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Abstract

We document a new fact about survey expectations: in response to the main shocks driving the busi-

ness cycle, expectations of unemployment and inflation under-react initially but over-shoot later on.

We show how previous, seemingly conflicting, evidence can be understood as different facets of this

fact. We finally explain what the cumulated evidence means for macroeconomic theory. There is little

support for theories emphasizing under-extrapolation or two close cousins of it, cognitive discounting

and level-K thinking. Instead, the evidence favors the combination of dispersed, noisy information and

over-extrapolation.
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1 Introduction

The rational expectations hypothesis is a bedrock of modern macroeconomics. It is often combined with a

strong, complementary hypothesis that all data about the state of the economy is common knowledge. But

an explosion of recent theoretical and empirical work has questioned both premises. This has pushed the

discipline back toward reckoning with the “wilderness” of alternative models for expectations formation

and equilibrium (as Sargent, 2001, paraphrasing Sims, 1980, famously put it).

One strand of the literature emphasizes informational frictions, which are sometimes rich enough to

blur the boundary between the rational and non-rational.1 Moving strictly beyond the rational model,

some authors emphasize biases to over-extrapolate the past,2 while others advocate for two close cousins

of under-extrapolation, cognitive discounting and level-K thinking.3 Another strand emphasizes overcon-

fidence in various information sources, or prioritization of those that seem “representative.”4

What does survey evidence on expectations tell us within the space of these alternative hypotheses?

And what kind of evidence is most useful for building macroeconomic models and providing guidance

about counterfactual scenarios?

In the hopes of answering these questions, and helping identify “where we are in the wilderness,” this

article uses a simple but flexible framework to accomplish the following goals: to draw a variety of recent

theoretical and empirical contributions under a common umbrella; to guide a new, more informative, em-

pirical strategy; and to select among competing theories of “imperfect expectations” in macroeconomics.

Our main empirical finding is initial under-reaction of beliefs in response to shocks followed by de-

layed over-reaction. Both unemployment and inflation expectations have an initially sluggish response to

the shocks that drive most of the business-cycle variation in these variables. But over medium horizons,

forecasts tend to over-shoot the actual outcomes.

This pattern speaks in favor of models that combine two key mechanisms: dispersed, noisy informa-

tion and over-extrapolation. The former leaves room for theories emphasizing higher-order beliefs. The

latter points in the opposite direction of cognitive discounting and level-K thinking, two concepts that, at

least for our purposes, are close cousins of under-extrapolation.

We also demonstrate why our empirical strategy is more informative, at least vis-a-vis the class of theo-

ries under consideration, than previous alternatives. And we explain how our findings help resolve the ap-

parent inconsistency between three previous empirical findings, which indeed serve as our starting point.

Understanding prior, seemingly conflicting, evidence. Previous empirical studies of expectations have

often relied on simple regressions or correlations between actual outcomes and their forecasts in surveys.5

1This includes works on rational inattention (Sims, 2003, 2010; Mackowiak and Wiederholt, 2009; Matejka, 2015), sticky infor-

mation (Mankiw and Reis, 2002; Kiley, 2007), and higher-order uncertainty (Morris and Shin, 2002, 2006; Woodford, 2003; Nimark,

2008; Angeletos and Lian, 2016, 2018).
2Gennaioli, Ma, and Shleifer (2015); Fuster, Laibson, and Mendel (2010); Guo and Wachter (2019)
3Gabaix 2020; Garcıa-Schmidt and Woodford 2019; Farhi and Werning 2019; Iovino and Sergeyev 2017.
4Bordalo, Gennaioli, and Shleifer (2017); Kohlhas and Broer (2019).
5This applies to the papers cited below, as well as Andrade and Le Bihan (2013), Gennaioli, Ma, and Shleifer (2015), Kohlhas

and Broer (2019), and Fuhrer (2018). See also the discussion of Coibion and Gorodnichenko (2012) in Section 5 and Appendix B.
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In Section 3, we revisit three such previously documented facts, henceforth referred to as Facts 1-3:

F1. For both unemployment and inflation, aggregate forecast errors are positively related to lagged ag-

gregate forecast revisions, as in Coibion and Gorodnichenko (2015), or CG hereafter. This pattern

suggests that aggregate forecasts under-react to aggregate news.

F2. The opposite pattern is often present at individual-level forecasts: as previously shown in Bordalo,

Gennaioli, Ma, and Shleifer (2018), or BGMS hereafter, individual forecasts appear to over-react to

own revisions (in the case of inflation, although not in the case of unemployment).6

F3. Finally, the following pattern, first noted in Kohlhas and Walther (2018), or KW hereafter, points

toward over-reaction even at the aggregate level: aggregate forecast errors are positively correlated

with the actual levels of unemployment and inflation.

These facts elude a simple, unified explanation. Do beliefs in the data under-react to innovations, as pre-

dicted by theories emphasizing informational frictions, higher-order uncertainty, cognitive discounting

and level-K thinking? Or do they over-react, suggesting an entirely different mechanism?

To provide a clearer picture, we turn to theory. In Section 4, we introduce the “PE version” of our

framework. Like the related empirical literature, this abstracts from the equilibrium fixed point between

expectations and outcomes. But it allows for two key mechanisms: dispersed noisy information and over-

extrapolation. A third mechanism, over-confidence, is also nested but turns out to be rather inessential.

The combination of dispersed information and over-extrapolation makes a sharp prediction for the

impulse response functions (IRFs) of the average forecasts and forecast errors to aggregate shocks. In the

first few periods after a shock occurs, the informational friction guarantees that forecasts under-react. But

as time passes and learning kicks in, this friction dies out and over-extrapolation takes over, guaranteeing

that forecast eventually over-react. The most telling feature of the combination of the two mechanisms is

therefore a reversal of sign in the IRF of the average forecast errors.

The regressions underlying Facts 1 and 3 can be described as different weighted averages of this IRF.

The one in CG happens to put more weight on the early portion of this IRF, where errors are positively

correlated with past revisions due to dispersed information, while that in KW happens to put more weight

on the later portion, where errors are negatively correlated with outcomes due to over-extrapolation. This

resolves the apparent conflict between the form of under-reaction documented in CG and the form of

over-reaction documented in KW, but perhaps most importantly underscores the difficulty in interpreting

and using this kind of evidence. A similar point applies to the BGMS evidence, or Fact 2.

Focusing on impulse response functions (IRFs). Under the lens of our analysis, a superior empirical

strategy emerges: the IRFs of the average forecasts and the average forecast errors to aggregate shocks

provide strictly more information than the aforementioned empirical strategies and are also more easily

interpretable. This leads to our main empirical contribution, which appears in Section 5 and which is to

6For inflation forecasts, the same pattern has been independently documented in Kohlhas and Broer (2019). BGMS offer a

comprehensive investigation across variables, surveys, and empirical methods.
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show that the hypothesized pattern of “sign reversal” in the response of forecast errors holds true in the

data. We summarize this below as Fact 4:

F4. Consider two shocks, one that accounts for most of the business-cycle variation in unemployment

and other macroeconomic quantities, and another that accounts for most of the business-cycle vari-

ation in inflation.7 Construct the IRFs of the average forecasts of unemployment and inflation to the

corresponding shocks. In both cases, average forecasts are initially under-react before over-shooting

later on, or predicting larger and longer-lasting effects of the shock than those that occur.

For the reasons already explained, Fact 4 alone helps nail down the “right” combination of frictions under

the lens of our framework: to match this fact, it is necessary and sufficient to combine over-extrapolation

with a sufficiently large informational friction. And since this combination implies Facts 1-3, Fact 4 sub-

sumes them and serves as a “sufficient statistic” for the counterfactuals of interest (more on this below).

We provide additional evidence for each of the two mechanisms as follows. First, we show that the sub-

jective persistence, as revealed by the term structure of subjective expectations, is larger than the objective

persistence, as measured by the impulse response of the outcome. And second, we show that the forecasts

revisions of one one agent help predict the forecast errors of other agents. The former fact speaks directly

to over-extrapolation, the latter to not only noisy but also dispersed, or private, information.

From PE to GE. In Section 6, we incorporate a GE feedback between expectations and outcomes. This

part of our paper, which builds on the methods of Angeletos and Huo (2019), lets us accomplish four

goals. First, we extend our lessons about the “right” model of beliefs to a broader GE context. 8 Second,

we connect level-K thinking and cognitive discounting to the GE implications of under-extrapolation, and

spell out the empirical content of these theories vis-a-vis expectations data. Third, we clarify how the

causal effect of the belief distortions on macroeconomic outcomes depends parameters that determine

the relative strength of PE and GE effects, such as the marginal propensity to consume. Finally, we quantify

these distortions in a three-equation New Keynesian model.

The bottom line. The combination of old and new evidence we marshal in this paper offers, not only

support for theories emphasizing informational frictions and higher-order uncertainty, but also guidance

on what type of departure from full rationality seems most relevant in the business cycle context. In par-

ticular, we argue that over-extrapolation is needed in order to not only reconcile the previous, seemingly

conflicting evidence of CG, KW and BGMS, but also account for the eventual overshooting in the response

of the average forecasts we have documented here.

Conversely, we have ruled out theories that rely heavily on under-extrapolation of the present to the

future, whether in the simple PE form of under-estimating the persistence of an exogenous fundamental

or in the related GE forms of cognitive discounting and level-K thinking. These mechanisms are at odds

both with the dynamic overshooting of the average forecasts documented here and with the over-reaction

of individual forecasts documented in Bordalo et al. (2018) and Kohlhas and Broer (2019).

7These shocks are described at the end of Section 2 and are obtained from Angeletos, Collard, and Dellas (2020).
8This echoes lessons from Angeletos and Lian (2018), Angeletos and Huo (2019), and Farhi and Werning (2019).
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The same is true for adaptive expectations insofar as the latter means systematic anchoring of current

expectations to past outcomes. Adaptive expectations can generate a similar “stickiness” or sluggishness

in the response of average forecasts to aggregate shocks as that generated by dispersed, noisy information.

But only the latter helps account for why such stickiness is absent in the response of individual forecasts

to individual news, or why individual forecast errors are predictable by the past information of others.

This echoes a broader lesson of our analysis, which is to highlight how the similarities or differences of the

properties of the individual and average forecast errors help disentangle mechanisms.

Over-extrapolation in finance and macro. Our main empirical finding echoes a literature in finance

documenting a similar pattern—slow initial reaction and subsequent over-reaction—in individual stock

prices (De Bondt and Thaler, 1985; Cutler, Poterba, and Summers, 1991; Lakonishok, Shleifer, and Vishny,

1994). Theoretical work such as Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrah-

manyam (1998), and Hong and Stein (1999) provide parsimonious interpretations which combine tenta-

tive initial reactions with medium-run over-reaction due to over-extrapolation. More recently, Greenwood

and Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015) demonstrate patterns in survey expectations of

stock returns and firm earnings that are also suggestive of over-extrapolation.

We complement these works in three ways. First, we provide the first, to the best of our knowledge,

evidence of over-extrapolation in expectations of unemployment and inflation. Second, we propose and

implement a new empirical strategy, in terms of the IRFs of forecast errors to identified aggregate shocks,

and explain why this strategy is best suited to guide theory. And third, we show how to combine over-

extrapolation and dispersed, noisy information in a GE setting. Both our empirical strategy and our GE

tools could find applications in finance in the future.

Other related literature. Our emphasis on the IRFs of forecasts errors (Fact 4) instead of unconditional

moments (Facts 1-3) is shared by Coibion and Gorodnichenko (2012). But there are two key differences.

First, we focus on different kinds of shocks, which have more “power” in terms of explaining a larger share

of the business cycle volatility in outcomes and forecasts. And second, we use different econometric meth-

ods, which, unlike that used in that paper, allow the detection of the eventual overshooting in forecasts.9

Kucinskas and Peters (2019) also suggest that IRFs are a more informative way to understand the nature of

expectation formation. They further show that the dynamics of forecast errors at the aggregate level differs

from that at the individual level. But they do not contain the specific IRF evidence provided here (Fact 4)

and our reconciliation of seemingly conflicting findings in the literature (Facts 1-3).

We distill the essence of a diverse set of theories of expectation formation, and use survey evidence to

evaluate their potential relevance for business cycles. But we do not address related laboratory evidence

(e.g., Nagel, 1995; Dean and Neligh, 2017; Landier, Ma, and Thesmar, 2019) and field experiments (Coibion,

Gorodnichenko, and Kumar, 2018; Coibion, Gorodnichenko, and Ropele, 2019).

We leave out of the analysis a variety of other plausible theories, which help explain different types

of data. These include wishful thinking (e.g., Brunnermeier and Parker, 2005; Caplin and Leahy, 2019);

9For a detailed discussion of this difference, see the end of Section 5 and the accompanying Appendix B.
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over-weighting of personal experience (e.g., Malmendier and Nagel, 2016; D’Acunto, Malmendier, Os-

pina, and Weber, 2019; Das, Kuhnen, and Nagel, 2020); adaptive learning (e.g., Eusepi and Preston, 2011;

Evans and Honkapohja, 2001; Sargent, 2001); uncertainty shocks (e.g., Bloom, 2009a; Baker, Bloom, and

Davis, 2016); robustness and ambiguity (e.g., Hansen and Sargent, 2012; Ilut and Schneider, 2014; Bhan-

dari, Borovička, and Ho, 2019); non-Bayesian belief contagion (e.g., Carroll, 2001; Burnside, Eichenbaum,

and Rebelo, 2016); and other plausible departures from the fully rational model (e.g., Adam and Woodford,

2012; Gabaix, 2019; Molavi, 2019; Woodford, 2018).

Another angle that we do not consider is disagreement in the sense of dogmatic heterogeneous pri-

ors and/or heterogeneous interpretation of public information. Models with these features have been

profitably applied to explain professional forecast heterogeneity (Giacomini, Skreta, and Turen, 2020), dis-

agreement between policymakers and markets (Caballero and Simsek, 2019; Sastry, 2020), and disagree-

ment among financial market participants (Geanakoplos, 2010; Caballero and Simsek, 2017). But it is an

open question whether they can help explain the evidence considered in this article.

2 Data and Measurement

We focus on two macroeconomic outcomes: unemployment and inflation. We now review the exact data

sources we use for forecasts and realized outcomes of these variables.

Forecasts from the Survey of Professional Forecasters. Our main dataset for forecasts is the Survey

of Professional Forecasters (SPF), a panel survey of about 40 experts from industry, government, and

academia, currently administered by the Federal Reserve Bank of Philadelphia. Every quarter, each sur-

vey respondent is asked for point-estimate projections of the civilian unemployment rate and the GDP

deflator, among several macro aggregates. Our main sample runs from 1968.Q4 to 2017.Q4.

Whenever our analysis requires requires aggregate (or “consensus”) forecasts, we use the median fore-

cast of the object of interest (e.g., unemployment or inflation at a given horizon). Using the median instead

of the mean in standard in the related empirical literature. The rationale is that it alleviates concerns about

outliers and/or data-entry errors, which could be quite influential in the 40-forecaster cross section, from

driving the results. That said, our main empirical finding is robust to using the mean instead of the median.

For the individual-level results, where concerns about outliers are even more relevant, we always trim

observations in forecast errors and revisions that are plus or minus 4 times the inter-quartile range from

the median, where both reference values are calculated over the entire sample.10

Other survey sources. Although our main analysis focuses on the SPF, we provide corroborating evidence

from two additional survey datasets. The first is the Blue Chip Economic Indicators Survey, a privately-

operated professional forecast with a similar scale and scope to the SPF. We use Blue Chip data from 1980

10For context, in a Gaussian distribution, the probability of an observation so far in the tails is about 6.8×10−8. Nonetheless,

in the sample of three-quarter ahead inflation forecast errors, there are 57 such observations out of 7,438 forecaster-quarter

observations, or about 106 times the aforementioned probability. All of these outliers involve forecast errors greater than 5.37

percentage points and often appear to be typos (an extra digit).
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to 2017 and focus on the reported “consensus forecast” for unemployment and GDP deflator.11 The second

source is the University of Michigan Survey of Consumers, which is (for our purposes) a repeated cross-

section of about 500 members of the “general public” contacted by phone. Like with the Blue Chip survey,

we focus on end-of-quarter waves. We take the Michigan survey inflation forecast as the median response

to the question about price increases.12 We code also a forecast for the growth rate of unemployment based

on a question about whether unemployment will increase or decrease over the coming twelve months.13

For this measure we take the cross-sectional mean, which corresponds to a “consensus forecast” about the

sign of the growth rate of unemployment.

Macro data (and vintages thereof ). Our unemployment measure ut is the average BLS unemployment

rate in a given quarter t . Our inflation measureπt is the annualized percentage increase in GDP or GNP de-

flator over the four quarters up to t .14 For the corresponding forecast data, our “default” choice of horizon

is k = 3, in line with the main specification of CG, but we explore other choices for robustness.

