curvature of the function ûS .

We thus obtain the following result:

14
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Proposition 3 If ûS is a continuous function then V (π,α) is a continuous function in both π

and α.16

The opposite is not true in general: discontinuity of the indirect payoff function ûS does

not necessarily imply that the function V (π,α) is also discontinuous.17 However, in many

cases, a discontinuity in ûS does imply a discontinuity of V (π,α) in both α and the prior π.

Lipnowski, Ravid and Shishkin (2020) interpret the discontinuity in α as a “collapse of trust.”

We illustrate this discontinuity in α in the next example.

Example 3. Suppose that Ω = {0,1}. Consider an indirect sender’s payoff function ûS such

as the one depicted in Figure (3a). Figure (3b) depicts the expected payoff V (π,α) for a given

value ofα (in solid Blue). Notice that for this value ofα, V (π,α) is discontinuous in the priorπ.

As α decreases, the function V (π,α) decreases with it for any π ∈ [0,π′]. Once α drops below

α, the function V coincides with ûS , and so exhibits a discontinuity in α for every π ∈ [0,π′].

Example 3 shows that small changes in prior beliefs may imply large differences in the

expected payoff of Sender. This type of discontinuity stands in contrast with the continuity of

the value function in standard Bayesian persuasion (which is equivalent to the case whereα=
∞). This is because V (π,∞) is the lowest concave function that is above ûS , and is therefore

continuous.18

16A sufficient condition for the function ûS
(
p

)
to be continuous is that the action set A is a convex subset of R

and uR (a,ω) is strictly concave in a for everyω. In this case, for any posterior belief p the function Ep [uR (a,ω))]
is strictly concave in a and so has a unique maximizer. Therefore, by the Theorem of the Maximum, a∗ (

p
)

is
continuous in p which implies that ûS

(
p

)
is continuous in p.

17For example, suppose that Ω = {0,1} and the function ûS is such that ûS
(
q
) = 1 for q ∈ [0, 1

3 ]∪ [ 2
3 ,1] and

ûS
(
q
) = 0 for q ∈ ( 1

3 , 2
3 ). I.e., the function ûS (π) is discontinuous. However, for any prior q ∈ [0,1], there exists a

Bayes plausible distribution of posterior beliefs τ that is supported on the posterior beliefs 0 and 1 that is credible
for any α≥ 0. It therefore follows that V

(
q,α

)= 1 for every q ∈ [0,1] and α≥ 0.
18Since the action space A is compact and the functions uR and uS are continuous, the function uS is upper

hemi-continuous, which implies that its concave closure V is continuous when α=∞.

15



Remark. The particular form of discontinuity in α described in Example 3 hinges on our as-

sumption that, when indifferent, Receiver breaks ties in favor of Sender. The same type of

discontinuity would also arise for any tie-breaking rule in which, when indifferent, Receiver

picks an action that gives Sender a fixed fraction of the available surplus (for example, if Re-

ceiver picks the worst possible action for Sender, or randomizes between the best and worst

actions for Sender with a fixed probability). However, notice that it is possible to restore con-

tinuity by using a more sophisticated tie-breaking rule in which, when indifferent, Receiver

picks the best possible action for Sender, subject to the credibility constraint. To see this, sup-

pose that in Example 3 above, when Receiver’s posterior belief on state 1 is q = π′, Receiver

mixes between the best and worst actions for Sender with probabilities π′α and 1−π′α, re-

spectively. With this tie-breaking rule, the function V (π,α) would be continuous inα (but not

in π). This is because for any prior π ∈ [0,π′], Sender would induce credible beliefs q = 0 and

q =π′, with expected payoffs to Sender of 0 and απ′, respectively, as depicted in Figure (3c).

We conclude this section with the following observation.

Proposition 4 If ûS is Lipschitz continuous with constant K , then the credibility constraint (4)

is never binding for any deception costα larger than K , and it is then possible to implement the

KG solution for Bayesian persuasion with full commitment.

The proposition follows immediately from the definition of Lipschitz continuity (proof

is omitted). Intuitively, credibility constrains the slope
∣∣∣ ûS (µp )−ûS (µp′ )

µp−µp′

∣∣∣ for any two posterior

beliefs p and p ′ in the support of the distribution τ. It therefore follows that if the slope of

the function ûS is bounded below some constant K , then whenever the coefficient α is larger

than K credibility is not binding.

3.2 The Effect of the Cost of Deception

As the cost of deceptionα decreases, the set of credible message functions for Sender shrinks.

Sender can restore her credibility by either adopting a message function in which deception

is more costly, or by adopting a message function in which the gain from deception is smaller.

In this subsection we discuss these two strategies.

The next example shows how Sender can increase the cost of deception in response to a

lower value of α by moving the means of the induced posterior beliefs farther apart.

Example 3 (continued). As α in Figure (3b) is lowered, the posterior beliefs that support

the optimal distribution τ move farther apart. Intuitively, this movement increases the cost

of deception and so restores the credibility of Sender’s message function. This movement

has the effect of “ungarbling” Sender’s communicated information relative to the optimally
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induced posteriors under full commitment. This ungarbling allows Receiver to make a more

informed choice and so increases Receiver’s ex-ante expected payoff.

This result is in the same spirit of what Lipnowski, Ravid and Shishkin (2020) refer to as

“productive mistrust.” Namely, a decrease in Sender’s ability to commit implies that the equi-

librium is more informative and consequently Receiver is made better off.

The other way in which Sender can respond to a decrease in the value ofα is by decreasing

the gain from deception. This can sometimes be achieved by additional garbling of prior

beliefs, through moving the means of the induced posteriors closer together. Whether or not

garbling or ungarbling is better for Sender depends on the specific context.

The next proposition describes a sufficient condition that ensures that Sender responds

to a lower value of α by garbling her message to Receiver.

Proposition 5 Suppose that the state space Ω is binary and Sender’s indirect payoff function

ûS is convex but not linear.19 If α′ > α, then Sender’s optimal distribution of posterior beliefs

under α is a garbling of the optimal distribution under α′. Consequently, lower deception costs

are weakly harmful for both Sender and Receiver.

Figure (4) depicts the case of a convex indirect payoff function ûS and illustrates that a

lowerα results in a distribution τ that is supported on posterior beliefs that are closer together.

Broadly speaking, a lower cost of deception implies it is more difficult for Sender to com-

mit and so is accompanied by a higher level of mistrust. To appreciate the effect of mistrust

it is useful to observe that Sender faces a tension between his incentive to reveal and conceal

information to Receiver. Recall that Receiver always prefers all information to be revealed.

Example 3 depicts a situation where Sender’s and Receiver’s interests are sufficiently opposed

for Receiver to benefit from Sender’s difficulty to commit. Proposition 5 depicts a situation

where Sender’s and Receiver’s interests are sufficiently aligned for both Sender and Receiver

19If Sender’s indirect payoff function is linear, then a message function that induces a single posterior belief
that is equal to the prior is optimal.
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to suffer from Sender’s difficulty to commit. In the former case, Sender prefers to not disclose

all the available information, and in order to preserve her credibility, she has to disclose more

than she would want to if she was trusted by Receiver; in the latter case, Sender prefers to

fully disclose all the available information, and in order to preserve her credibility, she has to

disclose less than she would want to if she was trusted by Receiver. Notice however that in the

two extreme cases of diametrically opposed and mutual Sender’s and Receiver’s interests with

respect to the revelation of information, a change in the value of α makes no difference. In

the case of opposing interests, silence on Sender’s part is always credible. And, when Sender

and Receiver have mutual interests, Sender would anyway not want to mislead Receiver.

4 Credible “Cheap Talk”

In the previous section we considered a model in which Sender’s payoff is independent of the

state of the world. In this section, we consider a model in which Sender’s payoff does depend

on the state. To that end we focus our attention a finite version of Crawford and Sobel’s (1982)

classic uniform-quadratic example.

Suppose that the set of states is given by ΩN = {
0, 1

N , 2
N , . . . , N−1

N ,1
}

for some large N , with

a uniform prior distribution. The set of Receiver’s actions is given by A = R. Sender and Re-

ceiver’s payoff functions are given by uS(a,ω) = − (a − (ω+b))2 and uR (a,ω) = − (a −ω)2, re-

spectively, for some b ≥ 0.

We retain the assumption that the distance between any two beliefs p, p ′ ∈∆(ΩN ) is given

by the difference between the means of these two beliefs, that is d(p, p ′) = |µp −µp ′ |. Hence,

the cost of deception, namely the cost of inducing belief p ′ instead of p, is given byα·|µp−µp ′ |.
When α= 0, our model coincides with that of Crawford and Sobel (1982).

Sender chooses a set of messages M = {
m1, . . . ,m J

}
and a message function σ :ΩN → M .

For simplicity, we restrict our attention to pure strategy message functions with full support

on the set of messages. This allows us to identify a message function with the partition it

induces over the set of states ΩN . We also identify each message m with the set of states

where message m is sent, m ≡ {ω :σ(ω) = m}.

We denote the number of elements in the set m by |m|. The probability of sending message

m is denoted ρ(m) = |m|
N+1 . For simplicity, we assume that each message contains at least two

states 20 The mean of message m is denoted µm ≡ E [ω |ω ∈ m]. We denote by m and m the

smallest and largest states in m, respectively.