In our replication of CG, BGMS and KW in Section 3, we use first-vintage macro data for consistency

with these works.15 However, such measurement is not necessarily the right one vis-a-vis theory. If agents

are forecasting the actual levels of unemployment and inflation, the econometrician should use the final-

release data. We will thus verify the robustness of the relevant facts to the use of final-release data.

We finally use final-release data in our study of IRFs in Section 5 both for the above reason and for

consistency with the main macro time-series literature. But once again, we consider the opposite mea-

surement (in this case, first-vintage data in place of final-release data) for robustness.

Shocks. Our study of IRFs requires the use of identified shocks. For our main exercises, we borrow two

such shocks from Angeletos, Collard, and Dellas (2020): their “main business cycle shock,” which accounts

for the bulk of the business-cycle co-movements in unemployment, hours worked, output, consumption,

investment; and a nearly-orthogonal shock that accounts for most of the fluctuations in inflation. A de-

scription of these shocks and the rationale for using them are provided in Section 5. For robustness, we

also consider other, more “standard,” shocks, such as a technology shock identified as in Galí (1999).

11This dataset is available at the monthly frequency, so we use end-of-quarter forecasts (i.e., those made in March, June,

September, and December) for comparability with the SPF. The reported inflation forecasts in the Blue Chip consensus are ac-

tually quarter-to-quarter, so we construct the consensus estimate of longer-horizon inflation as the “chained consensus” rather

than the “consensus of chained inflation.”
12The exact question is the following: “By about what percent do you expect prices to go (up/down) on the average, during the

next 12 months?” Respondents can key in a response rounded to the nearest whole number.
13The exact question is the following: “How about people out of work during the coming 12 months. Do you think that there

will be more unemployment than now, about the same, or less?” There are three responses, as indicated in the question.
14The ambiguity between GDP and GNP matches the fact that the Survey of Professional Forecasters changed its main target

variable from GNP (and the deflator thereof) to GDP (and the deflator thereof) starting in 1992.
15We take all vintage data series from the Philadelphia Fed’s website: https://www.philadelphiafed.org/

research-and-data/real-time-center/survey-of-professional-forecasters/
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3 A Puzzling Empirical Backdrop: Under-reaction or Over-reaction?

This section reviews three stylized facts about macroeconomic forecasts. One of them suggests that expec-

tations under-react to news. The other two point in the opposite direction. The apparent contradiction

paves the way for the theoretical exercise and the empirical strategy we undertake in the subsequent sec-

tions: we will eventually argue that there is a “better” way to think about the issue both in the theory and

in the data.

3.1 Fact 1: under-reaction in average forecasts

Coibion and Gorodnichenko (2015), henceforth CG, test for a departure from full-information rational ex-

pectations by estimating the predictability of professionals’ aggregate (“consensus”) forecast errors using

information in previous forecast revisions.

Let Ēt [xt+3] denote the median expectation of variable xt+3 (either unemployment or inflation) mea-

sured at time t . Let Ēt−1[xt+3] be the median forecast at time t −1.16 The associated forecast error from

time t is Errort ≡ xt+3 − Ēt [xt+3], suppressing notation for the variable x and the forecast horizon, and the

forecast revision is Revisiont ≡ Ēt [xt+3]−Ēt−1[xt+3]. CG run the following regression that projects aggregate

forecast errors onto aggregate forecast revisions:

Errort =α+KCG ·Revisiont +ut (1)

where KCG, in shorthand notation that references the authors, is the main object of interest.

Table 1 reports results from estimating (1) at the horizon k = 3 for both unemployment and inflation

in our data. We report results over the full sample 1968-2017 (columns 1 and 3), and also over a restricted

sample after 1984 (columns 2 and 4). We may believe a priori that the latter is a more consistent and

“stationary” regime for the US macroeconomy (i.e., after the oil crisis and Volcker disinflation).

Like the original authors, we find in all specifications a point estimate of KCG > 0: when professional

forecasters, in aggregate, revise upward their estimation of unemployment or inflation, they on average

always “undershoot” the eventual truth. For inflation, we find the predictability is considerably lower

on the restricted sample, which underscores the large influence of the aforementioned key events for US

inflation expectations. Appendix Table A.1 shows robustness along a number of dimensions including (i)

using different forecast horizons; (ii) putting final release data in place of the vintage data; and (iii) using

forecasts from the Blue Chip Economic Indicators survey. All findings, including the differences across

older and newer samples, are very similar to those reported in Table 1.

The finding of KCG > 0 rejects full-information rational expectations: since Revisiont ,k is necessarily

known to the representative agent at time t , it should not be systematically predict that agent’s forecast

error at t +1 if that agent is rational.17 But note that it provides ambiguous evidence on the separate hy-

potheses of informational frictions versus non-rationality. In particular, the fact is just as consistent with a

16In the data, we prefer to use the median to limit the influence of outliers and/or data entry errors. But results with the mean are

essentially identical. In the theory, means and medians coincide because we let all variables and signals be Normally distributed.
17An auxiliary assumption in this context, which we will not question throughout the analysis, is “perfect recall”: a rational,

Bayesian agent who forgets past information (like last period’s forecast) could make such a predictable error.
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Table 1: Predicting Aggregate Forecast Errors with Revisions, from (1)

(1) (2) (3) (4)

Unemployment Inflation

1968-2017 1984-2017 1968-2017 1984-2017

Revisiont (KCG) 0.741 0.809 1.528 0.292

(0.232) (0.305) (0.418) (0.191)

R2 0.111 0.159 0.278 0.016

N 191 136 190 135

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. All

regressions include a constant. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett kernel and lag

length equal to 4 quarters. The data used for outcomes are first-release (“vintage”).

Table 2: Predicting Individual Forecast Errors with Revisions, from (2)

(1) (2) (3) (4)

Unemployment Inflation

1968-2017 1984-2017 1968-2017 1984-2017

Revisioni ,t (KBGMS) 0.321 0.398 0.143 -0.263

(0.107) (0.149) (0.123) (0.054)

R2 0.028 0.052 0.005 0.025

N 5,383 3,769 5,147 3,643

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard

errors are clustered two-way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict

to 4 times the inter-quartile range away from the median. The data used for outcomes are first-release (“vintage”).

population of rational but heterogeneously informed agents (as indeed Coibion and Gorodnichenko, 2015,

propose in their paper) as it is with a representative irrational agent who systematically under-reacts to

news because of a behavioral bias (as indeed Gabaix, 2020, proposes in his own paper). Similarly, an “old-

fashioned” model of adaptive expectations can also generate the fact. It is only by combining this fact with

the additional fact reported next that we can start disentangling the role of informational frictions and

mis-specified beliefs.

3.2 Fact 2: over-reaction in individual forecasts

To probe further the need for irrationality to explain the data, recent papers by Bordalo et al. (2018), Fuhrer

(2018), and Kohlhas and Broer (2019) have studied forecast error patterns at the individual level in the pro-

fessional forecasts. Let Errori ,t ≡ xt+3 −Ei ,t [xt+3] and Revisioni ,t , ≡ Ei ,t [xt+3]−Ei ,t−1[xt+3] denote forecast

errors and revisions for a particular forecaster, indexed by i , at the baseline horizon k = 3. Each of the
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Table 3: Predicting Aggregate Forecast Errors with Recent Outcomes, from (3)

(1) (2) (3) (4)

Unemployment Inflation

1968-2017 1984-2017 1968-2017 1984-2017

xt (KKW) -0.061 -0.036 0.111 -0.068

(0.056) (0.038) (0.075) (0.068)

R2 0.016 0.007 0.058 0.012

N 194 136 193 135

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. All

regressions include a constant. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett kernel and lag

length equal to 4 quarters. The data used for outcomes are first-release (“vintage”).

aforementioned studies estimates the following regression that translates (1) to the individual level:

Errori ,t =α+KBGMS ·Revisioni ,t +ui ,t (2)

where the object of interest KBGMS, named in shorthand reference to the authors of Bordalo et al. (2018), is

the individual-level analogue to KCG. Regardless of the information structure, individual-level rationality

imposes KBGMS = 0.

In columns 1 and 3 of Table 2, we provide estimates of the individual-level regression (2) in the SPF

over the full sample for our two variables of interest, unemployment and inflation. Columns 2 and 4 of the

same table conduct the analysis on the sub-sample from 1984 to the present. Results for different horizons

and data choices (vintage versus final) are similar and reported in Appendix Table A.2.

For unemployment, we find substantial evidence that KBGMS > 0 over the full and restricted sample

period. And for inflation, we find imprecise evidence that KBGMS > 0 over the full sample, which includes

the 1970s and Volcker disinflation, but strong evidence of KBGMS < 0 in the “more stationary” environment

post 1984.

BGMS argue that a negative relation between revisions and subsequent errors, or KBGMS < 0, is a robust

feature of the forecasts of various macroeconomic variables. A closer look at their findings yields a more

nuanced picture. But if we take for granted their thesis, we have that macroeconomic forecasts appear to

over-react at the individual level at the same that they appear to under-react at the aggregate level.

We reinforce this apparent contradiction below. But we also invite the reader to keep the following

basic insight in mind: while the CG evidence confounds the effects of informational frictions and non-

rationality, the BGMS evidence speaks exclusively to the latter. We will leverage on this insight later to

argue that the gap between the CG and the BGMS evidence speaks to the role of informational frictions.
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3.3 Fact 3: over-reaction in aggregate forecasts

Facts 1 and 2 by themselves may suggest that going to the individual-level data is necessary, if not suffi-

cient, to see evidence of over-reaction. But a recent paper by Kohlhas and Walther (2018) calls into ques-

tion this view by presenting an additional moment: the slope of forecast errors in current realizations of

the variable, as measured in the following regression:

Errort =α+KKW · xt +ut (3)

In our implementation, Errort is the error in three-quarter-ahead forecast of unemployment or annual

inflation, and xt is the current (forecasting) period’s realization of one or the other.

Clearly, KKW 6= 0 is inconsistent with full-information rational expectations. It is also hard to square

with the CG evidence. More heuristically, in a world of “sluggish” expectations, we may expect KKW > 0, or

a positive correlation between today’s realization and the direction of the forecast error k periods out.

Table 3 reports results from estimating (3). For unemployment we find weak evidence supporting the

hypothesis that KKW < 0. The results for inflation depend once again on whether we want to consider data

from the 1970s and early 80s. In the whole sample, the evidence is more supportive of KKW > 0. But in

the more recent sample period, for inflation too we find weak evidence of KKW < 0. Appendix Table A.3

probes robustness to different data choices and sub-samples and uncovers broadly consistent results. KW

provide evidence of KKW < 0 for forecasts of other variables, such as GDP growth.18

All in all, there is a good case for KKW < 0 in the data. This is consistent with a world of over-reactive

expectations: as an example, if agents are forecasting unemployment to be too high in recessions (high

xt , negative forecast error) and too low in booms (low xt , positive forecast error), then we may naturally

get KKW < 0. But in such a world we would also expect KCG < 0, which is not what we found earlier. This

reinforces the puzzle: the picture for over- or under-reaction is unclear even if we focus on the properties

of aggregate forecasts.

4 A Simple Model

In this section we introduce a simplified version of our framework, which combines dispersed noisy infor-

mation with misspecified beliefs but abstracts from the fixed point between expectations and outcomes.

We use this to reconcile Facts 1-3, but also, and more importantly, to pave the way to our preferred empir-

ical strategy, which we in turn implement in the next section.

18One discrepancy between our implementation of KW and the original one is that these authors apply an HP filter to xt . We

prefer not to do so because it complicates the mapping to the theory: as the filtered value of xt is a function of realizations after t ,

finding KKW 6= 0 does not necessarily reject full-information, rational expectations under their approach, whereas it does under

ours. That said, the big picture is the same. And in Subsection 5.4 and Table 4 we will use an instrumental-variables method that

conditions on pre-determined data (identified shocks) to achieve a similar goal of extracting the business cycle component of

variation in xt .
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4.1 Primitives

Let {xt } be a stochastic process that a group of agents, indexed by i ∈ [0,1], are trying to forecast (e.g.,

unemployment or inflation). Ideally we want to think of xt as endogenous to the agents’ behavior. But for

now, to put the focus only on the expectations formation process, we assume that xt follows an exogenous

AR(1) process with Gaussian errors. That is,

x = 1

1−ρLεt , (4)

where ρ ∈ (0,1) parameterizes the persistence of the process, εt ∼ N (0,1) is a Gaussian innovation, and L

denotes the lag operator (i.e., Lxt = xt−1).

An agent’s observation of xt is contaminated with idiosyncratic noise. That is, each agent in period t

observes a signal si ,t given by

si ,t = xt +
ui ,tp
τ

, (5)

where τmeasures precision and ui ,t ∼i i d N (0,1) is idiosyncratic Gaussian noise. As in a large literature, we

can think of this noise either literally, as the product of dispersed noisy information (Lucas, 1972; Morris

and Shin, 2002), or metaphorically, as a representation of rational inattention and imperfect perception

(Sims, 2003, 2010; Woodford, 2003; Mankiw and Reis, 2002).

We depart from this literature by adding two forms of irrationality, or belief misspecification. First,

whereas the true process of the private signal is given by (5), agents perceive this process to be

si ,t = xt +
ui ,tp
τ̂

(6)

for some perceived precision τ̂> 0 that may differ from τ. And second, whereas the true process from xt is

given by (4), agents perceive this process to be

xt = 1

1− ρ̂Lεt (7)

for some perceived persistence ρ̂ which may differ from ρ.

The case τ̂ > τ captures overconfidence: each agent thinks their information is better than it truly is.

The opposite case, τ̂ < τ, captures underconfidence. Moore and Healy (2008) provide a representative

review of the experimental psychological evidence for such biases. Their broad conclusion is that over-

confidence is consistently prevalent for reported beliefs in the laboratory, but that the extent of effects can

be context-specific. Kohlhas and Broer (2019) and Bordalo et al. (2018) use, respectively, τ̂> τ and a close

variant of it to reconcile Facts 1 and 2.19 We will nest this possibility in the subsequent analysis but also

show that ρ̂ > ρ serves the same goal while also matching Facts 3. And we will provide additional evidence

in favor of ρ̂ > ρ in the form of our (not yet introduced) Fact 4 about dynamic over-shooting.

The case ρ̂ > ρ encodes an over-extrapolation of today’s state to tomorrow, while ρ̂ < ρ encodes under-

extrapolation. Both narratives are appealing in different economic contexts. On the one hand, Greenwood

19The variant used in Bordalo et al. (2018) is motivated by a broader concept, “diagnostic expectations,” the precise formal

content of which varies across applications. It is the specific formalization employed in Bordalo et al. (2018) that is very similar to

over-confidence; this similarity is evident in the modified Kalman filter that is at the core of that paper.
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and Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015) argue that over-extrapolation is evident both in

stock-market expectations and in expectations of firms’ sales forecasts; see also Guo and Wachter (2019)

for how a simple model with over-extrapolation over dividend growth can explain a variety of asset-price

phenomena. On the other hand, level-K thinking (Garcıa-Schmidt and Woodford, 2019; Farhi and Wern-

ing, 2019) and cognitive discounting (Gabaix, 2020) are “close in spirit” to the opposite scenario, ρ̂ < ρ,

because they cause agents to be under-estimate the (endogenous or exogenous) response of future out-

comes to current innovations. We will make this connection formal in Section 6.4, once we extend the

analysis to a GE context and properly nest these models.

As anticipated in the Introduction and will become clear in the sequel, only the second type of mis-

specification (ρ̂ 6= ρ) is strictly needed for our main purposes. The first type (τ̂ 6= τ) is nevertheless useful

for two complementary reasons: it enlarges the set of theories nested in, or proxied by, our framework; and

it helps clarify which evidence is most directly relevant in the GE context of Section 6.

4.2 Facts 1, 2, and 3 in the Model

The structure introduced above yields a highly tractable, finite ARMA representation of the individual and

average forecasts, which can be found in Lemma 1 in the Appendix. This in turns allows a simple, closed-

form characterization of the theoretical counterparts of the regressions reviewed in Section 3.

Proposition 1 (Regression coefficients in the theory). The theoretical counterparts of the coefficients of

regressions (1), (2) and (3) are given by the following:

KCG =KCG(τ̂,ρ, ρ̂) ≡ κ1τ̂
−1 −κ2(ρ̂−ρ) (8)

KKW =KKW(τ̂,ρ, ρ̂) ≡ κ3τ̂
−1 −κ4(ρ̂−ρ) (9)

KBGMS =KBGMS(τ, τ̂,ρ, ρ̂) ≡−κ5(τ̂−τ)−κ6(ρ̂−ρ) (10)

for some scalars κ1, ...,κ6 that depend on the deeper parameters but are necessarily positive. In particular,

κ1,κ2,κ3, and κ4 are functions only of (τ̂,ρ, ρ̂), whereas κ5 and κ6 depend also on τ.