Receiver observes the message sent by Sender and chooses an action a ∈ A. Denote

20Because N can be chosen to be arbitrarily large, this does not impose a positive lower bound on the prob-
ability of each message. That is, it does not constrain the “fineness” of the message functions we consider. We
make use of this assumption in the proof of Proposition 6 below.
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Receiver’s posterior belief over the state of the world, after observing the message m, by

pm ∈ ∆(Ω). Given Sender’s message strategy σ, the belief pm is computed using Bayes rule

as follows:

pm [ω] =
{

1
ρ(m) if ω ∈ m

0 if ω ∉ m

A simple calculation shows that if Sender employs the message functionσ, then the action

that maximizes Receiver’s payoff, following message m, is given by the mean of m, i.e.:

a∗ (m) =µm .

Thus, the expected payoff to Sender from employing the messages function σ is given by:

− ∑
m∈M

ρ (m)Var[ω|ω ∈ m] (5)

up to a constant.21 The objective of Sender is, therefore, to find the credible message function

σ that maximizes (5).

Given a message function σ, we order the messages according to the conditional means

they induce, and denote the k th message by mk and its mean byµk . If two messages induce an

identical expectation then they can be merged into one message without affecting credibility

or the value of the objective function. Thus, no loss of generality is implied by assuming that

µ1 < ·· · <µJ (where the total number of messages, J , is less than N by Corollary 1).

Under a credible message function, type ω ∈ mk of Sender prefers sending message mk to

sending any other message. In particular, she prefers sending mk to sending mk+ j with j ≥ 1:

− (
ω−µk +b

)2 ≥−(
ω−µk+ j +b

)2 −α(
µk+ j −µk

)
. (6)

The left-hand side of (6) is typeω’s payoff from sending the message mk , after which Receiver

takes the action µk . The right-hand side is type ω’s payoff from sending the message mk+ j ,

inducing Receiver’s action µk+ j but suffering deception cost of α · (µk+ j −µk
)
.

Rewriting (6) yields: µk +µ j+k

2
−ωk ≥ b − α

2

for all ω ∈ mk . Thus, a necessary and sufficient condition that ensures that any type ω ∈ mk

prefers reporting mk to any other message mk+ j with j ≥ 1 is the following incentive compat-

ibility constraint:
µk +µk+1

2
−mk ≥ b − α

2
. ICup(k)

The constraint ICup(k) is said to be binding if it is satisfied, but would have been violated

21Given a message function σ, Sender’s expected payoff −∑
m∈M ρ (m)E

[
(a∗(m)−ω−b)2 |ω ∈ m

]
is equal to

−∑
m∈M ρ (m)E

[
(a∗(mi )−ω)2 |ω ∈ m

]
up to a constant that is independent of σ. This last expression is equal to

the expected induced variance (5) and also (by definition) to Receiver’s expected payoff.
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if another message m, which is different from both mk and mk+1, had been sent in state mk+1.

An analogous argument shows that a necessary and sufficient condition that ensures that

all types ωk ∈ mk prefer reporting mk to any other message mk− j with j ≥ 1 is:

µk−1 +µk

2
−mk ≤ b + α

2
. ICdown(k)

A partition that satisfies the incentive constraints ICup(k) and ICdown(k), for all k ≥ 1, is

said to be a credible partition. A credible partition that maximizes Sender’s objective function

(5) is said to be optimal.

Inspection of the IC constraints and objective function (5) reveals the following result:

Lemma 1 If α≥ 2b then a partition ofΩN into singletons is optimal for Sender for any N .

Notice that a partition ofΩN into singletons is equivalent to a message function that fully

reveals the state (i .e.,σ(ω) =ω). Lemma 1 implies that we may hereafter restrict our attention

to the case where α< 2b. Another consequence of the IC constraints is the following:

Lemma 2 The number of messages in a credible partition is bounded from above by 1/(2b−α).

We proceed with the following definition.

Definition 2 A message mk is said to be convex if for every three states ω < ω′ < ω′′, if ω,ω′′ ∈
mk , then also ω′ ∈ mk . A partition ofΩN into convex messages is said to be a convex partition.

Crawford and Sobel (1982) famously showed that any equilibrium of the cheap talk model

induces a convex partition. In our model this result no longer holds. In fact, any partition is

credible for values of α that are sufficiently high. This implies the following two observations:

(1) In Crawford and Sobel (1982), if type ω is indifferent between two messages m,m′ with

µm < µm′ , then every type ω′ > ω strictly prefers m′ over m and every type ω′′ < ω strictly

prefers m over m′ (this is a consequence of the assumption that Sender’s preferences satisfy

the single crossing property). In contrast, in our setting, because the cost of switching to a

different message is endogenous and depends on type’s equilibrium message, it is possible to

have two types ω<ω′ such that ω′ prefers m over m′ but ω prefers m′ over m.

(2) In Crawford and Sobel (1982) the first element of the partition determines the entire par-

tition structure. This is because the structure of the partition is determined by a set of types

who are indifferent between pairs of contiguous elements in the partition. In contrast, in our

case, even if we restrict our attention to only convex partition structures, then many more

convex partitions are possible. Specifically, fixing the first element of the partition does not
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pin down the next elements of the partition. Moreover, indifference conditions are not a nec-

essary feature of the partition. Namely, it is possible to have convex partitions in which no

type is indifferent between any pair of messages.22

We show that Sender’s optimal message function σ that minimizes the weighted variance

(5) induces a convex partition of the set ΩN for large enough N . The main challenge is that,

given a credible message function, it is difficult to find a credible “global” improvement for

it. And, “local” improvements may violate credibility. Our approach is to perform a sequence

of local improvements that converge to a convex partitional structure while correcting for

violations of credibility along the way.

The next definition formalizes a notion of a partially convex message function. It is instru-

mental in describing the way in which a given message function σ is iteratively transformed

through a sequence of steps, parametrized by k, into a fully convex message function that

induces a convex partitional structure on a subset of low states.

Definition 3 A partition of ΩN into messages is said to be “tightly packed with k messages” on

a set
{
0, 1

N , . . . , l
}

if:

1. The union of the first k messages covers
{
0, 1

N , . . . , l
}
, i.e. ∪k

j=1m j =
{
0, 1

N , . . . , l
}
;

2. Each message m j , j ≤ k, is convex; and

3. The incentive constraints ICup(1), . . . , ICup(k −1) are all binding.

The next lemma characterizes the maximal number of messages that can be tightly packed

into a set
{
0, 1

N , . . . , l
}
.

Lemma 3 Given a length l ∈ ΩN , there exists a number N̂ such that for all N > N̂ , the

maximal number of messages that can be tightly packed into the set
{
0, 1

N , . . . , l
}

is given by

I (l ) ≡
⌈√

1
4 + l

2b−α − 1
2

⌉
.23

Inspection of the proof of Lemma 3 reveals that if two partitions are tightly packed on the

set
{
0, 1

N , . . . , l
}

and have the same number of elements on this set, then they coincide on this

set. Therefore, there is a unique partition with I (1) elements on the set {0, . . . ,1}. As expected,

ifα= 0 then I (1) is also the number of intervals in the most informative equilibrium identified

in the uniform quadratic example in Crawford and Sobel (1982).

The next proposition describes the optimal partition for Sender.

22We note that this last observation is not a consequence of the fact that we consider a discrete version of
Crawford and Sobel’s model, and would persist even if we let the set of statesΩ be a continuum.

23The function dxe denotes the smallest integer larger than or equal to x.
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Proposition 6 There exists a number N̂ such that for all N > N̂ , the optimal partition of ΩN

consists of I (1) =
⌈√

1
4 + 1

2b−α − 1
2

⌉
tightly packed messages onΩN .

To prove Proposition 6 we provide an iterative convergent algorithm that improves upon

any credible partition that does not partition the set ΩN into I (1) tightly packed messages.

We describe the algorithm in the text and defer the detailed proof to the appendix.

Start with a credible partition that does not consist of I (1) tightly packed messages on

ΩN . Let k be the highest index for which the messages m1, . . . ,mk−1 are tightly packed on

the set {0, . . . , lk−1} where l j ≡ 1
N

(|m1|+ · · ·+ ∣∣m j
∣∣) for any j > 0. Figure (5a) illustrates such

a partition (notice that messages mk ,mk+1,mk+2 are not convex). If no such collection of

messages exists, then k = 1. And if all the messages are already tightly packed, but the number

of messages is smaller than I (1), then k is equal to the number of messages in that partition.

Algorithm Convexify and repack

Require: Messages m1, ...,mk−1 are convex and tightly packed on {0, . . . , lk−1}

Part I - Convexify message mk to the Left

1: while message mk is not convex and adjacent to message mk−1 do
2: let ω be the smallest state in mk for which (ω− 1

N ) ∈ m j for some m j with j > k
3: “swap” states ω and ω− 1

N between messages mk and m j as follows:
4: reassign state ω from message mk into message m j , and
5: reassign state ω− 1

N from message m j into message mk ;
6: end while

Part II - Repack

7: Repartition {0, . . . , lk } into I (lk ) tightly packed messages.

The algorithm described above “packs message mk ” and produces a new partition in

which I (lk ) messages are tightly packed on the set of states {0, . . . , lk }, all the ICup constraints

are satisfied and the modified partition yields a higher value of the objective function (5) to

Sender, compared to the original partition.

The algorithm consists of two parts. In Part I message mk is “convexified to the left”

through a series of swaps of messages across states until message mk is convex and placed

immediately to the right of message mk−1. At the end of Part I of the algorithm, the partition

(i.e. message function) takes the form depicted in Figure 5(b). Intuitively, convexification to

the left improves the value of the objective function because it decreases the variance of some

messages while not affecting the variance of others and not affecting the probabilities with

which messages are sent. However, notice that after the change ICup(k −1) may no longer

hold. This is because the convexification to the left of mk decreases the mean µk , making it
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Figure 5: The Convexification of Message mk

more attractive for higher types in mk−1 to deviate and report mk . To restore incentive com-

patibility we proceed to the second part of the algorithm.

Part II of the Algorithm repartitions the set {0, . . . , lk } into I (lk ) tightly packed intervals.

In the proof we show that this suffices to ensure that all the other ICup constraints are also

satisfied, and in particular ICup (I (lk )). The result of this part is depicted in Figure 5(c). Note

that it could be the case that I (lk ) = k −1, so that repartitioning may in fact decrease the total

number of messages. Nevertheless, in the proof we show that the overall effect of convexifying

mk to the left and re-partitioning {0, . . . , lk } improves the value of the objective function.

If the partition generated by the algorithm does not consist of I (1) messages that are

tightly packed on ΩN , then we apply the algorithm again on that partition. Because in each

iteration of the algorithm the cardinality of the set of states on which the message function is

tightly packed strictly increases, the process converges to the partition with I (1) tightly packed

messages onΩN in a finite number of iterations.

In the proof we show that whenever all the ICup constraints are binding, which is the case

in any partition that consists of tightly packed messages, then all the ICdown constraints are

satisfied as well. Thus, the obtained partition, in which I (1) messages are tightly packed on

ΩN is credible.

We conclude this section with a characterization of the messages that are induced by the

optimal partition.24

Corollary 3 The optimal partition consists of l (1) messages. As the number of states N tends to

24The corollary is an immediate implication of the facts that I (1) messages are tightly packed, and that the
highest state in the I (1)’s message is 1, as N →∞.
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infinity, message mk , k ∈ {1, . . . , I (1)} is sent in states mk−1 ≤ω≤ mk where:

mk = k

I (1)
+2

(
b − α

2

)
k(k − I (1)).

Notably, the value of mk that is described in the corollary is identical to the value charac-

terized by Crawford and Sobel (1982), except that in the expression here, Sender’s bias is offset

by the cost parameter, so that instead of b in Crawford and Sobel’s result, we have b − α
2 .

5 Conclusion

The assumption that Sender is able to commit to her strategy is crucial for Bayesian per-

suasion, because different messages induce different actions, and Sender must be genuinely

trusted to not just send the message that induces the action that she prefers the most. We

addressed the question of what happens if this assumption is not satisfied by introducing a

model of information design with endogenous deception costs.

As explained, the introduction of the possibility of costly deception bridges the gap be-

tween the assumption of full commitment that is employed in the information design litera-

ture (Bergemann and Morris, 2019) and the assumption of no commitment at all (cheap talk)

that is employed in the literature on communication games (Crawford and Sobel (1982) and

the subsequent literature.

In many situations, an agent with superior information, but imperfect commitment

power, shares this information strategically in order to influence the behavior of other agents.

In some cases, this imperfect commitment is mitigated by the fact that deception is costly.

The framework presented here provides a foundation for an exploration of these issues.
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Appendix: Proofs

Proof of Proposition 1

We begin with the proof of part (i) of the proposition. Suppose that a message function σ

sends more than |Ω| + 1 messages with a positive probability each. Every message m ∈ M

that is sent by σ induces a posterior belief (distribution) pσ
m over the states. This belief can be

represented by a vector inR|Ω|−1. Sender’s indirect material payoff from inducing the posterior

belief pσ
m is ûS(pσ

m) as in Equation (1). Thus, each message m that is sent byσ induces a vector

(pσ
m , ûS(pσ

m)) ∈R|Ω|.
Denote Sender’s ex-ante expected payoff under σ by US(σ). Then,

∑
m∈M

pσ(m) · (qσm , ûS(pσ
m)) = (π,US(σ)) ∈R|Ω|

where
∑

m∈M qσ(m) ·pσ
m =π ∈R|Ω|−1 follows from Bayes plausibility: the mean of the induced

posterior beliefs is equal to the prior belief, and
∑

m∈M qσ(m)·ûS(pσ
m) =US(σ) ∈Rby definition

of US(σ). Therefore, the vector (π,US(σ)) ∈R|Ω| belongs to the convex hull that is generated by

the set {(pσ
m , ûS(pσ

m))}m∈M .

By Carathéodory’s Theorem (Rockafellar (1997), Theorem 17.1) it is possible to write

the vector {(π,US(σ)} as convex combination of no more than |Ω| + 1 elements in the set

{(pσ
m , ûS(pσ

m))}m∈M .
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Suppose that the messages that induce these |Ω|+1 beliefs in the original message func-

tion σ are given by m1, . . . ,m|Ω|+1. Consider a message function σ′ that sends messages

m′
1, . . . ,m′

|Ω|+1 that induce the same posterior beliefs as those induced by m1, . . . ,m|Ω|+1, with

the probabilities determined by Carathéodory’s Theorem. By construction, pσ′
m′

j
= pσ

m j
for

j ∈ {1, · · · , |Ω| + 1}. Note that the message function σ′ generates the same ex-ante expected

payoff to Sender as σ.

We now show that the message function σ′ satisfies credibility. Observe that:

qσ(m j ,ω) = 0 ⇒ qσ
′
(m′

j ,ω) = 0 ∀ j ∈ {1, · · · , |Ω|+1},∀ω ∈Ω.

Because, otherwise, qσ
′
(m′

j ,ω) > 0 = qσ(m j ,ω) for some j ∈ {1, · · · , |Ω| +1} and ω ∈Ω. Then,

pσ′
m′

j
[ω] > 0 while pσ

m j
[ω] = 0. This is a contradiction to the fact that pσ′

m′
j
= pσ

m j
for j ∈

{1, · · · , |Ω| + 1}. Thus, every belief that is induced by σ′ in some state ω was also induced by

σ in ω. Therefore, the credibility of σ implies the credibility of σ′.
We now turn to prove part (ii) of the proposition. Part (i) of the proposition implies that we

may restrict our attention to message functions that employ no more than |Ω|+1 messages.

Consider a message functionσ that employs |Ω|+1 messages, that induce posterior beliefs

p1, . . . , p|Ω|+1 with probabilities λ1, . . . ,λ|Ω|+1, respectively, such that
∑|Ω|+1

i=1 λi pi = π. Denote

the set of these posterior beliefs by P = {p1, . . . , p|Ω|+1} and denote the ex-ante expected payoff

to Sender that is generated by σ by
∑|Ω|+1

i=1 λi · ûS(pi ) ≡ U . We may assume that each λi is

positive and that each pi is different from π because otherwise it is possible to induce an

ex-ante expected payoff that is at least U with no more than |Ω| messages.

We proceed with the following lemma.

Lemma A.1 Suppose that S = {x1, . . . , xd+2} is a set of d+2 vectors inRd . For any vector p ∈Rd in

the convex hull generated by S, denoted co(S), there exist at least two distinct subsets S′,S′′ ⊂ S

with no more than d +1 elements each, such that p ∈ co(S′)∩co(S′′).

Proof. For any vector x ∈Rd , denote the vector’s i th coordinate by x[i ], and set x̄ ≡ (1
x

) ∈Rd+1.

Define the matrices X = [x1 x2 · · · xd+2] ∈ Rd×(d+2) and X = [x̄1 x̄2 · · · x̄d+2] ∈ R(d+1)×(d+2).

Since p ∈ co(S), there exists a vector λ = (λ[1], . . . ,λ[d+2])
T ∈ Rd+2 such that

∑d+2
i=1 λ[i ] = 1 and

Xλ= p.

The vectors x̄1, x̄2, . . . , x̄d+2 are linearly dependent. Hence, there is a vector α =
(α[1], . . . ,α[d+2])

T ∈ Rd+2, with coordinates not all equal to zero, such that α ∈ ker
(

X
)
. Since∑d+2

i=1 α[i ] = 0 then α has at least one positive coordinate and at least one negative coordinate.

Suppose without loss of generality that the coordinates in α are ordered such that λ[1]
α[1]

≤
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· · · ≤ λ[k]
α[k]

< 0 < λ[k+1]
α[k+1]

≤ ·· · ≤ λ[d+2]
α[d+2]

. We can therefore decompose the vector p as follows:

p =
d+2∑
i=1

λ[i ]x̄i =
k∑

i=1
λ[i ]x̄i +

λ[k+1]

α[k+1]

d+2∑
i=k+1

α[i ]x̄i +
d+2∑

i=k+2

(
λ[i ]

α[i ]
− λ[k+1]

α[k+1]

)
α[i ]x̄i .