Let us unpack these expressions. First of all, note that the actual precision, τ, enters only the BGMS

coefficient. That is, the moments of the average forecasts do not depend on the true level of noise, condi-

tional on the perceived noise. The latter dictates how each agent’s forecasts responds to her information,

and hence also how the average forecasts respond to the underlying shocks. The actual idiosyncratic noise,

instead, washes out at the aggregate level.

Consider next condition (8), which characterizes the CG coefficient. With rational expectations, which

herein means τ̂= τ and ρ = ρ̂, KCG is merely a monotone transformation of the level of noise. In particular,

KCG = 1− g

g
(11)

where g ∈ (0,1) is the Kalman gain.20 This is the structural interpretation given in CG.

20As in the textbook version of the Kalman filter, g is such that Ei ,t [zt ] = (1− g )Ei ,t−1[zt ]+ g si ,t and is an increasing and con-

tinuous function of τ, with g → 0 as τ→ 0 and g → 1 as τ→∞.
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Our result qualifies this structural interpretation in two ways. First, if we maintain ρ = ρ̂ but allow τ̂ 6= τ,

we get an analogue of (11) with a subjective Kalman gain ĝ in place of its objective counterpart. That is,

even in the absence of over-extrapolation, the CG coefficient tells us something about the subjective level

of noise, which does not have to coincide with the objective level. Second, if we allow ρ̂ 6= ρ, we now have

that KCG confounds two mechanisms: a high value for KCG could be evidence of either large informational

friction or large under-extrapolation. Or, a low value for KCG could hide a large information friction if there

is also large over-extrapolation. Indeed, KCG could even be negative.

Consider next condition (9), which characterizes the KW coefficient. The informational friction and

the over-extrapolation enter this coefficient in a qualitatively similar was they enter the CG coefficient.

The former contributes towards KKW > 0, the latter towards KKW < 0. The logic is exactly the same as that

for the CG coefficient. What is subtle is the possibility that the two forces balance out in such a way that

the one coefficient is negative at the same time that the other is positive, a point we revisit below.

Finally, consider condition (10), which characterizes the BGMS coefficient. When τ̂ = τ and ρ = ρ̂,

KBGMS = 0. This is an example of the more general property that, under rational expectations, an indi-

vidual’s forecast error is unpredictable by his own past information. Away from this benchmark, both

overconfidence (τ̂ > τ) and over-extrapolation (ρ̂ > ρ) contribute towards KBGMS < 0. In the presence of

over-extrapolation, agents over-estimate the effect of any given innovation today on future outcomes. In

the presence of over-confidence, they get this effect right but over-estimate the precision of the signal

they receive about the innovation. In both cases, they make a systematic mistake in the direction of over-

estimating the informational content of their current signal about the future outcome, and this mistake

manifests as KBGMS < 0. The converse is true for underconfidence or under-extrapolation.

4.3 The right combination of belief distortions

Let us summarize the lesson for two versions of our model that are familiar from the literature but fail to

match Facts 1-3:

Corollary 1. The following two cases are inconsistent with Facts 1-3:

(i) Noisy but rational expectations: τ̂= τ<∞ and ρ̂ = ρ implies KCG > 0, KKW > 0, and KBGMS = 0

(ii) Noiseless but extrapolative expectations: τ = τ̂ → ∞ and ρ̂ 6= ρ implies sign(KCG) = sign(KKW) =
sign(KBGMS) = sign(ρ− ρ̂).

The first case stylizes a large literature on informational frictions, and is precisely the case considered

in Coibion and Gorodnichenko (2015). This case counterfactually forces KCG and KKW to be the same sign,

a restriction first pointed out in Kohlhas and Walther (2018), because there is only a single “dampening”

force coming from noisy expectations. Moreover, this case cannot accommodate KBGMS 6= 0 because fore-

casters remain individually rational.

The second model is an entirely “behavioral” one that admits a mis-calibrated representative agent, as

in Gabaix (2016, 2020). But switching from an under-extrapolative model (ρ̂ < ρ) to an over-extrapolative

model (ρ̂ > ρ) must necessarily flip all three signs for the aforementioned moments. Thus it too cannot

match the patterns observed so far.
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Figure 1: The Regression Coefficients KCG, KKW, and KBGMS in the Theory

Let us now turn to the scenario that best accounts for the evidence.

Corollary 2 (Matching Facts 1-3). The combination of informational friction and over-extrapolation is nec-

essary and sufficient for all three facts in the following sense:

(i) KCG > 0 and KKW < 0 only if 0 < τ̂<∞ and ρ̂ > ρ > 0,

(ii) There exists an open set of parameter values, with 0 < τ ≤ τ̂ <∞ and ρ̂ > ρ > 0, such that KCG > 0,

KKW < 0, and KBGMS < 0.

Figure 1 illustrates this by plotting the model’s “sign predictions” for the three coefficients in the (τ̂, ρ̂)

space. For this picture, we set ρ = 0.90, which is illustrative but immaterial to the overall pattern. We also

restrict τ = τ̂, that is, we assume away both over- and under-confidence. The blue region identifies the

combinations of τ̂ and ρ̂ that match all three facts qualitatively.

What happens if we let τ 6= τ̂? The green, blue and orange regions remain intact, and so does the map-

ping from the specific values of KCG and KKW to the corresponding values of τ̂ and ρ̂. This is because the

stochastic properties of the average forecasts depend merely on the perceived level of noise and the de-

gree of over-extrapolation, not only the actual level. What changes as we vary τ, or equivalently the degree

of over-confidence, is only the position of the vertical red line, and along with it the specific value of this

“free” parameter needed to match a specific value for KBGMS.

This suggests a simple, recursive, identification strategy: first, calibrate ρ to actual process of unem-

ployment or inflation; next, identify τ̂ and ρ̂ jointly from KCG and KKW; finally, identify τ form KBGMS.

Appendix Table A.4 implements this strategy and reports the specific values of the model parameters that

quantitatively match the evidence reported before. But both this identification strategy and Corollary 2
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suffer from the same basic problem: it is unclear how the theory produces at once under-reaction in the

sense of KCG > 0 and over-reaction in the sense of KK W < 0. We cut the Gordian knot in the next subsection

by proposing a different, more transparent, way of connecting the theory and the data.

We end this subsection with a bibliographical note. Kohlhas and Walther (2018) offer a different reso-

lution to Facts 1 and 3 (i.e., KCG > 0 > KKW) than that presented here. This alternative preserves rational

expectations by allowing for asymmetric attention to procyclical and countercyclical components of the

forecasted outcome. But it imposes KBGMS = 0, failing to match Fact 2, and it does not square with Fact 4,

the new evidence we provide in Section 5. Kohlhas and Broer (2019), on the other hand, match Fact 2 by

introducing over-confidence, and Bordalo et al. (2018) achieve the same with a formally similar bias. But

neither of these papers addresses Fact 3 and 4.

4.4 A more informative approach: impulse response functions (IRFs)

Our intuition about the various forces behind Facts 1-3, and particularly the tension between KCG and

KKW, had a dynamic flavor which was collapsed to essentially static moments. Indeed our derivation of

Proposition 1 quite literally involved starting with a moving-average form of each stochastic process and

then computing static correlations. Let us now explore more directly what we would learn from observing

directly the dynamic response of forecast errors in response to shocks.

Proposition 2 (IRF of Forecast Errors). Let {ζk }∞k=1 be the Impulse Response Function (IRF) of the average,

one-step-ahead, forecast error. That is, for all k ≥ 1,

ζk ≡ ∂
(
xt+k −Et+k−1[xt+k ]

)
∂εt

is the k-th coefficient in the moving-average representation of the average forecast error.21

(i) If ρ̂ < ρ, or agents under-extrapolate, then ζk > 0 for all k ≥ 1.

(ii) If ρ̂ > ρ and τ̂ is small enough relative to ρ̂−ρ, or agents over-extrapolate and learning is slow enough,

then ζk > 0 for 1 ≤ k < kIRF and ζk < 0 for k > kIRF, for some kIRF ∈ (1,∞).

(iii) Finally, if ρ̂ > ρ but τ̂ is large enough relative to ρ̂−ρ, or agents over-extrapolate but learning is fast,

then ζk < 0 for all k ≥ 1.

Corollary 3 (Delayed overshooting). The IRF of the average forecast errors starts positive but eventually

switches negative if and only if there is both over-extrapolation and sufficiently large informational friction.

A sign-switch in the impulse response of forecast errors to a macro shock is “smoking-gun” evidence

for a combination of noise and over-extrapolation. A complementary lesson is that the point at which

the sign-switch occurs provides a gauge of the relative importance of the two mechanism: the slower the

learning relative to over-extrapolation, the longer it takes for the sign-switch to occur.

21We exclude ζ0 from this statement because it is mechanically 1. Also, all our theoretical statements focus on one-step-ahead

forecasts for expositional simplicity, but our empirical implementations of the theory use the exact counterparts of the objects

constructed in the data (e.g., as the three-quarter-ahead forecasts of annualized inflation).
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Figure 2: IRFs of Aggregate Forecasts and Errors in the Theory
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This is, in our view, easier to interpret than the previous strategy of comparing KCG with KKW because it

gets to the heart of the economic question: at what point are economic agents sufficiently informed about

an economic event (i.e., particular shock) such that their model mis-specification becomes the dominant

explanation for any errors?

Figure 2 illustrates these patterns by plotting the IRFs of outcomes and forecasts (left column) and

forecast errors and revisions (right column) in two scenarios: a benchmark without over-extrapolation

(top row), and a variant with (bottom row). The key observation is that only with the combination of slow

learning and over-extrapolation can the theory generate a sign reversal for the aggregate forecast errors, or

average forecasts that undershoot initially and overshoot later on.

Now, to drive home the connection to KCG and KKW, consider the MA representations of the forecast

errors, the forecast revisions, and the actual outcome:

Errort ,t+1 =
∞∑

k=0
ζkεt+1−k Revisiont =

∞∑
k=0

fkεt−k Outcomet =
∞∑

k=0
ρkεt−k .

where {ζk } and { fk } are the IRFs of, respectively, the average forecast errors and the average forecast revi-

sions. Using these representations, the coefficient of regression (1) can be expressed as

KCG = Cov(Errort ,t+1,Revisiont )

Var(Revisiont )
=

∑∞
k=0 ζk+1 · fk∑∞

k=0 fk
2 (12)
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and similarly the coefficient of regression (2) can be expressed as

KKW = Cov(Errort ,t+1,Outcomet )

Var(Outcomet )
=

∑∞
k=0 ζk+1 ·ρk∑∞

k=0ρ
2k

(13)

This makes clear that KCG and KKW are, up to rescaling, equal to the dot-products of the IRF of the forecast

errors with the IRF of, respectively, the revisions and the outcome.

What does this look like? Consider the bottom row of Figure 2, which corresponds to the combination

of noise and over-extrapolation. The dynamic response of the forecast errors, or the red, solid IRF in the

bottom-right subfigure, exhibits the reversal property we noted earlier: forecast errors switch from positive

to negative after a while. A similar reversal is also present in the forecast revisions; see the green, dashed

line in the same subfigure. It follows that the dot-product of these two IRFs contains more positive terms

than the dot-product of either one of them with that of the outcome, which is given by the blue, solid line

in the bottom-left subfigure. This helps explain why KCG > 0 at the same time that KKW < 0.

Apart from resolving the “mystery” behind the different signs of KCG and KKW, this exercise also under-

scores that the IRFs of the forecast errors contain strictly more information about the dynamic properties

of beliefs than any of the these regression coefficients. Either one of these coefficients offers a confusing

picture by averaging under- and over-reaction across different horizons. The IRFs let one see when exactly

beliefs under-shoot and when exactly they over-shoot.22

5 A New Fact: Delayed Over-shooting

We now go after what the theory has identified as the most useful moment to characterize imperfect expec-

tations: the dynamic response of forecasts and forecast errors to shocks. Here we corroborate the hypoth-

esis derived above and uncover a consistent pattern of initial under-reaction and delayed over-shooting

in the response of forecast errors to shocks. This, at least in the context of the last section’s analysis, is

“smoking gun” evidence of a combination of noisy information and over-extrapolation.

5.1 Methodology

We start with the details of the empirical implementation.

Identified shocks. As anticipated in Section 2, we consider two empirical shocks, both borrowed from

Angeletos, Collard, and Dellas (2020).23

22The idea that the IRFs of forecast errors contain superior information is also emphasized in Kucinskas and Peters (2019),

although for different purposes than those pursued here.
23The empirical strategy taken in that paper builds on the max-share approach (Uhlig, 2003; Barsky and Sims, 2011) but is

guided by the following goal: providing a parsimonious representation of the business cycle in terms of one dominant shock. To

this goal, Angeletos, Collard, and Dellas (2020) run a VAR on a set of ten or more key macroeconomic variables that includes the

two variables we focus on here, the rate of unemployment and the rate of inflation. They then compile a collection of multiple

shocks, each identified by maximizing its contribution to the volatility of a particular variable over a particular frequency band,

and they draw lessons from comparing the empirical footprint of all these shocks.
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The first shock, which these authors call “main business cycle shock,” is constructed by maximizing its

contribution to the business cycle variation in unemployment and is found to have the following proper-

ties: it encapsulates strong positive co-movement in employment, output, investment, and consumption

only over the business cycle; it is nearly indistinguishable, in terms of IRFs and variance contributions, to

the shocks identified by targeting any of the aforementioned variables; it has a negligible footprint on TFP

at all horizons; it has a small to modest footprint on inflation. It can thus be interpreted as an non- or

mildly-inflationary demand shock, which drives the bulk of the business cycle in the data.24

The second shock is identified by maximizing its contribution to the business cycle variation in infla-

tion and it is found to have a negative but very small footprint on real quantities and zero footprint on TFP.

It is thus akin to the kind of markup or cost-push shocks the DSGE literature uses to account for the bulk

of the inflation fluctuations in the data.25

We denote the two shocks, respectively, as (εD
t ,εS

t ) for “demand” and “supply”. Whether these shocks,

or any other SVAR-based shocks, are “truly” structural is largely a philosophical question and certainly be-

yond the scope of the present paper. For our purposes, the appeal of the particular shocks compared to

others found in the literature (e.g., Galí, 1999; Sims and Zha, 2006) is that they drive a significant compo-

nent of the business-cycle variation in macroeconomic activity and inflation. There is thus a good chance

that they also drive a significant component of the corresponding variation in real-world expectations.

Main specification: ARMA-IV. To estimate dynamic responses to the aforementioned shocks, we con-

sider two different empirical strategies.

The first is to estimate the IRFs via a parsimonious, instrumental-variables ARMA(P,K ) representation.

In particular, we estimate the following regression:

zt =α+
P∑

p=1
γp · zIV

t−p +
K∑

k=0
βk ·εt−k +ut (14)

Depending on the variable whose dynamic response we want to look at, zt is the actual outcome (unem-

ployment or inflation), the relevant forecast, or the corresponding forecast error. In all cases, εt ∈ {εD
t ,εS

t }

is one of the aforementioned two shocks drawn from Angeletos, Collard, and Dellas (2020). Finally, for

p ∈ {1, ...,P }, zIV
t−p are the lagged values of zt instrumented by the lagged values of εt .26 This IV approach

recovers the conditional dynamic responses to the structural shock under consideration—intuitively, how

zt moves when driven by the shock process of interest. We will call this method the “ARMA-IV” estimation.

By estimating (14) for outcomes (e.g., zt equal to that quarter’s unemployment rate or the past four

quarters’ inflation rate), we can generate dynamic impulse response coefficients (βout,h)H
h=0 as functions

of (β0, (γp )P
p=1). For forecasts, we can do the same thing with zt equal to the forecast in period t (e.g,.

24Angeletos, Collard, and Dellas (2020) further show that this shock in the data is closely related to the following counterparts

in models: the investment-specific demand shock in Justiniano, Primiceri, and Tambalotti (2010), the risk shock in Christiano,

Motto, and Rostagno (2014), and the confidence shock in Angeletos, Collard, and Dellas (2018).
25The two shocks are not constructed to be orthogonal to one another, but are very close to being so in the data.
26The first-stage equation is given, in vector form, by Zt−1 = η + E ′

t−K−1Θ + et , where Zt−1 ≡ (zt−p )P
p=1, Et−K−1 ≡

(εt−K− j )J
j=K+1 and J −K ≥ P . Our main specifications use P = 3, K = 1, and J = 9 (i.e., 8 instruments for 3 regressors). But

the results are robust to P = 2 and P = 4, as well as to different J and K .
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Ēt [ut+3] and Ēt [πt+3,t−1]): estimate the impulse response coefficients (β̃fc,h)H
h=0 and then “re-index” these

coefficients to line up with the realized outcomes. More specifically, we generate (βfc,h)H
h=0 such thatβfc,h =

0 for h < 3 (effectively imposing unpredictability of the shocks), and βfc,h = β̃fc,h−3 for h ≥ 3. Finally, we

can construct the IRF of the forecast errors either by taking the difference between the IRF of the outcome

and the forecasts, or by repeating the aforementioned procedure with xt being the average forecast error.