Substituting
∑d+2

i=k+1α[i ]x̄i =−∑k
i=1α[i ]x̄i and rearranging yields

p =
k∑

i=1

(
λ[i ]

α[i ]
− λ[k+1]

α[k+1]

)
α[i ]x̄i +

d+2∑
i=k+2

(
λ[i ]

α[i ]
− λ[k+1]

α[k+1]

)
α[i ]x̄i .

Therefore, the vector β= (β[1], . . . ,β[d+2])
T that is defined such that β[i ] =

(
λ[i ]
α[i ]

− λ[k+1]
α[k+1]

)
α[i ]

satisfies
∑d+2

i=1 β[i ] = 1 and Xβ = p and all its coordinates are non-negative. A similar argu-

ment shows that the vector γ= (γ[1], . . . ,γ[d+2])
T that is defined such that γ[i ] =

(
λ[i ]
α[i ]

− λ[k]
α[k]

)
α[i ]

satisfies
∑d+2

i=1 γ[i ] = 1 and Xγ= p and all its coordinates are non-negative.

Let S′ = {x1, . . . , xk , xk+2, . . . , xd+2} and S′′ = {x1, . . . , xk−1, xk+1, . . . , xd+2}. We have therefore

showed that p ∈ co(S′) and p ∈ co(S′′). Moreover, notice that λ[i ] = νβ[i ] + (1−ν)γ[i ] where

ν= 1

1− λk+1
αk+1

αk
λk

.

By Lemma A.1, given any set of beliefs P = {p1, . . . , p|Ω|+1} that are each different

from π, which are induced with positive probabilities λ1, . . . ,λ|Ω|+1, respectively, such that∑|Ω|+1
i=1 λi pi = π, there exist at least two subsets of beliefs P ′,P ′′ ⊂ P with no more than |Ω|

elements each, with associated probabilities λ′ and λ′′, which also average the prior belief π.

With slight abuse of notation we also use λ′ and λ′′ to denote the |Ω|+1 dimensional vectors

of probabilities p1, . . . , p|Ω|+1 where instead of the probability associated with the belief that is

missing from the subset P ′ and P ′′, respectively, we write zero.

Inspection of the proof of Lemma A.1 reveals that the vector λ can be written as a convex

combination of the vectors λ′ and λ′′. Therefore, the expected payoff U = ∑|Ω|+1
i=1 λi · ûS(pi )

can be written as a convex combination of the expected payoffs U ′ = ∑|Ω|+1
i=1 λ′

i · ûS(pi ) and

U ′′ = ∑|Ω|+1
i=1 λ′′

i · ûS(pi ) associated with the two vectors of probabilities λ′ and λ′′. It follows

that either U ′ or U ′′ is larger than or equal to U .

Finally, the message functions σ′ and σ′′ that induce the posterior beliefs in P ′ and P ′′,
respectively, satisfy credibility because of the same argument used in the proof of part (i) of

the proposition. Namely:

qσ(m j ,ω) = 0 ⇒ qσ
′
(m′

j ,ω) = 0, pσ′′
(m′

j ,ω) = 0 ∀ j ∈ {1, · · · , |Ω|+1}.

Because, otherwise, qσ
′
(m′

j ,ω), qσ
′′
(m′

j ,ω) = 0 > 0 = qσ(m j ,ω). A contradiction. Thus, it is

never the case that a message is sent under σ′ in a state where it was not sent under σ. There-

fore, the credibility of σ implies the credibility of σ′ and σ′′.
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Proof of Proposition 3

Fix a belief p∗ and a cost parameter α∗ ≥ 0. We show that for any (p,α) close to (p∗,α∗)

(according to the Euclidean metric), V (p,α) is close to V (p∗,α∗).

Denote the set of posterior beliefs induced by the optimal message function (under the

belief p∗ and the cost parameter α∗) by P and denote the induced distribution over P by τ.25

For any two posterior beliefs p, p ′ ∈ P , denote the weighted mean of p and p ′ by

µp,p ′ ≡ τ(p)

τ(p)+τ(p ′)
·µp + τ(p ′)

τ(p)+τ(p ′)
·µp ′ .

Define

g (µp ,µp ′) ≡ ûS(µp ′)− ûS(µp )

µp ′ −µp
.

The value of g (µp ,µp ′) can be interpreted as the slope of the line that connects the point

(µp , ûS(µp )) with the point (µp ′ , ûS(µp ′)) on the mean/payoff plane. In Figure (6a) this is the

slope of the dashed line. Notice that, given three posterior beliefs p, p ′ and p ′′ that are such

that µp < µp ′ < µp ′′ , if g (µp ,µp ′) = g (µp ′ ,µp ′′) = α∗ then g (µp ,µp ′′) = α∗. In this case, we

the three points (µp , ûS(µp )), (µp ′ , ûS(µp ′)) and (µp ′′ , ûS(µp ′′)) are all on the same line in the

mean/payoff plane.

Credibility of the optimal message function implies that |g (µp ,µp ′)| ≤ α∗ for any pair of

posterior beliefs p, p ′ ∈ P . If the inequality is strict for all such pairs (i.e. the credibility con-

straint is not binding), then clearly the same value of V can be achieved by employing the

same distribution of posteriors τ over the set of posterior beliefs P for anyα that is sufficiently

close to α∗.

We therefore assume that there is at least one pair of posterior beliefs p, p ′ ∈ P for which

g (µp ,µp ′) = α∗ (the case of −g (µp ,µp ′) = α∗ is analogous and is omitted). The next two lem-

mas are useful for the analysis that follows:

Lemma A.2 Let p, p ′ ∈ P be such that µp < µp ′ . For any two posterior means µx ,µy such that

µp ≤ µx < µp,p ′ < µy ≤ µp ′ there exists a set of posterior beliefs P̂ = P \ {p, p ′}∪ {x, y}, where x

and y are posterior beliefs that induce the means µx and µy , respectively, and a Bayes plausible

distribution τ̂ over P̂ that is such that

τ̂(x) = (τ(p)+τ(p ′)) · µy −µp,p ′

µy −µx

τ̂(y) = (τ(p)+τ(p ′)) · µp,p ′ −µx

µy −µx

25If such posteriors do not exist, pick posterior beliefs that induce a value of V that is close to V (p∗,α∗).
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ûs

z2,µp µp ′

µp,p ′

x

(c)

Figure 6

and τ̂= τ otherwise. We refer to the substitution of p, p ′ by x, y as the replacement of p and p ′

by x and y. Furthermore, if g (µp ,µx) = g (µx ,µy ) = g (µy ,µp ′), then the value of V induced by τ

is the same as the value of V induced by τ̂.

Lemma A.3 Suppose that p, p ′, p ′′ ∈ P are three posterior beliefs with means µp < µp ′ < µp ′′

such that g (µp ,µp ′) = g (µp ′ ,µp ′′) =α∗. Then, it is possible to eliminate either p, or p ′′, or both,

from P, and adjust the distribution over posteriors τ, in a way that preserves the value of V and

preserves credibility.

Fix a pair of posterior beliefs p, p ′ ∈ P for which g (µp ,µp ′) =α∗. By Lemma A.3, no loss of

generality in implied by assuming that g (µp ,µy ) <α∗ for all y ∈ P \{p, p ′} (as otherwise at least

one posterior belief can be eliminated from P ). Credibility then implies that µy ∉ (µp ,µp ′) for

all y ∈ P \ {p, p ′}. 26

We distinguish between three cases:

(i) Suppose that g (µp ,µp,p ′) = α∗. In this case, the point (µp,p ′ , ûS(µp,p ′)) lies on the line

that connects the points (µp , ûS(µp )) and (µp ′ , ûS(µp ′)) in the mean/payoff plane, as il-

lustrated in Figure (6a).

Modify the message function such that in any state in which the messages that induce

p and p ′ were sent, the message function now sends only one message. Denote the

posterior belief induced by this new message by p ′′ and notice that the mean of p ′′ is

µp ′′ = µp,p ′ . The fact that g (µp ,µp,p ′) = g (µp,p ′ ,µp ′) = α∗ implies that the value of V is

unaffected by the modification (see also the proof of Lemma A.3).

26To see this, suppose by way of contradiction that µy ∈ (µp ,µp ′ ) and that ûS (µp ′ ) > ûS
(
µp

)
(the other case

is handled similarly). Since g
(
µp ,µy

) < α∗ then ûS (µp ′ )− ûS (µy ) > ûS (µp ′ )− ûS
(
µp

)− (µy −µp ) ·α∗. Using the
fact that g (µp ,µp ′ ) =α∗ we obtain ûS (µp ′ )− ûS (µy ) > (µp ′ −µy )α∗, and since µy ∈ (µp ,µp ′ ) then g

(
µy ,µp ′

)>α∗,
contradicting credibility of the message function.
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After the modification, we have that |g (µp ′′ ,µy )| < α∗ for all y ∈ P \ {p, p ′}. Intuitively,

this is because for any µy ∉ (µp ,µp ′), the slope of the line that connects the point

(µy , ûS(µy )) with the point (µp ′′ , ûS(µp ′′)) in the mean/payoff plane is between the slopes

of: (A) the line that connects (µy , ûS(µy )) with (µp , ûS(µp )) and (B) the line that connects

(µy , ûS(µy )) with (µp ′ , ûS(µp ′)). Since, by credibility, both (A) and (B) are smaller thanα∗

in absolute value, the result follows.