In all cases, we construct standard errors for the coefficients that are heteroskedasticity and autocorre-

lation robust (HAC) with a 4-quarter Bartlett kernel; and then use the delta method to calculate standard

errors for the impulse response functions. All reported error bands are 68% confidence intervals (±1 ·SE).

Local projection. Our main strategy strives for parsimony by requiring the IRFs to accept a low-dimension

ARMA representation as in (14). But we can also estimate impulse responses directly using the projection

method of Jordà (2005). In this case, the estimating equation, for each horizon 0 ≤ h ≤ H , is the following:

zt+h =αh +βh ·εt +γ′Wt +ut+h (15)

where (βh)H
h=0 trace out the dynamic response of the outcome, Wt is a vector of control variables, and γ

are the coefficients on these controls. Consistently, across specifications, we include the lagged outcome

xt−1 and the lagged forecast Ēt−k−1[xt−1] as control variables. Conceptually, as long as these controls are

orthogonal to the shock εt , these should not affect the population estimate we get of the impulse response

parameters; but their inclusion may help with small-sample precision. We find overall that results are not

sensitive to choices of controls. Standard errors are constructed in the same, aforementioned way.

Finally, we set k = 3 quarters as the forecast horizon, in line with what we did in Section 3, and we set

H = 20 quarters as the maximum period for tracing out IRFs.

5.2 The fact: dynamic over-shooting

Figure 3 shows, in a two-by-two grid, the main impulse response estimates.27 In the first column, we show

the dynamic response of unemployment and median forecasts thereof to the demand shock εD
t . The first

row shows the instrumented ARMA method of equation (14) , and the second row shows the projection

method of (15). For both methods, we “align” the forecast responses such that, at a given vertical slice

of the plot, the outcome and forecast responses are measured over the same horizon, and the difference

thereof is a measure of the response of forecast errors. In the second column, we plot the same for the

response of one-year-average inflation to the supply shock εS
t .

The consistent pattern across specifications is an initially delayed, and then over-persistent response

of forecasts to the shock. Consider, as an illustration, the response of unemployment and forecasts thereof

to εD
t . Unemployment spikes around quarter 3 in both estimation methods before reverting back to its

long-run mean. The point-estimate is extremely close to zero by t = 12 in both cases.

27We report first-stage F statistics for the ARMA-IV estimates in Table A.5. These are low with respect to the reference values

suggested by Stock and Yogo (2005) which is part of the reason that we also consider alternative estimation methods including

the linear projection and multi-variate linear model.

19



Figure 3: Dynamic Responses: Outcomes and Forecasts
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Notes: The sample period is Q1 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett kernel and 4 lags. The x-axis denotes quarters from the shock, starting at 0. In the first column the outcome is ut

and the forecast is Ēt−3[ut ]; in the second column the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].

Now consider the response of forecasts at t = 3 in the plot. These are forecasts made at t = 0, when

the very first macro data (e.g., BLS reports) from t = 0 become available. Forecasted unemployment im-

mediately spikes and begins to decay over the next 5-6 quarters. Forecasters remain convinced there are

adverse demand conditions, when in reality conditions have reverted back to the mean. A similar, and

indeed more dramatic, pattern is visible in the response of inflation to the supply shock (second row). And

these patterns look qualitatively and quantitatively quite similar with both the smooth, ARMA estimates

(left column) and the unrestricted projection regression estimates (right column).

Figure 4 shows this overshooting pattern more clearly in terms of the impulse response of forecast er-

rors. For both the ARMA and projection methods, this is obtained by taking the difference of the previous

estimates for outcomes and forecasts. For both unemployment and inflation, we find evidence that fore-

cast errors start positive and then turn negative at longer horizons. The estimated “crossing points” of the

forecast errors response with 0, using the ARMA method, are K u
IRF = 4.14 and K π

IRF = 6.43, respectively.28

Finally, in the left panel of Appendix Figure A.1, we complete the picture with the “off-diagonal” im-

pulse responses of inflation to the demand shock and unemployment to the supply shock. The former is

weakly inflationary at longer horizons and the latter weakly contractionary at medium horizons. And in

both cases we have modest evidence of the over-shooting pattern of interest.

28The corresponding estimates from the projection regressions are 4.87 and 7.79.
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Figure 4: Dynamic Responses: Forecast Errors
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Notes: The sample period is Q1 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett kernel and 4 lags. The x-axis denotes quarters from the shock, starting at 0. In the first column the outcome is ut

and the forecast is Ēt−3[ut ]; in the second column the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].

5.3 Robustness and extensions

Sample choice. We conduct a number of initial robustness checks, mirroring those in Section 3, related

to measurement and sample choice. The middle panel of Figure A.1 recreate the regression results in the

SPF, back again with modern data, in the sample 1984-2017. As discussed previously, we might think of the

post-Volcker and post-oil-crisis data as a more “consistently stationary” regime for forecasters trying to

model the world. We find largely the same patterns in forecast errors. The right panel of Figure A.1 recre-

ates the main analysis with forecast data from Blue Chip Economic Indicators over the shorter available

sample (1980-2017) and again finds the same patterns.29

General public. Carroll (2003) and others have argued that the forecasts of professional forecasters are

in general good proxies for those of the general public. But does this apply to our particular finding?

To address this question, we look at the University of Michigan Survey of Consumer Sentiment and

construct an “unemployment expectation” using the survey’s question about whether unemployment will

go up, stay the same, or go down over the next 12 months. We code a variable Ēt [UnempUpt+4] that av-

erages the “up” responses, and code a data equivalent UnempUpt+4 using the BEA unemployment rate.30

For inflation, we use the survey’s estimate for inflation over the next 12 months.31

Appendix Figure A.2 shows the results from projecting our business cycle shocks on these variables

using (15). The left panel shows the response of the UnempUp variable and forecasts thereof to εD
t . The

Michigan survey expectations perk up slightly before the shock hits (i.e.,. for t < 4) and then spike one

quarter “too late.” We see further evidence that the general public is also particularly unable to forecast

the “mean-reverting” part of the shock, or the eventual downward trend in unemployment.

29We also replicate all SPF and Blue Chip findings with vintage data and find similar results (not reported for brevity).
30Results are similar if we treat a different portion (e.g., 1/2 or all) of the “about the same” responses as corresponding to “up.”
31For consistency with the previous analysis, we compare this to data on the GDP deflator, even though this is almost certainly

not a perfect match for the price variable households have in mind when answering the survey.
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The right panel shows the response of the response of GDP deflator and the annual inflation expec-

tation of the Michigan survey to εS
t . Here, responses are much too noisy to pick out an obvious “peak

response.” Again, there is some weak evidence of anticipation, and at quarters 10 and onward evidence of

some over-extrapolation of recent price trends.

Other shocks of interest. An appealing feature of using projections and the ARMA-IV method is that it

is easy to combine with auxiliary identification techniques, without fully specifying a multivariate model

and considering the problem of jointly identifying many shocks. To illustrate this property, and probe the

robustness of our results to other candidate “supply and demand” shocks from the macroeconomics liter-

ature, Appendix Figure A.3 replicates our main analysis for three different shocks: a technology shock à la

Galí (1999), normalized here to be inflationary and contractionary; an oil price shock à la Hamilton (1996);

and the investment-specific shock extracted from the DSGE model of Justiniano, Primiceri, and Tambalotti

(2010). The former two are variations of “supply shocks” (to productivity or input costs), and we show the

response of inflation; the last is like a demand shock, and we show the response of unemployment. In all

cases we see evidence of the overshooting pattern.

Methods for estimating dynamics. Our ARMA-IV method resembles the method suggested by Romer

and Romer (2004) and applied by Coibion and Gorodnichenko (2012) in their study of how forecast errors

respond to structural shocks. That method estimates an empirical ARMA process like (14) via ordinary

least squares (“ARMA-OLS”). It therefore uses unconditional auto-covariance properties to pin down dy-

namics. Our prior is that, in a world of very different, shock-specific dynamics (induced, for instance, by

differential persistence in the driving process or differential ability to learn about these shocks), the ARMA-

OLS method could give mis-leading results. Indeed, in our replication of a key result from Coibion and

Gorodnichenko (2012), the response of inflation and forecast errors thereof to technology shocks, we find

evidence of our overshooting patterns when we use both our ARMA-IV method and a local projection. Ap-

pendix B unpacks the differences in methodology and demonstrates why the particular implementation

in Coibion and Gorodnichenko (2012) makes it impossible to see the over-shooting patterns uncovered

here: the forecast errors are therein restricted to be uniformly positive.

Two complementary SVARs. Another option for estimating complex dynamics, of course, is to jointly

estimate a multivariate model. We estimate a 13-variable VAR comprised of the ten key macroeconomic

variables from Angeletos, Collard, and Dellas (2020) plus three forecast variables of interest: the three-

period-ahead unemployment forecast, the three-period-ahead annual inflation forecast, and the three-

period-ahead quarterly inflation forecast.32 We apply the same Bayesian inference procedure as that pa-

per, including prior specification and posterior sampling procedures, and replicate their identification of

shocks that target the “max share” of the business-cycle variation in unemployment and inflation.33

32The ten macro variables are the following: real GDP, real investment, real consumption, labor hours, the labor share, the

Federal Funds Rate, the rate of change in the GDP deflator, labor productivity in the non-farm business sector, and utilization-

adjusted TFP. Full variable descriptions and data construction discussion is Angeletos, Collard, and Dellas (2020). The forecast

variables are the three-step-ahead unemployment and inflation forecasts from the SPF. The sample period is Q4 1968 to Q4 2017.
33We are grateful to Fabrice Collard for help with this replication.
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Figure 5: Dynamic Responses in a Structural VAR
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Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock (starting at 0). The shaded areas

are 68% high-posterior-density regions and the point estimate is the posterior median. In the first row the outcome is ut and

the forecast is Ēt−3[ut ]; in the second row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4]; and in the

last row, the outcome is πt ,t−1, or one-quarter inflation, and the forecast is Ēt−3[πt ,t−1]. The columns show results from a "max

share" identification and a triangular identification, respectively; see the main text for details.

The left panel of Figure 5 shows the results. In the first row, we show the response of unemployment,

forecasts thereof, and forecast errors to the “unemployment shock.” This can be compared directly to

the first column of Figures 3 and 4, and largely agrees about the potential for large and persistent “over-

shooting” in forecast errors. The second and third row show the response of outcomes and forecasts to

the inflation shock in the same SVAR model, but with different forecast horizons and transformations of

the outcome variable (annual averages in Row 2 versus quarter-to-quarter rates in Row 3). Here we find

quantitatively smaller effects per period, but also very persistent ones.34

In the right panel of Figure 5, we show the results of two different “Cholesky” identifications based on

triangular short-run restrictions (ordering unemployment or inflation first). We find strong corroborating

evidence of over-shooting for unemployment but only very weak evidence for inflation. Hence, Fact 4 for

34In Appendix Figure A.4, we show the “off-diagonal” impulse responses of unemployment to the supply shock and inflation to

the demand shock. They, too, show evidence of the overshooting.
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Figure 6: The Term Structure of Forecasts and Outcomes

Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock or horizon of forecast (starting at 0).

The lines are one-standard-error bars. The orange lines plot the terms structure of forecasts, or β
f
k from (16), and the blue lines

show the response of outcomes, or βo
k from (17).

inflation seems to rely on filtering the “right” variation in the data. A related point is made below in the

context of Fact 3, where we show that this fact is reinforced when we focus on the shock that drives the

variation of inflation at business-cycle frequencies.

Dispersions, not means. Motivated by our framework, which emphasizes only mean forecasts, we have

not looked at the dynamics of the dispersion in forecasts. In Appendix Figure A.5, we re-estimate (15) using

the cross-sectional inter-quartile range of forecasts as the outcome.35 There is a rough pattern of disper-

sion spiking on impact of shocks, particularly in the “diagonal” responses. A “cheap” way to accommodate

this fact, which echoes Mankiw, Reis, and Wolfers (2004), in our framework is to let τ be time-varying while

maintaining τ̂ fixed; this allows dispersion to vary without affecting at all the joint dynamics of average

forecasts and aggregate outcomes. The more interesting possibility that time-variation in the levels of un-

certainty and disagreement influence aggregate behavior (e.g., Bloom, 2009b; Bloom, Floetotto, Jaimovich,

Saporta-Eksten, and Terry, 2018) is left outside our analysis.

5.4 Three complementary tests

The impulse response evidence, combined with the discussion in Section 4, suggest we are heading to-

ward a model that includes both incomplete information and over-extrapolation. Here, before proceeding

to determine the implications of such a theory, we organize three additional tests that independently cor-

roborate our main story.

The “term structure” of forecasts. The impulse response functions plotted show forecasts of a constant

horizon at different dates after the shock. But they do not show a forecaster’s belief at any fixed date about

35Results are similar using cross-sectional standard deviations, but the IQR method seems safer in the presence of outliers.
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how macro outcomes will behave in the future, which could perhaps offer the most direct evidence of over-

or under- extrapolation.

We can estimate a version of this in the SPF data, for forecasts up to 4 quarters out; forecasts of longer

horizons are unavailable for the full sample. We thus consider the following “slice” of the projection re-

gressions for forecasted variable and the realized outcome at horizons k ∈ {0, ...,4}:

Ēt [xt+k ] =αk +β f
k ·εt +γ ·Wt +ut+k (16)

xt+k =αo
k +βo

k ·εt +γo ·Wt +ut+k (17)

We run these specifications for x equal to unemployment and inflation, and for ε equal to the correspond-

ing shock. For consistency, we use the same control as those used earlier in projection (15).

The coefficients of interest are (β f
k ,βo

k ), which reveal the persistence of outcomes and forecasts. If

β
f
k < βo

k , which we have already verified for k = 3, we know agents under-react on impact. If βo
k is much

more persistent across k than β
f
k , this is also evidence of over-extrapolation right at the impact of the

shock—that is, agents end up being more correct about impacts further in the future because their over-

extrapolation partially cancels out their under-reaction.

Figure 6 plots the results, showing the values of βo
k and β f

k on the left and right scales, respectively. By

comparing the left and right scales, we see that forecasts at all horizons under-react. But by comparing the

blue line to the orange one, we also see that, in the case of unemployment, agents expect the effect of the

shock to persist longer than it actually does.

A “structural” version of Facts 1 and 3. Now that we have committed to some notion of what “business

cycle variation” we want to map to the model’s shocks, we should recognize that a more precise analogue

to Facts 1 and 3 (and our argument linking these Facts to the IRFs) would involve sub-setting to this par-

ticular variation. We thus revisit those regressions with an appropriate instrumental variables strategy.36

Concretely, we estimate versions of (1) and (3) using the current and six lags of the corresponding shock as

an instrument for, respectively, Revisiont and xt . Table 4 reports the results.

For Fact 1, we find similar values to the OLS estimates for unemployment, but slightly larger, and more

stable, values for inflation. This is consistent with the relative stability of our IRFs, as demonstrated in the

comparison of the left and middle panels of Figure A.1.For Fact 3, we find more negative values that the

OLS estimates. This underscores that the aspect of over-shooting that is picked up in the KW regression is

more pronounced when focusing on the relevant business-cycle variation.

Auxiliary support for dispersed, private information. By embracing over-extrapolation, we have com-

mitted to a model in which some noisy perception is necessary to capture the initial sluggishness in expec-

tations and the related Fact 1. Appendix C shows more clearly how to use a hybrid regression of individual

and aggregate predictability (Facts 1 and 2) to test for noisy signals in this class of models. The underlying

idea is that the difference between the CG and BGMS regression coefficients speaks directly to dispersed

36Note, of course, that there is no clear “filtered” or “shock-specific” version of Fact 2 that can be estimated in the data. Once

one subsets to aggregate variation, the BGMS regression essentially replicates the CG regression.
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Table 4: Forecast Error Predictability with Business-Cycle Variation

Unemployment Inflation

Regression 1968-2017 1984-2017 1968-2017 1984-2017

(1)

Revisiont (KCG) 0.585 0.867 1.460 0.511

(0.393) (0.270) (0.521) (0.358)

First-stage F 7.527 4.736 3.517 5.047

N 189 130 188 130

OLS Estimate 0.741 0.809 1.528 0.292

(3)

xt (KKW) -0.260 -0.073 0.085 -0.642

(0.144) (0.086) (0.125) (0.328)

First-stage F 2.671 5.560 1.697 1.513

N 191 136 190 135

OLS Estimate -0.061 -0.036 0.111 -0.068

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. All

regressions include a constant. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett kernel and lag

length equal to 4 quarters. The data used for outcomes are first-release (“vintage”). The F values are a (multivariate extension of)

the Kleibergen and Paap (2006) r k statistic and can be compared with critical values reported in Stock and Yogo (2005) for given

levels of tolerated bias.

private information per se: if aggregate forecast errors are strongly positively related to past aggregate re-

visions, and if in addition one’s forecast errors are negatively, or less positively, related to his own past

revision, it has to be that one’s forecast error is positively related to others’ past revision. In other words,

there is evidence supporting the hypothesis of “forecasting the forecasts of others.”37

6 Imperfect Expectations in GE

We now put the accumulated evidence about expectations to work in an equilibrium macroeconomic

model. This serves four purposes. First, we verify that our main conclusions about identifying specific

frictions via survey data are robust to considering the GE fixed point. Second, we demonstrate how our

evidence can speak to intrinsically equilibrium theories of expectations formation, which had no place

in our earlier PE analysis. Third, we clarify how the causal effects of the imperfect expectations in such a

context depend on parameters that regulate GE feedbacks, such as the marginal propensity to consume,

or the slope of the Keynesian cross. And finally, we offer a proof-of-concept calibration exercise which

demonstrates how our evidence can offer not only theoretical but also quantitative guidance.

37Another strand of evidence comes from recent field-experiment work in Coibion, Gorodnichenko, and Kumar (2018) and

Coibion, Gorodnichenko, and Ropele (2019).

26



6.1 Primitives

Consider the New Keynesian model with no capital and rigid prices. Let yt be output and ct be consump-

tion, where all quantities are in log deviations. The market clearing condition is yt = ct and output is purely

demand-determined given a fixed path of nominal interest rates (which also equal real interest rates).38

When agents have different and potentially irrational expectations, aggregate demand can no more be

represented by the Euler equation of a representative consumer. Following the same steps as in Angeletos

and Lian (2018), one can instead obtain the following “modern” version of the Keynesian cross:

ct =β
∞∑

k=0
βk Ēt [ξd

t+1 −ςrt+k ]+ (1−β)
∞∑

k=0
βk Ēt [yt+k ] (18)

where Ēt denotes the average expectation in period t , β is the subjective discount factor, ς is the EIS, rt is

the nominal (also real) interest rate, and ξd
t is a demand (preference) shock. This condition follows from

aggregating the log-linearized optimal consumption function and aggregating. The second term captures

the consumers’ present discounted value income, as in the Permanent Income Hypothesis (PIH).

To see more clearly how (18) captures the Keynesian cross, let Y = ∑∞
k=0β

k Ēt [yt+k ] be the average,

possibly irrational, expectation of permanent income. We can then read (18) as c = a + bY , where a ≡∑∞
k=0β

k Ēt [ξd
t −ςrt ] is the intercept of the Keynesian cross and b ≡ (1−β) is its slope, or equivalently the

marginal propensity to consume out of income (MPC).

For our purposes, it is therefore best to replace β in condition (18) with 1−mpc, treat mpc as a prim-

itive parameter, and think of mpc ≈ 0.3 as an empirically plausible benchmark. This is further justified in

Angeletos and Huo (2019) by drawing a connection between a heterogeneous-agent variant of the present

framework and the HANK literature.39

Let ξt ≡ ξd
t −ςrt denote the “total demand shock” relative to steady state; formally, this is a rescaling

of the deviation of interest rates from the natural rate. We close the model by letting ξt be an exogenous

AR(1) process with persistence ρ and Gaussian one-step-ahead innovations εt :

ξt = 1

1−ρLεt (19)

A positive εt can be either an expansionary monetary policy or an expansionary demand shock.

Like in Section 4, we let each consumer observe only a noisy Gaussian private signal of ξt , the true

precision of which is given by τ> 0:

si ,t = ξt +
ui ,tp
τ

ui ,t ∼i i d N (0,1) (20)

And we let consumers’ subjective perception of the precision of their information and of the persistence of

the underlying impulse be, respectively, some τ̂> 0 and some ρ̂ ∈ (0,1), which may differ from the objective

counterparts.

38For completeness, assume that labor is supplied to meet final demand; and that a competitive, representative firm operates a

linear production technology with constant productivity to produce the homogeneous final good.
39See also the related OLG versions of the New Keynesian model in Piergallini (2007), Del Negro, Giannoni, and Patterson (2015)

and Farhi and Werning (2019).
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6.2 Solving and characterizing the fixed point

As already mentioned, Angeletos and Huo (2019) have solved the fixed point of a similar model as ours,

under the restrictions ρ̂ = ρ and τ̂ = τ. The following two propositions extend their results to the present

environment and offer a simple description of how the frictions influence macro dynamics.

Proposition 3. An equilibrium to this model exists, is unique, and admits a finite ARMA representation for

the aggregate outcome and the average forecasts.

Proposition 4 (As-if Representation). There exist functions Ω f and Ωb such that the unique equilibrium

dynamics of the imperfect-expectations economy is the same as that of a perfect-expectations counterpart

with the following Euler equation:

ct =−ςrt +ω f E
∗
t [ct+1]+ωbct−1 +ξd

t (21)

where ω f =Ω f (τ̂,ρ, ρ̂,mpc), ωb =Ωb(τ̂,ρ, ρ̂;mpc), and E∗t is the rational, full-information, expectation op-

erator. Furthermore, ωb > 0 if and only if τ̂<∞, and ω f < 1 if and only if either ρ̂ < ρ or τ̂ is small enough

relative to ρ̂−ρ.

This result offers a bridge to simple representative-agent macro models: ωb resembles habit persis-

tence, ω f represents a form of myopia (if ω f < 1) or hyperopia (if ω f > 1). The economy with noisy per-

ception (τ̂<∞ and τ<∞) but no over-extrapolation (ρ̂ = ρ) features both myopia (ω f < 1) and anchoring

(ωb > 0). At the other extreme, if we shut down noisy perception (i.e., take τ̂ = τ→∞), we find that over-

extrapolation alone maps to hyperopia (ω f > 1) and under-extrapolation alone maps to myopia (ω f < 1),

but neither by itself produces anchoring (ωb = 0).

The case of most interest, over-extrapolation combined with sufficiently large noise, maps to ω f < 1

and ωb > 0. The former dampens the economy’s response to innovations, and to news about the future.

The latter plays a similar role as habit persistence in consumption—or, if we translate the results to other

contexts, as adjustment costs to investment, price-indexation in the NKPC, or momentum in asset prices

(see Angeletos and Huo, 2019, and references therein). Finally, compared to the versions of these mech-

anisms found in the DSGE literature, the ones obtained here have two distinctive qualities. First, they

are endogenous to policy, market structures and GE multipliers. And second, they are disciplined by the

provided evidence on expectations.40

6.3 Facts 1-4 in GE

Let us next focus on the connection with the data, which is the main contribution of our paper. The fol-

lowing result verifies that all our main insights from Section 5 go through modulo additional dependence

on GE feedback:

40Maćkowiak and Wiederholt (2015) and Afrouzi and Yang (2019) argue a version of the first point by focusing on the endogene-

ity of attention, or of τ in our framework. Here, we instead emphasize the endogeneity of ω f and ωb on the MPC and other GE

parameters for given τ, as in Angeletos and Huo (2019).
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Proposition 5 (Facts 1-4 in GE ). Corollaries 1, 2 and 3 go through in the GE context, but all moments now

depend also on the MPC.

That is: (i) we can still show that the pure noisy rational expectations and pure mis-specification mod-

els are insufficient to describe the observed moments; (ii) we can still select the combination of noise

and over-extrapolation as the “right” model; and (iii) we still have that delayed over-shooting in IRFs is

smoking-gun evidence of the combination of noise and over-extrapolation; but (iv) we now must condi-

tion all inference on additional information about the extent of GE feedback in the economy.

6.4 Imperfect reasoning versus imperfect expectations

A claim we have made earlier, and now have the tools to formalize, is that certain models of imperfect

reasoning in equilibrium work in similar ways as our more mechanical model of under-extrapolation and

are therefore not a good fit for the data. We consider, in particular, three such models:

1. Dogmatic higher-order doubts. Assume that each consumer observes ξt with probability 1 but

attaches only probability q ∈ (0,1) that any other consumers also observes ξt ; with the remaining

probability, any other agent is expected to have her belief about ξt reset to the prior. Such a model

is the main specification in Angeletos and Sastry’s (2020) work on forward guidance at the ZLB. It

captures the same kind of inertia in forward-looking higher-order beliefs and the same consequent

forms of myopia and GE attention as those featured in Angeletos and Lian (2018) and our own GE

setting, but replaces the informational friction with a systematic bias in beliefs. It therefore builds a

bridge to the following two models, which introduce similar biases.

2. Level-K thinking. Assume that a consumer of “level 1” perfectly observes ξt but assumes all others

consumers a default action cd
i ,t = 0; an agent of level 2 also perfectly observes ξt but assumes all other

agents play the level-1 action; and this definition recursively extends up to order K , for some finite

K > 2. Such models have been used to explain the sluggish, and often incomplete, convergence to

Nash equilibrium play in laboratory settings (e.g., Nagel, 1995) and, more recently, agents’ expecta-

tions formation about “unconventional” policy (e.g., Garcıa-Schmidt and Woodford, 2019; Farhi and

Werning, 2019; Iovino and Sergeyev, 2017).

3. Cognitive discounting (Gabaix, 2020). Agents have misspecified priors about the processes of the

exogenous state and the endogenous aggregate spending. In particular, whenever that the actual

laws of motion are

ξt = ρξt−1 +εt and yt = R yt−1 +Dεt ,

for some constants R and D (to be determined as part of the solution), the agents believe that

ξt = mρξt−1 +εt and yt = mR yt−1 +Dεt ,

for some exogenous scalar m ∈ (0,1) that represents the degree of “cognitive discounting” applied

when the consumers contemplate the future.
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These models have different methodological underpinnings. But they induce essentially the same distor-

tion in beliefs. In particular, it is easy to show that all three models impose that the average subjective

expectation and the corresponding rational expectation are connected by the following restriction:

Ēt [yt+1] = d ·E∗t [yt+1],

where d ∈ (0,1) is a scalar that depends on the “deep” parameter ζ ∈ {q,K ,m} of the respective model. This

scalar measures how much consumers underestimate the future response in the behavior of others and,

equivalently, the future response of yt . What differs is the reason for d < 1: underestimating the knowledge

of others (Model 1), underestimating the rationality of others (Model 2), or applying a behavioral discount

to the future (Model 3).

Now note that the form of under-extrapolation accommodated in our framework plays the same role

as well. Indeed, if we shut down noisy perception, we can show that

Ēt [yt+1] = ρ̂

ρ
E∗t [yt+1].

It follows that, for any of the aforementioned three models, we can find a value of ρ̂ less than ρ such that

our model implies the same effective friction in the expectations. The next Proposition verifies that this

logic carries over to the entire set of predictions about outcomes and forecasts. The Corollary spells out

the relevant empirical implications.

Proposition 6. For any the three models described above and any value for the corresponding parameter

ζ ∈ {q,K ,m}, there exists some ρ̂ = f (ρ,ζ,mpc) < ρ, such that the outcomes of the original model is observa-

tionally equivalent to our own model without noise (τ= τ̂=∞) and under-extrapolation (ρ̂ < ρ).

Corollary 4. For any the three models described above, the following properties hold: KCG = KBGMS > 0,

KKW > 0, and the IRF of the average forecast errors is uniformly positive. That is, these models are at odds

with Facts 2, 3 and 4.

All these models have consumers under-estimate the future response of others, which in turn impact

behavior in a similar way as an under-estimation of the persistence of ξt . The only subtle difference be-

tween them is whether the belief mis-specification operates through both PE and GE considerations, or

only through GE. For the first two models (noiseless higher-order doubts and level K thinking), because

the extent of the friction is tied closely to the extent of strategic interaction, the replicating ρ̂ will be a

function of the MPC.

Our observation that pure under-extrapolation cannot explain the business-cycle macro data on im-

perfect expectations (Corollary 1 and Proposition 5) thus extends to the aforementioned GE dampening

models as well. First, each model restricts KCG = KBGMS, or it fails to provide a reason why the forecast

errors of one are predictable by the information of others. And second, even in variants that add some

noisy perception and that could thus help match the CG and BGMS evidence, none of these theories could

explain the observed over-extrapolation in impulse response functions.41

41Furthermore, in a survey of firms designed to shed light on related issues, Coibion, Gorodnichenko, Kumar, and Ryngaert

(2018) find support for informational frictions but no relation between measured level-K thinking and expectations.
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The obvious caveat to this conclusion is that it only applies to the particular evidence we have consid-

ered here and may not extend to other contexts. Another caveat is that this conclusion is modulated by

parsimony: given the evidence at hand, we cannot reject the hypothesis that agents over-extrapolate the

aggregate shocks and at the same time are shallow thinkers with respect to GE.

6.5 A quantitative assessment

Let us now illustrate how our empirical findings can help quantify the GE effects of the documented mech-

anisms, using the New Keynesian model as our laboratory economy.42

To speak jointly to data on output (unemployment) and inflation, let us first extend the model to allow

for partially flexible prices. This involves adding a block of non-competitive intermediate goods firms

who operate a linear technology and reset prices with probability 1−θ ∈ (0,1) and a final goods firm that

competitively combines these goods with a constant-returns-to-scale technology. As in Angeletos and Lian

(2018) and Angeletos and Huo (2019), the model’s three equations can be expressed as follows:

ci ,t = Ei ,t

[ ∞∑
k=0

(1−mpc)k+1
[
ξd

t+k −ς(it+k −πt+k+1)
]
+mpc

∞∑
k=0

(1−mpc)k ct+k

]

πi ,t = Ei ,t

[
θ

∞∑
k=0

(βθ)kκ(ct +ξs
t )+ (1−θ)

∞∑
k=0

(βθ)kπt+k

]
it =φππt

The first equation is the Dynamic IS Curve, modified to allow for informational frictions and mis-specified

beliefs along the lines discussed earlier. it is the nominal interest rate, πt is inflation, and ξd
t is a preference

shock, which maps to our empirical demand shock. The second equation is the corresponding modifica-

tion of the NKPC. κ is its slope with respect to the real marginal cost, θ is the Calvo parameter (one minus

the probability of resetting prices), and ξs
t is a cost-push shock, which maps to our empirical supply shock.

The third and final equation is the rule for monetary policy, in which φπ is the slope in current inflation.

We close the model by specifying the shock processes and the belief structures in the same way as

before. Using the methods of Angeletos and Huo (2019), we then analytically solve for the equilibrium

responses of inflation and consumption as functions of two sets of parameters: the “familiar” parameters

(ς,mpc,β,θ,κ,φπ); the actual and perceived persistence of the shocks (ρ, ρ̂); and the perceived precision

(τ̂). For the reasons already explained, the actual precision (τ) does not enter the determination of either

the aggregate outcomes or the average expectations thereof.

To connect the model to the data, we interpret πt as the quarterly rate of inflation and the negative

of yt as the quarterly rate of unemployment. The first choice requires no justification. The second one

is based on the logic that, in our model, yt coincides with the output gap, which in turn is closely related

42Previous works such as Mankiw and Reis (2007), Maćkowiak and Wiederholt (2015) and Melosi (2016) have also sought to

quantify the macroeconomic effects of informational frictions in the baseline New Keynesian model, but have not disciplined

the exercise with the expectations evidence we consider here. Bordalo, Gennaioli, Shleifer, and Terry (2019), on the other hand,

quantify the role of over-extrapolation in an RBC model with credit friction, but they abstract from informational frictions and do

not address the particular patterns of the expectations of inflation and unemployment on which we focus.
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Table 5: Model Parameters

(a) exogenously fixed

Parameter Description Value

θ 1 - probability of price reset 0.6

κ Slope of Phillips Curve 0.02

β Discount factor 0.99

mpc Marginal propensity to consume 0.3

ς IES 1.0

φ Policy rule slope 1.5

(b) calibrated

ρ ρ̂ τ̂

Demand shock 0.80 0.95 0.36

Supply shock 0.57 0.82 0.15

Figure 7: Model vs Data

to unemployment both in richer models and in the data. We next fix the model’s behavioral and policy

parameters to conventional values, as shown in left panel of Table 5. We finally pick, for each shock, the

values of ρ, ρ̂ and τ̂ so as to match as well as possible the key evidence reported in Section 5—that is, the

IRF of outcomes and forecasts in Figures 3 and 4 (ARMA-IV method), as well as the “term structure” of

forecasts in Figure 6. These moments provide the most direct evidence of the forces we have in mind, as

discussed in Section 4. This procedure yields the parameters values seen in the right panel of Table 5.