Formally, fix any posterior belief y ∈ P \ {p, p ′}. Since g (µp ,µp ′′) =α∗, we have that

g
(
µy ,µp ′′

)= u
(
µp ′′

)−u
(
µy

)
µp ′′ −µy

= u
(
µp

)+α∗ (
µp ′′ −µp

)−u
(
µy

)
µp ′′ −µy

.

Differentiating g with respect to µp ′′ yields:

∂g
(
µy ,µp ′′

)
∂µp ′′

= (
µp −µy

) α∗− g
(
µy ,µp

)(
µp ′′ −µy

)2 . (7)

Recall that g
(
µy ,µp

) < α∗ for all y ∈ P \ {p, p ′}. Thus, if µy < µp , the right-hand side of

Equation (7) is positive and so g
(
µy ,µp

) < g
(
µy ,µp ′′

) < g (µy ,µp ′). And, if µy > µp ′ , the

right-hand side of Equation (7) is negative and so g
(
µy ,µp

)> g
(
µy ,µp ′′

)> g (µy ,µp ′). It

follows that |g (
µy ,µp ′′

) | < max[|g (
µy ,µp

) |, |g (µy ,µp ′)|] ≤α∗ for all µy 6∈ [µp ,µp ′].

Thus, the modified message function eliminates a pair of posterior beliefs for which the

credibility constraint was binding, and replaced it with one posterior belief for which

credibility is not binding with any other element in P .

(ii) Suppose that g (µp ,µp,p ′) < α∗. In this case, the point (µp,p ′ , ûS(µp,p ′)) is below the line

that connects the points (µp , û(µp )) and (µp ′ , û(µp ′)) in the mean/payoff plane, as illus-

trated in Figure 6b).

Let z1 ∈ [µp ,µp ′] be the lowest mean that is greater than µp,p ′ for which g (µp , z1) = α∗,

i.e. z1 = min[x|x >µp,p ′ and g (µp , x) =α∗]. Note that z1 necessarily exists, by the conti-

nuity of g and the intermediate value theorem (it could be the case that z1 =µp ′).

Replace the posteriors p and p ′ by the posteriors p and p ′′, where p ′′ is a posterior with

mean z1, in the manner described in Lemma A.2 and illustrated in Figure (6b). This

modification does not change the value of the function V because g (µp ,µp ′) = g (µp , z1).

Credibility of the original message function, and the fact that z1 ∈ (µp ,µp ′), imply that

|g (µy ,µp ′′)| < α∗ for all y ∈ P \ {p} (the analysis is identical to the one presented in case

(i) above). Therefore the modified message function satisfies credibility.

Continuity of g implies that, for any ε > 0, there exists a δ̂ > 0, such that if 0 < δ < δ̂

then there exists x ∈ [z1 − ε, z1] such that |g (µy , x)| ≤ α∗ −δ for all y ∈ P \ {p ′}. Thus,
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when α is close to α∗, we can modify the message function (by replacing the posterior

beliefs p and p ′′ by p and p ′′′, where p ′′′ is a posterior belief with mean x, in the manner

described in Lemma A.2 and illustrated in Figure 6b), such that credibility is satisfied

and the value of V is only slightly affected.27

(iii) Suppose that g (µp ,µp,p ′) > α∗. In this case, the point (µp,p ′ , ûS(µp,p ′)) is above the line

that connects the points (µp , û(µp )) and (µp ′ , û(µp ′)) in the mean/payoff plane, as illus-

trated in Figure 6c).

Let z2 ∈ [µp ,µp ′] be the highest value that is smaller than µp,p ′ for which g (µp , z2) =
α∗, i.e. z2 = max[x|x < µp,p ′ and g (µp , x) = α∗]. For brevity of notation we define

g (µp ,µp ) = α∗ and allow z2 to be equal to µp , which is the case that is illustrated in

Figure (6c). As in case (ii), z2 necessarily exists by the continuity of g .

If z2 6= µp , replace the posteriors p and p ′ by the posteriors p ′′ and p ′, where p ′′ is a

posterior with mean z2, in the manner described in Lemma A.2. As in case (ii) above,

this modification preserves the value of V and the credibility of the message function.

Continuity of g implies that, for any ε > 0, there exists a δ̂ > 0, such that if 0 < δ < δ̂

then there exists x ∈ [z2, z2 +ε] such that |g (µy , x)| ≤α∗−δ for all y ∈ P \ {p ′}. As in case

(ii) above, when α is close to α∗, we can modify the message function (by replacing the

posterior beliefs p ′ and p ′′ by p ′ and p ′′′, where p ′′′ is a posterior belief with mean x, in

the manner described in Lemma A.2 and illustrated in Figure 6c), such that credibility

is satisfied and the value of V is only slightly affected.

Thus, for any pair of posterior beliefs p, p ′ ∈ P for which credibility is binding in the orig-

inal message function, and for any small change in α∗, it is either the case that this pair can

be eliminated without affecting the value of V (case i), or there exists a modification of the

message function that restores credibility while only slightly affecting the value of V (cases ii

and iii). Therefore, if (p∗,α) is close to (p∗,α∗) then the value V (p∗,α) is close to V (p∗,α∗).

To complete proof, suppose that the belief p is close to the belief p∗. Suppose also that the

optimal message function under p∗ induces a (credible) distribution τ over a set of posterior

beliefs P . Then, there is a distribution τ̂ on the same set of posterior beliefs P , that assigns

only slightly different weights to the elements of P compared to τ, that is Bayes plausible and

credible. Therefore, when (p,α) is close to (p∗,α∗), the value V (p,α) is close to V (p∗,α∗).

27This is because ûS is a continuous function and because the the distribution over posterior beliefs, τ̂, that is
described in the statement of Lemma A.2, is only slightly affected by the modification.
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Proof of Lemma A.2

Observe that this replacement of posteriors is performed in a way that contracts the distri-

bution of posterior means and preserves both the conditional mean µp,p ′ and the mean µp∗ .

This implies that τ̂ second-order-stochastically-dominates (SOSD) τ. This ensures that the

distribution τ̂ is Bayes plausible.

Suppose now that g
(
µp ,µx

) = g
(
µx ,µy

) = g
(
µy ,µp ′

)
. Sender’s value (V ) from employing

the modified message function is given by:∑
q∈P\{p,p ′}∪{x,y}

τ̂
(
q
) · ûS

(
q
)= ∑

q∈P\{p,p ′}
τ̂
(
q
)

ûS
(
q
)+ τ̂ (x) · ûS

(
µx

)+ τ̂(
y
) · ûS(µy ). (8)

By construction, we have that τ̂ (x) = µy−µp

µy−µx
·τ(

p
)− µp′−µy

µy−µx
·τ(

p ′). Since g
(
µp ,µx

)= g
(
µx ,µy

)=
g

(
µy ,µp ′

)
, then

τ̂ (x) = ûS(µy )− ûS(µp )

ûS(µy )− ûS(µx)
·τ(

p
)− ûS(µp ′)− ûS(µy )

ûS(µy )− ûS(µx)
·τ(

p ′) .

By plugging this expression of τ̂ (x), and τ̂
(
y
)= τ(

p
)+τ(

p ′)− τ̂ (x), into the right-hand side of

Equation (8) we obtain:∑
q∈P\{p,p ′}

τ̂
(
q
)

ûS
(
q
)+τ(

p
) · ûS

(
µp

)+τ(
p ′) · ûS(µp ′) = ∑

q∈P
τ̂
(
q
)

ûS
(
q
)

,

which is Sender’s value under the original message function.

Proof of Lemma A.3

Suppose that a credible message function induces the three posterior beliefs p, p ′, p ′′ as de-

scribed in the statement of the lemma.

If µp,p ′′ =µp ′ , modify the message function so that in any state in which the messages that

induced p and p ′′ were sent, the modified message function would send the message that

induced p ′ instead. Thus, the mean of the posterior belief induced by this message remains

µp,p ′′ . The fact that g (µp ,µp ′) = g (µp ′ ,µp ′′) implies that the value of V remains unchanged.28

If µp,p ′′ < µp ′ , replace the posteriors p and p ′′ in P by p and p ′, in the manner described

in Lemma A.2. If µp,p ′′ >µp ′ , replace the posteriors p and p ′′ in P by p ′ and p ′′ in the manner

described in Lemma A.2. These modifications do not change the value of the function V .

Finally, note that in all the cases described above, the modified message function does

not induce a posterior belief that was not induced by the original message function. Thus, the

28To see this, note first that τ
(
p

)·ûS (µp )+τ(
p ′)·ûS (µp ′ ) = (

τ
(
p

)+τ(
p ′))( τ(p)

τ(p)+τ(p ′) ûS (µp )+ τ(p ′)
τ(p)+τ(p ′) ûS (µp ′ )

)
.

Next, since µp ′ =µp,p ′′ and g (µp ,µp ′ ) =αwe have that ûS (µp ) = ûS (µp,p ′′ )−(µp,p ′′−µp )α, and since g (µp ′ ,µp ′′ ) =
α we have ûS (µp ′′ ) = ûS (µp,p ′′ ) + (

µp ′′ −µp,p ′′
)
α. By definition of µp,p ′′ we then obtain τ

(
p

) · ûS (µp ) + τ(
p ′) ·

ûS (µp ′ ) = (τ
(
p

)+τ(
p ′)) · ûS (µp,p ′′ ).
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credibility constraints in Sender’s problem (SP1) are only relaxed, and the fact that the original

message function was credible implies that the modified one is also credible.

Proof of Proposition 5

We prove the proposition for the case in which ûS is increasing and convex. The proof for the

case in which ûS is decreasing, or decreasing and then increasing is analogous.

Suppose that the state space is binary, i.e., Ω = {l ,h} for some two numbers l ,h ∈ R with

l < h. A belief overΩ can be described by the probability p ∈ [0,1] that the state is h. The prior

belief is thus given by π ∈ (0,1). The mean of belief p is µp = l + (h − l ) p. In what follows we

normalize the parameters h and l to be 1 and 0, respectively, and therefore µp = p.

According to Corollary 1 the optimal message function induces either one posterior belief

that is equal to the prior π, or two credible posterior beliefs pL <π< pH , whichever generates

a higher expected payoff to Sender. In the former case, the ex-ante expected payoff to Sender

is ûS(π). In the latter case, the ex-ante expected payoff to Sender is pH · ûS(pH )+pL · ûS(pL).

Credibility requires that ûS (pH )−ûS (pL)
pH−pL

≤α.

We distinguish between the following three cases:

(i) If ûS(1)− ûS(0) ≤ α, then the a message function that induces a distribution τ over the

posterior beliefs p∗
L = 0 (realized with probability 1−π) and p∗

H = 1 (realized with prob-

ability probability π) is credible underα. Such a message function is optimal for Sender

because it concavifies ûS on the interval [0,1].

(ii) If ûS (π)−ûS (0)
π <α< ûS(1)−ûS(0), then the two optimally induced beliefs underα are p∗

L =
0 and p∗

H that is such that
ûS (p∗

H )−ûS (0)
p∗

H
= α. To see this, note first that for any different

pair of posterior beliefs pL <π< pH , decreasing pL relaxes the credibility constraint and

improves the expected payoff to Sender. Then, it is possible to increase pH up to p∗
H ,

where the credibility constraint is binding, i.e.,
ûS (p∗

H )−ûS (0)
p∗

H
=α, which further increases

the ex-ante expected payoff to Sender.

(iii) Ifα≤ ûS (π)−ûS (0)
π , then the unique feasible policy induces just one posterior belief, which

is equal to the prior π. This is because the convexity of ûS implies that ûS (pH )−ûS (pL)
pH−pL

is

increasing in pL and in pH and therefore ûS (pH )−ûS (pL)
pH−pL

≥ α for any pL ≤ π and pH ≥
π. Thus, no message function can induce two (Bayes plausible) posterior beliefs in a

credible way.

Notice that decreasing the value of α does not affect Sender’s optimal distribution over

posteriors so long asα remains in case (i) or (iii). As the value ofα changes from case (i) to (ii),

or asα decreases within case (ii), Sender’s optimal distribution τ becomes more garbled. This
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is because the convexity of û implies that ûS (pH )−ûS (0)
pH

increases in pH . Thus, a lower value of

α implies a lower value of p∗
H (i.e. messages are less informative with respect to the state).

Proof of Lemma 1

A partition ofΩN into singletons is equivalent to a message function that fully reveals the state,

i.e., σ(ω) =ω. Notice that, in this case, µm = m = m =ω for every message m =ω. Inspection

of the constraints ICup(k) and ICdown(k) reveals that they are all satisfied, which implies that

σ(ω) =ω is credible for every N . Optimality follows from the fact that Var[ω|ω ∈ m] = 0 for all

m and, therefore, Sender’s expected payoff, given in (5), attains its highest possible value.

Proof of Lemma 2

The credibility constraint ICup(k) and the fact that µk ≤ mk implies that µk+1 ≥ mk +2b −α.

Since µk+1 ≤ mk+1, it follows that mk+1 ≥ mk +2b −α. Therefore, it is impossible to fit more

than 1
2b−α messages into a credible partition.

Proof of Lemma 3

Suppose that mk and mk+1 are two adjacent convex messages. Convexity implies that µk =
mk+mk

2 and µk+1 = mk+1+mk+1

2 . The incentive constraint ICup(k) is then given by:

mk +mk

2
+ mk+1 +mk+1

2
−2mk ≥ 2b −α.

Convexity implies also that mk −mk = |mk |−1
N and mk+1 −mk+1 = |mk+1|−1

N . Since the messages

are adjacent then mk+1 −mk = 1
N . We can therefore equivalently write ICup(k) as follows:

|mk+1|
N

− |mk |
N

+ 2

N
≥ 4b −2α. (9)

Equation (9) is a necessary and sufficient condition for ICup(k) when messages are convex.

If, in addition, ICup(k) is binding (i.e. it would have been violated had a different message

been sent in the state mk+1), then:

|mk+1|
N

− |mk |
N

+ 1

N
< 4b −2α. (10)

Denote x = |m1|
N = x > 0. Then, the fact that the messages are tightly packed implies that

x +4b −2α− 2
N ≤ |m2|

N ≤ x +4b −2α− 1
N , x +8b −4α− 4

N ≤ |m3|
N ≤ x +8b −4α− 2

N , . . . , x + (k −
1)(4b −2α− 2

N ) ≤ |mk |
N ≤ x + (k −1)(4b −2α− 1

N ), and so on.
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Thus, |m1|
N +·· ·+ |mk |

N is bounded between two sums of arithmetic series with k elements:

2k(k −1)

(
b − α

2
− 1

N

)
+kx ≤ |m1|

N
+·· ·+ |mk |

N
≤ 2k(k −1)

(
b − α

2
− 1

2N

)
+kx. (11)

Since x can be set arbitrarily small, then for sufficiently large N , the maximal number of

messages that can be tightly packed into the set
{
0, 1

N , . . . , l
}

is given by

I (l ) =
ÈÌÌÌ

√
1

4
+ l

2b − c
− 1

2

ÉÍÍÍ .

Finally, uniqueness of the partition on the set
{
0, 1

N , . . . , l
}

follows from the fact that the size

of x determines the entire partition up to l . If two partitions have different values of x then

the one with the shorter x falls short of covering the set
{
0, 1

N , . . . , l
}
.

Proof of Proposition 6

Consider a credible partition that does not consist of I (1) tightly packed messages onΩN . The

algorithm described in the text “packs message mk ” and produces a new partition in which

I (lk ) messages are tightly packed on the set {0, . . . , lk }. We show that in each iteration of the

algorithm the value of the objective function improves and all ICup constraints are preserved.

Our proof proceeds in two steps. In step 1, we show that performing Part I of the algorithm

improves the value of the objective function. Furthermore, after Part I is performed all the

ICup constraints, except for maybe one, are satisfied. If this one constraint is indeed violated,

we show a modification of the partition after which: (i) all the ICup constraints are satisfied,

and (ii) the objective function’s value is higher than that of the original partition (before the

execution of Part I of the algorithm).

In step 2, we show that partition produced in Step 1 is in fact sub-optimal relative to a

partition in which messages are tightly "re-packed" in a maximal manner, and in which all

ICup constraints are satisfied. Steps 1 and 2 can be repeated until the resulting partition is

one that consists of l (1) tightly packed messages onΩN .

To conclude the proof, we show that this final partition satisfies all the ICdown constraints,

and it is therefore credible.

Step 1 (Fix all ICup constraints and improve the objective function’s value)

Part I of the algorithm "convexifies" message mk to the left. The outcome of this process is

illustrated in Figure (7a). We refer to the partition before the convexification as the "original

partition" and to the partition after the convexification as the "convexified partition". Since in

the convexified partition the variance of each message m j is weakly smaller than the variance
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(b)
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kmnew

1 mnew
k−2

mnew
j+2mnew

j+1mnew
j

Figure 7: Step1, Case I

of m j under the original partition, then the convexified partition attains a higher value for the

objective function (5).

Notice that the convexification (as described in the algorithm in the text) involves sequen-

tial "swaps" of states between message mk and messages m j with j > k. Specifically, in each

such swap a state ω is removed from message mk and added to message m j , whereas state

ω− 1
N is removed from m j and added to mk . Denote by φ j the number of states swapped

between messages m j and mk in the process of convexifying mk . Define Φk = ∑
j>k φ j to be

the total number of swaps. It follows that: (i) the mean µ j in the convexified partition is larger

than the mean µ j in the original partition by
φ j

N |m j | for all j > k, and (ii) the mean of µk in

the convexified partition is smaller than the mean of µk in the original partition by ζk
N , where

ζk ≡ Φk
|mk | .

In the convexified partition, the constraints ICup(1), . . . , ICup(k−2) are satisfied because

the convexification does not affect them. The constraints ICup(k+1), . . . , ICup(J −1) are also

satisfied. To see this, note that credibility of the original partition implies that µ j ≤ m j ≤
µ j+1 ≤ m j+1 for all j ≤ J −1 and therefore the states mk+1, . . . ,m J are all higher than the state

mk (namely, the highest state in message mk ). Hence, the maximal state that belongs to each

message m j with j > k is unchanged between the original and the convexified partition, i.e.,

the values of mk+1, . . . ,m J are unaffected by the convexification. Moreover, the the values of

µk+1, . . . ,µJ are all weakly larger in the convexified partition relative to the original one. There-

fore, the fact that ICup(k+1), . . . , ICup(J−1) are satisfied in the original partition implies that

they are satisfied in the convexified partition as well.