Figure 7 illustrates the model’s fit vis-a-vis the empirical IRFs seen earlier in Figure 3. The fit is quite

good in the context of the demand shock, but mediocre in the context of the supply shock. This under-

scores that, although the model has the right qualitative ingredients, its quantitative performance is not

automatic: there is no abundance of degrees of freedom.

We henceforth focus on the demand shock and study two counterfactuals. In the one, we shut down

the over-extrapolation, isolating the role of the information friction. In the second, we shut down both fric-

tions, recovering the textbook New Keynesian model. These counterfactuals are illustrated in, respectively,

the second and third column of Figure 8. The first column is the full model, with both frictions.
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Figure 8: Counterfactuals for Demand Shock
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By comparing the second column to the third one, we see that the informational friction alone is the

source of both significant dampening and significant persistence relative to the frictionless benchmark.

Compared to the textbook model, the informational friction—calibrated to the evidence presented in this

paper—decreases the impact of the demand shock on the output gap by about 50% and its impact on

inflation by about 75%. As for the induced persistence, it is quantitatively comparable to that obtained in

richer DSGE model with the use of habit persistence in consumption and the hybrid version of the NKPC.

This echoes the common message of a large literature on information frictions (e.g., Woodford, 2003;

Mankiw and Reis, 2007; Nimark, 2008; Maćkowiak and Wiederholt, 2015). The added value here is that we

have disciplined the theory with expectations evidence (as in Angeletos and Huo, 2019) and that we have

accommodated over-extrapolation. Without it, the model fails to capture Fact 4: as seen in the second

column of Figure 8, the forecasts in the noise-only model do not overshoot.

By comparing the first column to the second one, we then see that the main effect of over-extrapolation

on actual outcomes is to amplify their responses to the shock. And while the over-shooting looks “small”

in terms of the size of the forecast errors, the aforementioned amplification is sizable for two reasons.

First, a small difference between ρ̂ and ρ translates to a large difference in the kind of discounted present

values that consumer spending and firm pricing. And second, any such belief mistake gets amplified at

the aggregate level by GE feedback.

Needless to say, these counterfactuals should not be taken too seriously. They do, however, illustrate

the potential value of accommodating the mechanisms and the evidence presented here in richer models.

We close this section with the following note. So far, we have utilized only evidence on average fore-

casts, ignoring the kind of individual-level evidence that was the focus of BGMS. This is because the BGMS

regression coefficient only helps pin down a “residual” parameter (τ) that does not enter the dynamics

of either the aggregate outcomes or the average forecasts. The BGMS evidence therefore has no (inde-

pendent) effect on the counterfactuals conducted above.43 As for the CG and KW evidence, they were

subsumed by our evidence about IRFs.

43The BGMS evidence was nevertheless useful in corroborating the case for over-extrapolation and, conversely, in ruling out

theories that resemble under-extrapolation. In this sense, it remains useful for selecting the “right” model of beliefs. But it could

be dispensed with in our counterfactuals.
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7 Conclusion

Where are we in the “wilderness” of imperfect expectations? This paper organized theory and survey evi-

dence to answer this question, taking into account both the possibility for multiple competing distortions

in expectations formation and the equilibrium fixed point between expectations and outcomes.

We proposed and implemented a new empirical strategy: estimation of the impulse response function

of the average forecast errors of unemployment and inflation to the shocks that drive most of the business-

cycle variation in these variables. We explained why in theory this strategy is both more informative and

more easily interpretable than alternatives found in previous empirical studies. And we demonstrated in

practice how the information extracted via our strategy helps achieve three goals: resolve the apparent

conflict between the empirical findings of previous works; help select among multiple competing theories

of expectation formation; and serve as a “sufficient statistic” for quantitative purposes.

The main empirical finding was a form delayed over-shooting in expectations: following any shock,

forecasts appear to under-react for the first few quarters but over-shoot later on. The main lesson for

theory was that, at least with the class of models considered, the data require the combination of a sizable

informational friction and a behavioral tendency to over-extrapolate the macroeconomic dynamics.

Theories that emphasize under-extrapolation or closely related mechanisms, such as cognitive dis-

counting and level-K thinking, were shown to be at odds not only with the new fact documented here

but also with the individual-level evidence on expectations documented in Bordalo, Gennaioli, Ma, and

Shleifer (2018). At the same time, we echoed Angeletos and Huo’s (2019) point that such individual-level

evidence may not be strictly needed for the purpose of quantifying the overall effect on the macroeco-

nomic dynamics: in the class of models considered, our evidence about average forecasts served as “suffi-

cient statistics” for the counterfactuals of interest.

We conclude with few notes on future research that would further solidify our understanding of macro

belief dynamics and further the research program outlined in this article.

Learning foundations. A question we have not tried to answer, at any point in this article, is where

agents’ subjective model of the world comes from. More specifically, why would agents think that business

cycle shocks to demand or marginal costs have a higher persistence than they really do?

Our analysis simplifies the matter greatly by having agents put a dogmatic belief that the true persis-

tence is ρ̂. One might hypothesize that standard results on the learning foundations of rational expecta-

tions equilibria, extended to our setting, would rule out convergence of beliefs to ρ̂ 6= ρ given a reasonable

(non-degenerate) prior on ρ̂ (Marcet and Sargent, 1989; Evans and Honkapohja, 2001). That said, if we ex-

tended the model to make the one-dimensional, AR(1) representation of fundamentals only an imperfect

approximation of a richer truth underlying truth, we may observe convergence to ρ̂ 6= ρ (Molavi, 2019).

A variant story involves rational confusion between transitory and permanent shocks. Such confusion

may cause agents to respond to the transitory shock as if they incorrectly perceive its persistence to be

higher than the true. That is, such confusion can produce a rational form of over-extrapolation. But it also

predicts that agents ought to under-extrapolate the effects of the permanent shock. Of course an auxiliary

prediction is that agents underreact to the permanent changes. We found no support for this prediction
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when we looked at the dynamic responses of forecasts to a technology shock identified as in Galí (1999).

But a more thorough quantitative analysis along these lines is an interesting angle for future work.

Non-stationary environments . Agents may also be using the wrong model because the underlying struc-

ture of the economy is changing underneath them. Two examples of this stick out.

The first involves the long-run changes in the behavior of US inflation, especially after the 1970s and

early 1980s. The empirical findings in Section 3 suggest more severe over-extrapolation for inflation in the

modern period, in which inflation itself is less persistent. This could be consistent with agents’ perceiving

some “shadow” of the more ferocious shocks and/or timid policy response of the earlier period.44

A second important event in our sample is the extended stint at the Zero Lower Bound during the Great

Recession. A number of authors have postulated that this unfamiliar and extreme event may have caused

agents to “throw out” their conventional models, justifying more dramatic departures from rational expec-

tations (Angeletos and Sastry, 2020; Farhi and Werning, 2019; Gabaix, 2020; Garcıa-Schmidt and Woodford,

2019; Iovino and Sergeyev, 2017). We are sympathetic to this view and not insistent that our conclusions

need to apply for expectations at the ZLB. There is more work to be done in investigating exactly for what

counterfactuals and policy changes our empirical findings may provide good guidance.

The “right” expectations data. This paper, like much of the related empirical literature, has relied pri-

marily on surveys of professional forecasters and analysts, because of data availability and quality. We

provided corroborating evidence from the University of Michigan Consumer Sentiment survey, but the

imprecise measure of the relevant expectations in that survey precluded an equally sharp exercise as that

based on SPF and Blue Chip data. The ideal implementation of our approach, which we leave for the

future, requires sufficiently long time series of the expectations of consumers and firms, not only about

macroeconomic outcomes, but also about the objects that matter more directly to their behavior, such as

consumers’ own income and firms’ own sales.

Applications to finance. The co-existence of under-reaction and over-extrapolation is a classic fact for

many asset prices (De Bondt and Thaler, 1985; Cutler, Poterba, and Summers, 1991; Lakonishok, Shleifer,

and Vishny, 1994). Our findings thus represent a step toward unifying our understanding of imperfect

expectations in both macroeconomics and finance. An interesting possibility for future work is to replicate

our impulse response evidence with dividends or earnings and expectations thereof, to determine if a

similar structural interpretation (noise plus over-reaction) holds true in this domain and also provides

useful predictions for stock price dynamics.

44This explanation relates to a rich literature looking for statistical break points in volatility and/or policy in modern history

(Sargent, 2001; Primiceri, 2005; Sargent, Williams, and Zha, 2006; Sims and Zha, 2006). It is also natural within the GE theory

presented here and in Angeletos and Huo (2019): in this context, the information-driven persistence in inflation is modulated by

policy and, more specifically, decreased by a steeper Taylor rule.
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Appendices

A Extra Tables and Figures

Table A.1: Regression (1), Robustness to Data Choices and Horizons

Unemployment Inflation

Sample horizon = 1 2 3 1 2 3

Full, Vintage, SPF

Revisiont (KCG) 0.384 0.606 0.741 0.649 1.048 1.528

(0.128) (0.178) (0.232) (0.290) (0.337) (0.418)

R2 0.111 0.143 0.111 0.122 0.200 0.278

N 196 196 191 195 195 190

1984-, Vintage, SPF

Revisiont (KCG) 0.385 0.657 0.809 -0.100 0.160 0.292

(0.203) (0.255) (0.305) (0.159) (0.174) (0.191)

R2 0.116 0.195 0.159 0.002 0.005 0.016

N 136 136 136 135 135 135

Full, Final, SPF

Revisiont (KCG) 0.411 0.612 0.731 0.578 0.991 1.403

(0.127) (0.180) (0.233) (0.215) (0.261) (0.334)

R2 0.135 0.147 0.108 0.104 0.200 0.249

N 199 198 192 199 198 192

1980-, Vintage, BC

Revisiont (KCG) 0.310 0.544 0.804 0.024 0.378 0.618

(0.129) (0.213) (0.231) (0.204) (0.188) (0.205)

R2 0.091 0.132 0.149 0.000 0.033 0.067

N 151 151 150 150 150 149

Notes: All regressions include a constant. Standard errors are HAC-robust, with a Bartlett kernel and lag length equal to 4 quarters.

Table A.2: Regression (2), Robustness to Data Choices and Horizons

Unemployment Inflation

Sample horizon = 1 2 3 1 2 3

Full, Vintage, SPF

Revisioni ,t (KBGMS) 0.186 0.300 0.321 -0.100 0.024 0.143

(0.077) (0.094) (0.107) (0.084) (0.098) (0.123)

R2 0.029 0.042 0.028 0.004 0.000 0.005

N 5,808 5,699 5,383 5,496 5,458 5,147

Full, Final, SPF

Revisioni ,t (KBGMS) 0.200 0.296 0.321 -0.100 0.056 0.179

(0.075) (0.090) (0.106) (0.075) (0.091) (0.122)

R2 0.035 0.042 0.028 0.004 0.001 0.006

N 5,831 5,728 5,419 5,571 5,520 5,226

Notes: All regressions include a constant. Standard errors are clustered two-way by forecaster ID and time period. Both errors and revisions are

winsorized over the sample to restrict to 4 times the inter-quartile range away from the median.
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Table A.3: Regression (3), Robustness to Data Choices

Forecast Error

Unemployment Inflation

Sample data for error = vintage final vintage final

Full, Vintage, SPF

xt (KKW) –0.061 -0.061 0.111 0.097

(0.056) (0.056) (0.075) (0.066)

R2 0.016 0.016 0.058 0.047

N 194 195 193 195

Full, Final, SPF

xt (KKW) -0.058 -0.058 0.117 0.115

(0.056) (0.056) (0.078) (0.069)

R2 0.014 0.009 0.062 0.063

N 194 195 192 194

Notes: All regressions include a constant. Standard errors are HAC-robust, with a Bartlett kernel and lag length equal to 4 quarters.

Table A.4: Calibrating with Unconditional Moments

Unemployment Inflation

1968-2017 1984-2017 1968-2017 1984-2017

ρ 0.91 0.89

KCG 0.741 0.809 1.528 0.292

KBGMS 0.321 0.398 0.143 -0.263

KKW -0.061 -0.036 0.111 -0.068

ρ̂ 0.972 0.966 0.893 0.947

τ̂ 0.449 0.418 0.335 1.850

τ 2.028 2.231 0.464 0.693

Notes: The persistence valeus come from band-pass filtered data on final outcomes over our sample.

Table A.5: First-stage F Statistics

Unemployment Inflation

Outcomes Forecasts Outcomes Forecasts

N 188 188

F 1.686 2.941 2.077 2.381

endogenous regressors 3 3

instruments 8 8

Notes: The F values are a (multivariate extension of) the Kleibergen and Paap (2006) r k statistic and can be compared with critical values reported

in Stock and Yogo (2005) for given levels of tolerated bias.
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Ē

t−
3

[u
t]

;i
n

th
e

se
co

n
d

ro
w

th
e

o
u

tc
o

m
e

is
π

t,
t−

4
,o

r
an

n
u

al
in

fl
at

io
n

,a
n

d
th

e
fo

re
ca

st
is
Ē
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Figure A.2: Dynamic Responses in the Michigan Survey
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Notes: The sample period is Q1 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors with a Bartlett

kernel and 4 lags. In the first plot the outcome is UnempUpt ,t−4 and the forecast is Ēt−4[UnempUpt ,t−4]; in the second plot the outcome is

πt ,t−4, or annual inflation, and the forecast is Ēt−4[πt ,t−4].

Figure A.3: Responses to Other Structural Shocks

0 8 16
0.5

0.0

0.5

Outcome

0 8 16

Forecast

0 8 16

Forecast Error
Gali (1999): Technology  Inflation

ARMA-IV
Proj. (± 1 SE)

0 8 16
10

0

10

Outcome

0 8 16

Forecast

0 8 16

Forecast Error
Hamilton (1996): Oil  Inflation

ARMA-IV
Proj. (± 1 SE)

0 8 16
0.2

0.0

0.2

Outcome

0 8 16

Forecast

0 8 16

Forecast Error
Justiniano, Primiceri, and Tambalotti (2010): Investment Shock  Unemployment

ARMA-IV
Proj. (± 1 SE)

Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock (starting at 0). The shaded areas are 68% confidence

intervals based on HAC standard errors with a Bartlett kernel and 4 lags. The first shock is a technology shock à la (Galí, 1999), as obtained from

Coibion and Gorodnichenko (2012) and normalized to be inflationary and contractionary. The second is an oil shock à la Hamilton (1996), again

obtained from Coibion and Gorodnichenko (2012). The third is the investment-specific shock of Justiniano, Primiceri, and Tambalotti (2010),

updated to cover the full sample until 2017. See Appendix B for details.
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Figure A.4: Dynamic Responses in the Angeletos, Collard, and Dellas (2020) SVAR, All Responses
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posterior-density regions and the point estimate is the posterior median. In the first row the outcome is ut and the forecast is Ēt−3[ut ]; in

the second row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4]; and in the last row, the outcome is πt ,t−1, or one-

quarter inflation, and the forecast is Ēt−3[πt ,t−1]. The first column shows the response to a shock that maximizes the business-cycle variation in

unemployment; the second for a shock that maximizes the business-cycle variation in GDP deflator inflation.

Figure A.5: Dynamic Response of Dispersion
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B Conditional vs. Unconditional Dynamics

Coibion and Gorodnichenko (2012) test models of expectations inertia by estimating the dynamic response of out-

comes, forecasts, and forecast errors to shocks, just like this paper does in Section 5. But, while this paper and

Coibion and Gorodnichenko (2012) agree about the initial under-reaction of professional forecasters to economic

shocks, only the present paper finds robust evidence of the “over-shooting” that we characterize as Fact 4. What

explains the differences in results, given that our analyses study similar data over a similar time period?

In this Appendix, we will show that a major difference is estimation methodology—and we will argue that our

approach is preferable.

To this goal, we will focus on one main result from Coibion and Gorodnichenko (2012): that inflation expecta-

tions respond sluggishly to an inflationary negative supply shock. We will recreate this fact using the data directly

provided in that paper for the strongest comparability, although these data are of course essentially identical to those

used in our own main analysis.45

To identify a technology shock, the authors run a four-lag, three-variable VAR with labor productivity, the change

in labor hours, and the (one-quarter-ahead) GDP deflator inflation and apply the long-run restrictions introduced

by Galí (1999).46 Finally, to make the shock inflationary like our main example shock is, we take the negative shock

which corresponds to a technological contraction.

Their method. To estimate impulse responses, Coibion and Gorodnichenko (2012) apply the following method due

to Romer and Romer (2004). For a given variable zt (e.g., forecast errors), they estimate the empirical ARMA process

via Ordinary Least Squares (OLS):

zt =α+
P∑

p=1
γp · zt−p +

K∑
k=0

βk ·εt−k +ut (22)

where the (εt−k )K
k=0 are the identified shocks. The authors use information criteria to pick an optimal lag length

combination (P,K ). In the empirical application, for estimating the response of inflation, forecasts, and forecast

errors to the technology shocks, they find that K = 1 and P = 1 uniformly fits the data the best subject to their chosen

penalty for extra parameters.

But now note that P = 1 effectively imposes that the IRF of forecast errors cannot switch signs. Indeed, abstract-

ing from MA term (which after all turns out to be small in their estimation), their method effectively imposes that

the IRF of the average forecast error to the technology shock is that of the AR(1) process that best describes the

unconditional dynamics of the average forecast errors.

Our method. The approach we take in Section 5 has two key differences. First, we fix a larger value of P (in our

preferred specification, P = 3), in anticipation of the fact that the model may demand more complex dynamics than

an AR(1). Second, we instrument for lagged values of zt using past shocks. Intuitively, this isolates the possibility

that dynamics may be “shock-specific” and not informed entirely by the unconditional auto-covariance patterns in

zt . This is to be expected if the data-generating process does in fact involve multiple shocks and/or variables, so

thinking of the model as exactly a single-shock ARMA could be very inaccurate.

45There are only three salient differences. The first is that Coibion and Gorodnichenko (2012) use forecast means rather than

medians as a measure of the aggregate. The second is that Coibion and Gorodnichenko (2012) measure expected annual inflation

with the forecast of the 4-quarter-ahead price level relative to the now-cast of the (unreleased) current-quarter price level; whereas

our main analysis uses three-quarters-ahead relative to the previous quarter. And the third is that their sample period runs from

Q4 of 1974 to Q4 of 2007.
46The estimation period they use for this VAR covers Q2 1952 to Q3 2007.
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For comparability with (22), we will estimate the following system of equations with two-stage least squares. The

reduced-form equation is exactly (22) with K = 1 and P = 3 (to capture higher-order dynamics):

zt =α+
3∑

p=1
γp zt−p +

1∑
k=0

βkεt−k +ut (23)

The first-stage relates the lags of zt with shocks before t −1. In vector form,

Zt−1 = η+E ′
t−2Θ+et (24)

with Zt−1 = [zt−1, zt−2, zt−3] and Et−2 = [εt− j ]J
j=2. Like in the main text, we have J = 9, which means there are 8

instruments. Armed with these IV estimates of the γ and β coefficients, we can calculate an alternative impulse

response.

Local projections. Finally, we can also run the following local projection regression separately for each horizon h:

zt+h =αh +βh,d ·εt +γ′Wt +ut+h (25)

For controls Wt we will use the four lags each of labor productivity, the change in labor hours, and inflation that en-

tered the original VAR. This is necessary, in the smaller sample, to make the estimated shock series truly orthogonal

to lagged macro conditions.

Results. Figure A.6 compares the results, extended out to 28 quarters. Plotted in the blue dotted line, with a shaded

68% confidence interval, is the projection estimate of impulse responses for outcomes (left), forecasts (middle), and

forecast errors. Plotted in green is the point estimate of the Coibion and Gorodnichenko (2012) method, or the

estimate that comes from (22). Plotted in orange are the estimates from the IV method, or the combination of (23)

and (24). And plotted in the orange dashed line is the difference between the orange lines for outcomes and forecasts,

which is a different estimator for the response of forecast errors.

Figure A.6: Comparison of IRF Methods for Response to Technology Shock
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The green lines in all cases are much more persistent than the projection responses. In the first and third case,

in particular, the green lines smoothly and slowly converge back to zero. The unrestricted projection estimator,

however, suggests that the response of inflation eventually turns negative (slightly, but not completely, offsetting the

effects on the price level) and that the response of forecast errors also turns negative.

The ARMA-IV estimator, compared to the Coibion and Gorodnichenko (2012) method, gives a very similar re-

sponse of forecast errors but a much less persistent response of the outcome. This estimation of the outcome IRF

more closely matches the projection estimates. As such the “difference” estimator, or the dashed orange line in the

third panel, shows evidence of over-extrapolation in the point estimate at moderate (>10 quarter) horizons. The

ARMA-IV estimator directly applied to forecast errors, on the other hand, shows only modest evidence of over-

shooting.
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Bottom line. A method that imposes uniform dynamics as if the data-generating process involved only one shock,

like that introduced by Romer and Romer (2004) and adopted by Coibion and Gorodnichenko (2012), may provide

a distorted picture of the conditional dynamics. The possible solutions include the “shock-specific” IV approach

introduced here, a flexible local-projection, or a more structured multi-variate model. The trade-offs between these

models involve robustness and small-sample efficiency.

C Noise and a Hybrid Regression

Proposition 1 underscored that, away from rational expectations, the CG regression coefficient is no more a measure

of the informational friction alone: it is “contaminated” by the departure from the rationality. But the BGMS coeffi-

cient isolates the role of the latter. This suggests that the gap between the two coefficients ought to say something

about the actual level of noise.

We next show how one can arrive at essentially the same answer with a “hybrid” of the CG and BGMS regressions.

Let (Vind,Vagg) respectively denote the variances of the idiosyncratic and aggregate forecast revisions.

Lemma. The following regression holds in the theory:

Errori ,t ,k = KCG ·Revisiont ,k −Knoise · Vagg

Vidio
·∆Revisioni ,t ,k +ui ,t ,k (26)

where ∆Revisioni ,t ,k≡ Revisioni ,t ,k −Revisiont ,k and

Knoise ≡ KCG − Vind
Vagg

KBGMS = κ1τ
−1 (27)

From the perspective of this regression, KCG measures the predictability in individual forecast errors attributed

to the common component of the lagged forecast revisions, and Knoise the one attributed to the purely idiosyncratic

components of the lagged forecast revisions. As already explained, the former confounds the effects of misspecifica-

tion and information. The latter, which is again the gap between KCG and KBGMS appropriately rescaled, isolates the

effect of the idiosyncratic noise.47

Table A.6 shows results from estimating the hybrid regression over the full and restricted samples for all horizons

of forecast. Across these margins, the estimated value of Knoise is positive (and statistically different from zero). This

is lines up with the following observation: if we go back to the results presented in Section 3 and the Appendix

regarding Facts 1 and 2, we can readily verify that KBGMS was consistently lower that KCG, even in specifications

where both were positive.48

Of course, as evident from the previous discussion, the hybrid regression does not provide independent infor-

mation compared to Facts 1 and 2. The coefficients of the hybrid regression can be inferred from the original CG and

BGMS regressions, and vice versa, up to small-sample differences between some moments.49 What this regression

however accomplishes is to combine Facts 1 and 2 in way that more clearly illustrates how the gap between KCG and

KBGMS, or more precisely the object Knoise described above, provides the needed “correction” of the original CG co-

efficient. With rational expectations, Knoise coincides with KCG. Away from that benchmark, Knoise partials out from

KCG the component due to irrationality. In both cases, Knoise isolates the effect of idiosyncratic noise.50

47To the best of our knowledge, the particular regression we propose here and the offered structural interpretation are novel.

However, Fuhrer (2018) and Kohlhas and Broer (2019) contain a few empirical specifications that have a similar spirit, namely the

separately test the extent to which aggregate-level and ind individual-level variables help predict forecast errors.
48The same seems to be true for almost all the specifications considered in Bordalo et al. (2018), including those regarding a

variety of interest rates and spreads.
49To be precise, one also needs to compute Vidio and Vagg, the variances of, respectively, the individual and aggregate forecast
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Table A.6: The Hybrid Regression (26)

Unemployment Inflation

Sample 1 2 3 1 2 3

Full

∆Revisioni ,t ,k (-Knoise) -0.183 -0.189 -0.166 -0.422 -0.427 -0.346

(0.035) (0.043) (0.043) (0.047) (0.036) (0.042)

Revisiont ,k (Kagg) 0.441 0.6421 0.745 0.675 1.108 1.550

(0.114) (0.138) (0.173) (0.209) (0.245) (0.278)

R2 0.120 0.147 0.103 0.168 0.194 0.211

N 5,808 5,699 5,383 5,496 5,458 5,147

Post 1984

∆Revisioni ,t ,k (-Knoise) -0.217 -0.264 -0.162 -0.517 -0.481 -0.410

(0.039) (0.043) (0.053) (0.034) (0.035) (0.041)

Revisiont ,k (Kagg) 0.462 0.722 0.841 -0.070 0.179 0.412

(0.159) (0.183) (0.210) (0.185) (0.178) (0.180)

R2 0.136 0.195 0.152 0.106 0.085 0.072

N 3,986 3,918 3,769 3,779 3,745 3,643

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. Standard errors are clustered two- way by

forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 times the inter-quartile

range away from the median. The data used for outcomes are first-release ("vintage").

D Proofs

The following lemma, which is proved below, will help in proving the results in the main text:

Lemma 1. The one-step-ahead forecasts obey

Ei ,t [xt+1] = ρ̂Ei ,t [xt ] = (ρ̂− λ̂)
1

1− λ̂L si ,t = (ρ̂− λ̂)
1

1− λ̂L

(
1

1−ρLεt +τ−
1
2 ui ,t

)
The corresponding forecast errors obey

Errori ,t = xt+1 −Ei ,t [xt+1] = 1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1 − ρ̂− λ̂

1− λ̂Lτ
− 1

2 ui ,t

And finally the forecast revisions obey

Revisioni ,t = Ei ,t [xt+1]−Ei ,t−1[xt+1] = (ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt + (ρ̂− λ̂)(1− ρ̂L)

1− λ̂L τ−
1
2 ui ,t

Proof. The perceived signal process can be represented as

si ,t = M(L)

[
εt

ui ,t

]
, with M(L) =

[
1

1−ρ̂L τ̂−
1
2

]
.

Let B(L) denote the fundamental representation of the perceived signal process,51 which is given by

B(L) = τ̂− 1
2

√
ρ̂

λ̂

1− λ̂L
1− ρ̂L , where λ̂= 1

2

(
ρ̂+ 1+ τ̂

ρ̂
+

√(
ρ̂+ 1+ τ̂

ρ̂

)2

−4

)
.

revisions. But these variances are already implicit in the calculation of KBGMS and KCG.
50The following caveat applies to the adopted interpretation of Knoise. In the model we work with in this paper, idiosyncratic

noise is the sole source of heterogeneity in beliefs: irrationality is a (possibly time-varying) fixed effect in the cross-section of the

population. Without this restriction, Knoise may confound the effects of “rational” noise (due to idiosyncratic information) and

“irrational” noise (due to idiosyncratic misspecification).
51B(L) satisfies the requirement B(L)B ′(L−1) = M(L)M ′(L−1) and B(L) is invertible.
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It is useful to note that λ̂< ρ̂, and λ̂ is decreasing in τ̂. By the Wiener-Hopf prediction formula, the individual forecast

about xt is

Ei ,t [xt ] =
[

1

1− ρ̂LM′(L−1)B(L−1)−1
]
+

B(L)−1si ,t =
(

1− λ̂

ρ̂

)
1

1− λ̂L si ,t .

Alternatively, this forecast rule can be written as

Ei ,t [xt ] = (1− ĝ )ρ̂Ei ,t−1[xt−1]+ ĝ si ,t ,

which is a weighted average of the prior ρEi t−1[xt−1] and the new signal si ,t , where the weight on the signal is the

Kalman gain ĝ = 1− λ̂
ρ̂ . In the equations above, note that only perceived ρ̂ and τ̂ matter for how agents use their

signals. The actual ρ and τ matter for how the signal si ,t evolves overtime.

Proof. Accordingly, the one-period ahead forecast is

Ei ,t [xt+1] = ρ̂Ei ,t [xt ] = (ρ̂− λ̂)
1

1− λ̂L si ,t = (ρ̂− λ̂)
1

1− λ̂L

(
1

1−ρLεt +τ−
1
2 ui ,t

)
.

The individual forecast error and revision are then straightforward to obtain:

Errori ,t = xt+1 −Ei ,t [xt+1] = 1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1 − ρ̂− λ̂

1− λ̂Lτ
− 1

2 ui ,t ,

Revisioni ,t = Ei ,t [xt+1]−Ei ,t−1[xt+1] = (ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt + (ρ̂− λ̂)(1− ρ̂L)

1− λ̂L τ−
1
2 ui ,t .

Proof of Proposition 1

Let Vind denote the variance of Revisioni ,t and Vagg denote the variance of Revisiont . First consider the calculation of

KCG. We have

Cov(Errort ,Revisiont ) =Cov

(
1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1,

(ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt

)

=(ρ̂− λ̂)

(
λ̂

1− λ̂2
+ (ρ− ρ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)

)

=τ̂−1 (ρ̂− λ̂)2(1− λ̂ρ̂)

1− λ̂2
+ (ρ− ρ̂)(ρ̂− λ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)
,

which leads to

KCG = κ1τ̂
−1 −κ2(ρ̂−ρ),

where

κ1 = 1

Vagg

(ρ̂− λ̂)2(1− λ̂ρ̂)

1− λ̂2
, κ2 = 1

Vagg
(ρ̂− λ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)
.

As 1 > ρ̂ > λ̂ > 0, κ1 > 0. To show that κ2 > 0, it is equivalent to show that (1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂) > 0. Given

that ρ̂ < 1, it follows that

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂) > (1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ−1) = (1−ρ)(1− λ̂+ λ̂2(1+ρ)) > 0.
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Now turn to the calculation of KBGMS. We have

Cov(Errori ,t ,Revisioni ,t )

=Cov

(
1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1,

(ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt

)
+Cov

(
− ρ̂− λ̂

1− λ̂Lτ
− 1

2 ui ,t ,
(ρ̂− λ̂)(1− ρ̂L)

1− λ̂L τ−
1
2 ui ,t

)

=− (ρ̂− λ̂)
λ̂

(1− λ̂2)

τ̂−τ
τ

+ (ρ− ρ̂)(ρ̂− λ̂)
(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)
.

It follows that

KBGMS =−κ5(τ−1 − τ̂−1)+κ6(ρ− ρ̂),

where κ5 and κ6 are

κ5 = 1

Vind
(ρ̂− λ̂)

λ̂

τ(1− λ̂2)
, κ6 = 1

Vind
(ρ̂− λ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)
.

Lastly, we look at KKW. We have

Cov(Errort , xt ) = Cov

(
1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1,

1

1−ρLεt

)
= τ̂−1(ρ̂− λ̂)(1− λ̂ρ̂)(1−ρ2)+ρ− ρ̂

(1− λ̂ρ)(1−ρ2)
,

which leads to

KKW = κ3τ̂
−1 −κ4(ρ̂−ρ),

where κ3 and κ4 are

κ3 = ρ̂− λ̂
1−ρ2 , κ4 = 1

(1− λ̂ρ)(1−ρ2)2
.

Proof of Corollary 1

As τ̂= τ and ρ̂ = ρ, we have

Cov(Errort ,Revisiont ) = τ̂−1 (ρ̂− λ̂)2(1− λ̂ρ̂)

1− λ̂2
> 0

Cov(Errori ,t ,Revisioni ,t ) = 0 and Cov(Errort , xt ) = τ̂−1(ρ̂− λ̂) > 0,

which together imply

KCG = κ1τ̂
−1 > 0, KBGMS = 0, KKW = κ3τ̂

−1 > 0.

As τ= τ̂→∞, λ̂→ 0 and it follows that

κ1 → ρ̂2

Vagg
, κ2 = 1

Vagg
ρ̂

1−ρρ̂
1−ρ2 , κ3 → ρ̂

1−ρ2 , κ4 = 1

(1−ρ2)2 , κ5 → 0, κ6 = 1

Vagg
ρ̂

1−ρρ̂
1−ρ2

As a result, the signs of the three regression coefficients are the same as the sign of ρ− ρ̂.

Proof of Corollary 2

With ρ̂ ≤ ρ, KKW > 0, and therefore ρ̂ > ρ is necessary to make KKW < 0. With τ̂ =∞ and ρ̂ > ρ, both KCG < 0 and

KKW < 0. Therefore, it is necessary to have both τ̂<∞ and ρ̂ > ρ to allow KCG > 0 and KKW < 0. The sufficiency part

is established by the numerical example and a standard continuity argument.
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Proof of Proposition 2

The law of motion of the average forecast error is given by

Errort = 1− ρ̂L
(1−ρL)(1− λ̂L)

εt+1 =
(
ρ− ρ̂
ρ− λ̂

1

1−ρL
+ ρ̂− λ̂
ρ− λ̂

1

1− λ̂L

)
εt+1.

Suppose ρ > ρ̂, then ρ > λ̂. The coefficients of the two AR(1) terms are both positive, and the responses are therefore

all positive.