In the convexified partition, the constraint ICup(k) is satisfied with a slack. To see this,

notice first that the convexification weakly increases µk+1 relative to its value in the origi-

nal partition. Next, note that although the convexification decreases µk by ζk
N relative to the

orignal partition, it also decreases mk by L
N , where L is the number of states associated with

messages mk+1, . . . ,m J that are smaller than mk . Finally, observe that the number of swaps

needed to convexify mk (i.e., Φk ) is smaller than L multiplied by the total number of states in

mk , that is

Φk ≤ L · |mk | . (12)
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It follows that the sum µk +µk+1 decreases by no more than ζk
N while mk decreases by at least

ζk
N . Thus, the fact that ICup(k) is satisfied in the original partition implies that it is satisfied

also in the convexified partition. In fact, observe that the convexification creates a slack of at

least ζk
2N in the ICup(k) constraint. We make use of this observation below.

If ICup(k −1) is satisfied in the convexified partition, then all ICup constraints are satis-

fied. In this case, jump directly to step 2 below. Otherwise, we distinguish between two cases.

Case I. Suppose that |mk−1| ≤ b2ζkc. Merge message mk−1 and message mk (which is now

a convex message) into a new message called mnew
k with mean µnew

k . For convenience of

notation we rename all the other message from m j to mnew
j . We refer to the resulting partition

as the "merged partition". This partition, which is illustrated in Figure (7b), is composed of

the messages mnew
1 . . .mnew

k−2 ,mnew
k ,mnew

k+1 , . . .mnew
J . Notice that:

µnew
k = µk −

ζk

N
− |mk−1|

2N
(13)

µnew
k = µk−1 +

|mk |
2N

(14)

µnew
j = µ j +

φ j

N
∣∣m j

∣∣ for all j ≥ k +1 (15)

µnew
j = µ j for all j ≤ k −2 (16)

mnew
k = mk −

L

N
(17)

where µ j is the mean of message m j in the original partition, for all j . To see why Equation

(13) holds, notice that µnew
k is equal to the original value of µk , minus ζk

N (due to the convexi-

fication of mk ), minus |mk−1|
2N (due to merging of mk with mk−1). Equation (14) holds because

the mean of the merged message mnew
k is larger than that of the original mk−1 by |mk |

2N . Equa-

tions (15), (16) and (17) are all direct implications of the convexification of mk .

In the merged partition, all the ICup constraints are satisfied:

1. ICup((k − 2)new ) is satisfied because µnew
k > µk−1, whereas µnew

k−2 = µk−2 and mnew
k−2 =

mk−2. Therefore, the fact that ICup(k − 2) was satisfied in the original partition, i.e.
µk−2+µk−1

2 −mk−2 ≥
(
b − α

2

)
, implies that

µnew
k−2 +µnew

k
2 −mnew

k−2 ≥ (
b − α

2

)
.

2. ICup(knew ) is satisfied because, by Eqaution (13) and since |mk−1| ≤ 2ζk , we have that

µnew
k ≥ µk − 2ζk

N . Thus, the facts that ICup(k) was satisfied in the original partition,

i.e. µk+µk+1
2 −mk ≥ (

b − α
2

)
, along with equations (12), (15), (17), imply that

µnew
k +µnew

k+1
2 −

mnew
k ≥ (

b − α
2

)
.

3. All the other ICup constraints are unaffected by the merge. The fact that they are satis-

fied in the convexified partition implies that they are satisfied in the merged partition.
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We now show that the merged partition yields a higher value of the objective function (5)

compared to the original partition. Algebraic manipulation shows that the objective function

(5) is equal to the weighted sum of square means of the partition elements

J∑
j=1

ρ
(
m j

)(
µ j

)2 (18)

up to a constant. We therefore have to show that:

∑
j≤k−2

ρ
(
m j

) · (µnew
j )2 +ρ (

mnew
k

) · (µnew
k

)2 + ∑
j≥k+1

ρ
(
m j

)
(µnew

j )2

≥ ∑
j≤k−2

ρ
(
m j

) ·µ2
j +ρ (mk−1) ·µ2

k−1 +ρ (mk ) ·µ2
k +

∑
j≥k+1

ρ
(
m j

) ·µ2
j

where the left-hand side of the inequality is the value of (18) computed for the merged par-

tition, and the right-hand side is the value of (18) computed for the original partition. Using

Equations (15) and (16) above, and because ρ(m j ) = |m j |
N+1 , we rewrite the inequality as follows:

2

N (N +1)

∑
j≥k+1

µ jφ j +
∑

j≥k+1
ρ

(
m j

)( φ j∣∣m j
∣∣N

)2

≥ ρ (mk−1)·µ2
k−1+ρ (mk )·µ2

k−ρ
(
mnew

k

)·(µnew
k

)2 .

Notice that
∑

j≥k+1ρ
(
m j

)( φi

|m j |N
)2 ≥ 0 and µ j > µk+1 for any j > k +1. It therefore suffices to

show that:

2

N (N +1)
·Φk ·µk+1 ≥ ρ (mk−1) ·µ2

k−1 +ρ (mk ) ·µ2
k −ρ

(
mnew

k

) · (µnew
k

)2 .

Plugging inρ (mk−1) = |mk−1|
N+1 , ρ (mk ) = |mk |

N+1 , andρ(mnew
k ) = |mk |

N+1+
|mk−1|

N+1 and rearranging yields:

2

N
·Φk ·µk+1 ≥−|mk−1| · (µnew

k −µk−1)(µk−1 +µnew
k )+|mk | · (µk −µnew

k )(µk +µnew
k ).

Using Equations (13) and (14), and since ζk = Φk
|mk | , we rewrite the inequality as follows:

2
(
µk+1 −µk

)
Φk ≥ 1

2
|mk | |mk−1|

(
Φk

|mk |N
+ |mk−1|

2N
+ |mk |

2N

)
−Φk

(
Φk

|mk |N
+ |mk−1|

2N

)
. (19)

Finally, we use the fact that ICup(k) is satisfied in the original partition to find a lower

bound on µk+1 −µk . To do that, we write ICup(k) equivalently as follows:

µk+1 −µk ≥ 2
((

mnew
k −µnew

k

)− (
µk −µnew

k

)+ (
mk −mnew

k

))+2
(
b − α

2

)
.

The fact that mnew
k is a convex message with |mk−1|+ |mk | states implies that mnew

k −µnew
k =
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(k −1) t i g htl y packed messag es

(a) mkmk−1m j+2m j+1m jm1 mk−2

(b) mnew
kmnew

k−1
mnew

j+2mnew
j+1mnew

jmnew
1 mnew

k−2

(c) mnew
kmnew

k−1mnew
j+2mnew

jmnew
1 mnew

k−2

d2ζke

d2ζke

Figure 8: Step 1, Case II

1
2N (|mk−1|+ |mk |−1). Using Equations (12),(13) and (17) we then have that:

µk+1 −µk ≥ |mk |−1

N
+2

(
b − α

2

)
. (20)

By plugging inequality (20) into inequality (19) and simplifying it follows that it suffices to

show that:

|mk |2 |mk−1|2 +|mk |3 |mk−1|−8Φk |mk |2 +8Φk |mk |−4Φ2
k −16Φk N |mk |

(
b − α

2

)
≤ 0. (21)

The following lemma asserts that this inequality is indeed satisfied. 29

Lemma A.4 Inequality (21) is satisfied for all |mk−1| ≤ d2ζke.

Case II. Suppose that |mk−1| ≥ d2ζke, and that 2ζk is not an integer (as otherwise the analysis

in case I above applies). Find the index 0 ≤ j ≤ k − 1 for which
∣∣m j

∣∣ < d2ζke ≤
∣∣m j+1

∣∣. For

simplicity of notation assume that m0 = ; and |m0| = 0. Re-partition the union of the two

messages m j ∪m j+1 into two new messages: mnew
j+1 with number of states |mnew

j+1 | = d2ζke and

mnew
j with number of states mnew

j = ∣∣m j
∣∣+∣∣m j+1

∣∣−d2ζke. Rename all the other message from

m j to mnew
j , as illustrated in Figure (8b). This modified partition weakly improves the value of

the objective function, compared to the original partition because: (i) the convexifying of mk

weakly decreased the variance of all messages, and (ii) the repartitioning of m j ∪m j+1 into

mnew
j and mnew

j+1 makes the two messages “more equal” in their number of states compared

to m j and m j+1 in the original partition, and so decreases the weighted variance further.

After repartitioning, the constraints ICup( j new ) and ICup((k − 1)new ) are perhaps vio-

lated. To fix this, we eliminate message mnew
j+1 whose length is exactly d2ζke as follows: we

29Notice that the lemma asserts that the inequality is satisfied for values of |mk−1| that are less than, or equal
to, d2ζke, while in Case I we make the weaker assumption that |mk−1| ≤ b2ζkc. We use this result in Case II below.
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"shift" to the left messages mnew
j+2 , . . . ,mnew

k−1 by d2ζke states, and add d2ζke states to message

mnew
k from the left, as illustrated in Figure (8c)30

After this modification, all the ICup constraints are satisfied:

1. The constraint ICup(
(

j −1
)new ) is satisfied because µnew

j ≥ µ j , whereas µnew
j−1 = µ j−1

and mnew
j−1 = m j−1. Thus, the fact that ICup

(
j −1

)
is satisfied in the original partition

implies that ICup(
(

j −1
)new ) is satisfied in the modified partition.

2. The constraint ICup
(

j new
)

is satisfied. To see this note first that, by construction,

|mnew
j | < ∣∣m j+1

∣∣ and |m j+2| = |mnew
j+2 |. Next, notice that credibility of the original parti-

tion, and the fact that m j+1 and m j+2 are two convex and adjacent messages imply, by

Equation (9), that
|m j+1|

N ≤ |m j+2|
N −4

(
b − α

2

)+ 2
N . Therefore,

∣∣∣mnew
j

∣∣∣
N ≤

∣∣∣mnew
j+2

∣∣∣
N −4

(
b − α

2

)+ 2
N ,

which guarantees by Equation (9) that ICup
(

j new
)

is satisfied.

3. The constraint ICup
(
(k −1)new )

is satisfied. To see this, note that µnew
k = µk − ζk

N −
d2ζke

2N (the convexification of mk to the left decreased µk by ζk
N , and the addition of states

from the left further decreased the mean by d2ζke
2N ). Furthermore, µnew

k−1 =µk−1− d2ζke
N and

mnew
k−1 = mk−1 − d2ζke

N due to the shift of messages to the left. Taken together, the last

three observations imply that since ICup(k −1) was satisfied in the original partition,

then ICup((k −1)new ) is satisfied in the new partition.

4. The constraint ICup (knew ) is satisfied. This is because the convexification of mk to the

left implies that µnew
k+1 ≥ µk+1. Shifting the messages to the left imply that µnew

k = µk −
ζk
N − d2ζke

2N (as explained above) and mnew
k = mk − L

N . Note also that 1
2

(
ζk
N + d2ζke

2N

)
≤ L

N .31

Taken together, these observations imply that since ICup(k) was satisfied in the original

partition, then ICup(knew ) is satisfied in the new partition.

5. All the other ICup constraints are unaffected by the shift.

The modification improves the value of the objective function compared to the original

partition. To see this, recall first that the partition illustrated in Figure (8a), which is the out-

come of convexifying message mk to the left (performed by Part I of the algorithm), improves

the value of the objective function relative to the original partition. Next, as explained above,

the partition depicted in Figure (8b) improves on the partition depicted in Figure (8a). Finally,

inspection of Figure (8c) reveals that it consists of messages with the same number of states

as the partition in depicted in Figure (8b), except for message mnew
k in Figure (8c), which can

30We say that a convex message m is shifted to the left by x states if mnew := m − x and mnew := m − x where
mnew denotes message m after the shift.

31To see this, suppose that Φk = |mk |L − x for some (integer) x ≥ 0. Then 1
2

(
ζk
N + d2ζk e

2N

)
=

1
2

(
L
N − x

N |mk | +
1

2N

⌈
2L− 2x

|mk |
⌉)

≤ L
N − 1

2
x

N |mk | .
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be viewed as a merge between messages mnew
k and mnew

j+1 in Figure 8(b). It is useful to perform

this merge in two steps: first, shift message mnew
j+1 to the right so that it lies between messages

mnew
k−1 and mnew

k in Figure (8b); and then, merge messages mnew
j+1 and mnew

k as illustrated in

Figure (8c). Because the number of states in message mnew
j+1 is exactly d2ζke, the argument

used in Case I above (and Lemma A.4) can be applied here, where mnew
j+1 takes the place of

message mk−1 in the argument presented in Case I.

Step 2: Show that Part II of the algorithm improves the objective function’s value further

Part I of the algorithm, followed by the modifications described above (according to Case I

or Case II), produce a partition with convex messages on the set {0, . . . , lk } that satisfies all

the ICup constraints and improves upon the value of the objective function compared to

the original partition. The next lemma asserts that executing Part II of the algorithm on this

partition preserves all the ICup constraints and further improves the value of the objective

function.

Lemma A.5 Let P be a partition that satisfies all the ICup constraints with Ĵ convex messages

on the set of states {0, . . . , l Ĵ }. Then, tightly packing the messages on the set {0, . . . , l Ĵ } in a max-

imal manner preserves all the ICup constraints and improves the value of the objective func-

tion.

Finally, to complete the proof of the proposition, notice that when I (1) messages are max-

imally tightly packed on ΩN then all the ICup constraints are binding (by definition). In this

case, all the IC down constraints are satisfied as well. To see this, fix j and notice that

µ j−1 +µ j

2
−m j <

µ j−1 +µ j

2
−m j−1 < b − α

2
+ 1

2N

where the first is by definition and the second inequality follows from the fact that the

ICup( j −1) constraint is binding. It follows that for large enough N , we have that
µ j−1+µ j

2 −
m j < b + α

2 . This completes the proof of the proposition.

Proof of Lemma A.4

The left-hand-side of (21) is quadratic and convex in |mk−1|. Therefore, to verify that (21)

is satisfied for all |mk−1| ≤ d2ζke it suffices to check that it is satisfied for |mk−1| = 0 and for

|mk−1| = d2ζke =
⌈

2Φk
|mk |

⌉
.

Verifying that (21) is satisfied for |mk−1| = 0 is straightforward. To verify that (21) is satisfied

for |mk−1| =
⌈

2Φk
|mk |

⌉
, suppose first that 2Φk

|mk | is an integer. In this case, substituting |mk−1| = 2Φk
|mk |

into inequality (21) yields:

42



2Φk |mk |
(
4−3 |mk |−8N

(
b − α

2

))
≤ 0

which is satisfied for all values of |mk | when N > 1/(8(b − α
2 )).

Suppose next that 2Φk
|mk | is not an integer. Notice that in this case |mk | ≥ 3. To verify that

(21) is satisfied for |mk−1| =
⌈

2Φk
|mk |

⌉
it suffices to check that it is satisfied for |mk−1| = 2Φk

|mk | +1.

SubstitutingΦk = |mk−1||mk |−|mk |
2 into (21) yields:

|mk |2
(
4|mk |−3|mk−1| (|mk |−2)−5−8N (|mk−1|−1)

(
b − α

2

))
≤ 0

Recall that, by assumption, message |mk−1| contains at least two states, i.e., |mk−1| ≥ 2. Thus,

the last inequality is satisfied for all |mk | ≥ 3 when N > 1/(8(b − α
2 )).

Proof of Lemma A.5

Suppose that messages 1 through Ĵ are not tightly packed. It follows that the ICup( j ) con-

straint is not binding for some message m j , j < Ĵ . In this case, it is possible to re-assign the

smallest state in message m j+1 into message m j in a way that satisfies all the ICup constraints

(because the ICup( j ) constraint is not binding and the change simultaneously increases both

µ j and µ j+1). This reassignment improves the value of he objective function (5) because it

moves the number of states in messages m j and m j+1 closer together, which decreases their

weighted variance. This implies that tightly packing the Ĵ messages on states {0, . . . , l Ĵ } satisfies

all the ICup constraints (by definition) and improves the value of the objective function.

If the messages 1 through Ĵ are tightly packed, but not maximally tightly packed, then

maximally tightly packing messages into states {0, . . . , l Ĵ } satisfies all the ICup constraints and

improves the value of the objective function.

To see this, suppose that P = (mP
1 , . . . ,mP

k ) and Q = (mQ
1 , . . . ,mQ

k+1) are two tightly packed

partitions with k and k +1 elements, respectively, on the set {0, . . . ,ω̂}. Denote the value of the

objective function (5) restricted to the set {0, . . . ,ω̂} that is induced by these two partitions by

V (P ) = ∑k
i=1ρ(mP

i ) ·Var(mP
i ) and V (Q) = ∑k+1

i=1 ρ(mQ
i ) ·Var(mQ

i ), respectively, where Var(mi )

denotes the variance of the (convex) message mi .

Notice that since all the ICup constraints are binding in both P and Q, then |mP
i | >
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|mQ
i+1| > |mQ

1 | for all 1 ≤ i ≤ k. It follows that

V (P ) =
k∑

i=1
ρ(mQ

i+1) ·Var(mP
i )+

k∑
i=1

(
ρ(mP

i )−ρ(mQ
i+1)

)
·Var(mP

i )

≥
k∑

i=1
ρ(mQ

i+1) ·Var(mQ
i+1)+

k∑
i=1

(
ρ(mP

i )−ρ(mQ
i+1)

)
·Var(mQ

1 )

=
k+1∑
i=2

ρ(mQ
i ) ·Var(mQ

i )+
(
ω̂−

k+1∑
i=2

ρ(mQ
i )

)
·Var(mQ

1 )

=V (Q)

where the inequality follows from the fact that the variance increases in the number of states

in a convex message.

Finally, the fact that the ICup(k) constraint is satisfied in partition P , and the fact that

µ
Q
k+1 >µP

k imply that the ICup(k +1) constraint is satisfied in partition Q. Hence, partition Q

satisfies all the ICup constraints.
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