Suppose ρ < ρ̂. Consider the following continuous time version of the response

g (t ) = ρ− ρ̂
ρ− λ̂ρ

t + ρ̂− λ̂
ρ− λ̂ λ̂

t ,

and g (t ) = ζk when t = k ∈ {0,1, . . .}. Note that: (1) g (t ) is negative when t is large enough (no matter ρ > λ̂ or ρ < λ̂);

(2) when t = 0, g (0) = 1 > 0; (3) there is at most one root of g (t ). As a result, {ζk }∞k=1 eventually stay negative, but they

might be positive or negative for k small enough.

The root of g (t ) is

kIRF = log
(
ρ̂−ρ)− log

(
ρ̂− λ̂)

log λ̂− logρ
.

To have {ζk }∞k=1 switch signs, it is necessary that g (1) > 0 and ρ̂ > ρ, which correspond to g (1) = ρ+ λ̂− ρ̂ > 0 and

ρ̂ > ρ, or

λ̂> ρ̂−ρ and ρ̂ > ρ.

Finally, note that kI RF is decreasing in ρ̂ for given λ̂, which verifies the claim in the main text that the magnitude of

kI RF reveals information about the relative importance of the two mechanisms.52

When ρ̂ > ρ but λ̂> ρ̂−ρ, g (1) < 0 and the sequences {ζk }∞k=1 stay negative all the time.

Proof of Corollary 3

Follows directly from Proposition 2.

Proof of Proposition 3

Aggregate consumption satisfies the fixed point restriction

ct =
∞∑

k=0
βkEt [ξt+k ]+ (1−β)

∞∑
k=0

βkEt [ct+k+1],

where we have used the market clearing condition yt = ct , and the assumption that agents observe yt but do not

extract information from it. This aggregate outcome is the outcome of the following beauty-contest game

ci ,t = Ei ,t [ξt ]+βEi ,t [ci ,t+1]+ (1−β)Ei ,t [ct+1].

52On a more technical level, note that, as written, kIRF need not be an integer. It is indeed obtained from the continuous-

time limit of the ARMA process that describes the average forecast error. But the result, as stated, holds for the true, discrete-time

process. Also, a small caveat is that in the model with over-extrapolation (ρ̂ > ρ) but no noise (τ̂→∞), right after t = 0, the forecast

error switches sign from positive (by construction, given that the data was hit by an unpredictable innovation) to negative (as a

result of flawed reasoning). That is, ζ0 = 1 always, but we can have limh↓0 ζh < 0. In the data, given that we properly observe

some average of forecast errors between t = 0 and t = 1 as the “observation” at t = 0, we would expect to see impulse responses of

uniform sign.
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Denote the agent’s equilibrium policy function as

ci ,t = h(L)si ,t

for some lag polynomial h(L). The actual law of motion of aggregate outcome can then be expressed as follows

ct = h(L)ξt = h(L)

1−ρLεt .

However, the perceived law of motion by consumers is

ct = h(L)

1− ρ̂Lεt .

As in the case where the outcome is given by the exogenous AR(1) process, the forecast about the fundamental is

Ei ,t [ξt ] =
(

1− λ̂

ρ̂

)
1

1− λ̂L si ,t ≡G1(L)si ,t .

Consider the forecast of the future own and average actions. The perceived law of motion of ci ,t+1 and ct+1 are

ct+1 =
[

h(L)
L(1−ρ̂L) 0

][
εt

ui ,t

]
, ci ,t+1 − ct+1 =

[
0 τ̂−

1
2

h(L)
L

][
εt

ui ,t

]
,

and the forecasts are

Ei ,t [ct+1] =G2(L)si ,t , G2(L) ≡ λ̂

ρ̂
τ̂

(
h(L)

(1− λ̂L)(L− λ̂)
− h(λ̂)(1− ρ̂L)

(1− ρ̂λ̂)(L− λ̂)(1− λ̂L)

)
,

Ei ,t
[
ci ,t+1 − ct+1

]=G3(L)si ,t , G3(L) ≡ λ̂

ρ̂

(
h(L)(L− ρ̂)

L(L− λ̂)
− h(λ̂)(λ̂− ρ̂)

λ̂(L− λ̂)
− ρ̂

λ̂

h(0)

L

)
1− ρ̂L
1− λ̂L

Recall that fixed point problem that characterizes the equilibrium is

ci ,t = Ei ,t [ξt ]+βEi ,t [ci ,t+1]+ (1−β)Ei ,t [ct+1].

We can replace the left-hand side with h(L)si ,t . Using the results derived above, on the other hand, we can replace

the right-hand side with
[
G1(L)+G2(L)+βG3(L)

]
si ,t . It follows that in equilibrium

h(L) =G1(L)+G2(L)+βG3(L).

Equivalently, we need to find an analytic function h(z) that solves

h(z) = λ̂

ρ̂
τ̂

1

1− ρ̂λ̂
1

1− λ̂z
+ λ̂

ρ̂
τ̂

(
h(z)

(1− λ̂z)(z − λ̂)
− h(λ̂)(1− ρ̂z)

(1− ρ̂λ̂)(z − λ̂)(1− λ̂z)

)

+βλ̂
ρ̂

(
h(z)(z − ρ̂)

z(z − λ̂)
− h(λ̂)(λ̂− ρ̂)

λ̂(z − λ̂)
− ρ̂

λ̂

h(0)

z

)
1− ρ̂z

1− λ̂z
,

which can be transformed as

C̃ (z)h(z) = d(z;h(λ̂),h(0))

where

C̃ (z) ≡ z(1− λ̂z)(z − λ̂)− λ̂

ρ̂

{
β(z − ρ̂)(1− ρ̂z)+ τ̂z

}
d(z;h(λ̂),h(0)) ≡ λ̂

ρ̂
τ̂

1

1− ρ̂λ̂ z(z − λ̂)− 1

ρ̂

(
τ̂

λ̂

1− ρ̂λ̂ +β(λ̂− ρ̂)

)
z(1− ρ̂z)h(λ̂)−β(z − λ̂)(1− ρ̂z)h(0)
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Note that C̃ (z) is a cubic equation and therefore contains with three roots. We will verify later that there are two

inside roots and one outside root. To make sure that h(z) is an analytic function, we choose h(0) and h(λ̂) so that the

two roots of d(z;h(λ̂),h(0)) are the same as the two inside roots of C̃ (z). This pins down the constants {h(0),h(λ̂)},

and therefore the policy function h(L) is

h(L) =
(
1− ϑ

ρ̂

)
1

1− ρ̂
1

1−ϑL ,

where ϑ−1 is the root of C̃ (z) outside the unit circle.

Now we verify that C̃ (z) has two inside roots and one outside root. C̃ (z) can be rewritten as λ̂C (z) where

C (z) =−z3 +
(
ρ̂+ 1

ρ̂
+ 1

ρ̂
τ̂+β

)
z2 −

(
1+β

(
ρ̂+ 1

ρ̂

)
+ 1

ρ̂
τ̂

)
z +β,

=−z3 +
(
ρ̂+ 1

ρ̂
+ 1

ρ̂
τ̂+1−mpc

)
z2 −

(
1+ (1−mpc)

(
ρ̂+ 1

ρ̂

)
+ 1

ρ̂
τ̂

)
z +1−mpc.

With the assumption that 1 > mpc > 0, it is straightforward to verify that the following properties hold:

C (0) = 1−mpc > 0, C (λ̂) =−mpc
τ̂

ρ̂
< 0, C (1) = mpc

(
1

ρ̂
+ ρ̂−2

)
> 0.

Therefore, the three roots are all real, two of them are between 0 and 1, and the third one ϑ−1 is larger than 1.

To show that ϑ is less than ρ̂, it is sufficient to show that

C

(
1

ρ̂

)
= τ̂(1− ρ̂)

ρ̂3 > 0.

Since C (ϑ−1) = 0, it has to be that ϑ−1 is larger than ρ̂−1, or ϑ< ρ̂.

Similarly, to show that ϑ is larger than λ̂, it is sufficient to show that

C

(
1

λ̂

)
=− τ̂(1−mpc)mpc

ρ̂λ̂2
< 0.

Therefore, it has to be that ϑ> λ̂. In the proof the properties of the expectations, we will utilize the fact that ϑ ∈ (λ̂, ρ̂).

In Angeletos and Huo (2019), the equilibrium policy rule is derived under ρ = ρ̂ and τ = τ̂. In the derivation

above, note that h(L) does not depend on ρ nor τ. The actual law of motion of yt = ct will depend on ρ:

yt = 1

1− ρ̂
(
1− ϑ

ρ̂

)
1

1−ϑL
1

1−ρLεt .

On the other hand, the frictionless case is given by

y∗
t = 1

1−ρ
1

1−ρLεt .

Combining these two leads to

yt =
(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1− ρ̂
)(

1

1−ϑL
)

y∗
t .

Turn to the forecast of the future outcome. By the Wiener-Hopf prediction formula, the individual forecast is

Ei ,t [yt+1] =
[

1

1− ρ̂
(
1− ϑ

ρ̂

)
1

1−ϑL
1

1−ρLM′(L−1)B(L−1)−1
]
+

B(L)−1si ,t ,

= 1

1− ρ̂
(
1− ϑ

ρ̂

)(
1− λ̂

ρ̂

)
1

1−ϑλ̂
ρ̂+ϑ− ρ̂ϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
si ,t ,

and the average forecast is

Et [yt+1] =
(

1− λ̂

ρ̂

)
1

1−ϑλ̂
ρ̂+ϑ− ρ̂ϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)

(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1− ρ̂
)

y∗
t
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Proof of Proposition 4

Denote κ≡
(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1−ρ̂
)

1
1−ρ . If ct = κ 1

(1−ϑL)(1−ρL)εt is the perfect-information outcome, it has to be that

ct =ξt +ω f E
∗
t [ct+1]+ωbct−1

= 1

1−ρL +ω f κ
ϑ+ρ−ϑρL

(1−ϑL)(1−ρL)
+ωbκ

L

(1−ϑL)(1−ρL)

where the right-hand side is simply the perfect information expectation of the behavioral equilibrium. This leads to

ω f =
ρ̂2 −ϑ

(ϑ+ρ)(ρ̂−ϑ)
and ωb = ϑ(ρ(ρ̂−ϑ)+ϑρ̂(1− ρ̂))

(ϑ+ρ)(ρ̂−ϑ)
.

In the absence of informational friction (τ̂→∞), we have ϑ = 0 and therefore ωb = 0 and ω f = ρ̂/ρ. In its presence

(τ̂<∞), we have that ϑ> 0 and ωb > 0 necessarily. When ρ̂ < ρ, we have

ω f =
ρ̂2 −ϑ

(ϑ+ρ)(ρ̂−ϑ)
< ρ̂2 −ϑ

(ϑ+ ρ̂)(ρ̂−ϑ)
< ρ̂2 −ϑ2

(ϑ+ ρ̂)(ρ̂−ϑ)
= 1.

Note that ϑ is decreasing in τ̂. With a very level of high informational friction (τ̂→ 0), we have ϑ = ρ̂. Particularly,

when ϑ ∈ (ρ̂2, ρ̂), ω f is negative. Therefore, in order to show that ω f < 1when τ̂ is small, it is sufficient to show that

ω f is decreasing in ϑ. Note that
∂ω f

∂ϑ
= ρ(ρ̂2 − ρ̂)−ϑ2 − ρ̂3 +2ρ̂2ϑ

(ρ+ϑ)2(ρ̂−ϑ)2 ,

where the numerator is linear in ρ with a negative slope. To verify
∂ω f

∂ϑ < 0,we only need to show that the numerator

is negative when ρ = 0, or g (ϑ) ≡−ϑ2 − ρ̂3 +2ρ̂2ϑ< 0. Note that g (ϑ) is maximized at ϑ= ρ̂2, and g (ρ̂2) = ρ̂4 − ρ̂3 < 0,

which completes the proof.

Proof of Proposition 5

Properties of Average Forecast Errors. The average forecast error is given by

yt+1 −Et [yt+1] = 1

1− ρ̂
(
1− ϑ

ρ̂

)
1

1−ϑLξt+1 − 1

1− ρ̂
(
1− ϑ

ρ̂

)(
1− λ̂

ρ̂

)
1

1−ϑλ̂
ρ̂+ϑ− ρ̂ϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
ξt

= 1

1− ρ̂
(
1− ϑ

ρ̂

)(
ω1

1−ϑL + ω2

1−ρL + ω3

1− λ̂L

)
εt+1,

where

ω1 = λ̂ϑ(ρ̂−ϑ)(1− ρ̂ϑ)

ρ̂(ϑ− λ̂)(1− λ̂ϑ)(ρ−ϑ)
ω2 = (ρ− ρ̂)(λ̂ϑ(1−ρρ̂)+ ρ̂(ρ−ϑ))

ρ̂(ρ− λ̂)(1− λ̂ϑ)(ρ−ϑ)
, ω3 = 1−ω1 −ω2.

We use {ζk }∞k=0 to denote the IRF. The following properties hold:

1. When ρ > ρ̂, ζk > 0 for all k ≥ 0.

Note that if ρ > ρ̂, it is also the case that ρ > ρ̂ > ϑ > λ̂. As a result, ω1 > 0 and ω2 > 0. Also note that ζk =
ω1ϑ

k +ω2ρ
k +ω3λ̂

k . It follows that

ζk > (ω1 +ω2)ϑk +ω3λ̂
k = (ω1 +ω2)(ϑk − λ̂k )+ λ̂k > 0.

2. When ρ < ρ̂, ζk < 0 for k large enough.

When k large enough, that the sign of ζk will be the same as the sign of ω1 if ϑ> ρ, and it will be the same as

the sign of ω2 if ϑ< ρ. If ϑ> ρ, ω1 < 0. If ϑ< ρ, ω2 < 0. Therefore, the forecast error is negative in the long run.
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3. When ρ < ρ̂, there exists a threshold λ such that only if λ̂ > λ, ζ1 > 0. That is, the forecast error does not

immediately switches to negative only if learning is slow enough.

A straightforward calculation yields

ζ1 =ω1ϑ+ω2ρ+ω3λ̂= D(λ̂)

ρ̂(1− λ̂ϑ)
, where D(λ̂) = (−ρ̂ϑ)λ̂2 + (ρ̂2ϑ− ρ̂ϑ2 −ρρ̂ϑ+ ρ̂+ϑ)λ̂− ρ̂2 +ρρ̂

ρ̂(1− λ̂ϑ)
.

The sign of ζ1 is the same as the numerator D(λ̂). Since D(0) = ρ̂(ρ− ρ̂) < 0, and D(ρ̂) = ρ̂(ρ+ϑ)(1− ρ̂ϑ) > 0,

there exists λ ∈ (0, ρ̂) such that D(λ̂) > 0 only if λ̂>λ.

Regression Coefficients. We now study the theoretical counterparts of KCG, KBGMS and KKW.

Case 1: τ = τ̂ and ρ = ρ̂. We have already proved that the IRF of the forecast error is always positive. Because the

IRF of the outcome is always positive, KKW has to positive. By individual rationality, KBGMS has to be zero. What

remains is to prove that KCG is positive.

As the outcome follows an AR(2) process, the individual forecast error and forecast revision are given by

yt+1 −Ei ,t [yt+1] = 1

1−ρ
(
1− ϑ

ρ

)(
g ε1 (L)εt+1 + g u

1 (L)ui ,t
)

,

Ei ,t [yt+1]−Ei ,t−1[yt+1] = 1

1−ρ
(
1− ϑ

ρ

)(
g ε2 (L)εt + g u

2 (L)ui ,t
)

,

where

g ε1 (L) = 1

(1−ϑL)(1−ρL)
−

(
1− λ̂

ρ

)
1

1−ϑλ̂
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)(1−ρL)
L,

g ε2 (L) =
(

1− λ̂

ρ

)
1

1−ϑλ̂

(
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)(1−ρL)
(1− (ϑ+ρ)L)+ ρϑ(1−ρϑλ̂L)

(1−ϑL)(1− λ̂L)(1−ρL)
L

)
,

g u
1 (L) =−

(
1− λ̂

ρ

)
1

1−ϑλ̂
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
τ−1,

g u
2 (L) =

(
1− λ̂

ρ

)
1

1−ϑλ̂

(
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
(1− (ϑ+ρ)L)+ ρϑ(1−ρϑλ̂L)

(1−ϑL)(1− λ̂L)
L

)
τ−1.

The covariance between individual forecast error and individual forecast revision is

Cov
(
Errori ,t , Revisioni ,t

)= (
1

1−ρ
(
1− ϑ

ρ

))2 (
Cov

(
g ε1 (L)εt+1, g ε2 (L)εt

) + Cov
(
g u

1 (L)ui ,t , g u
2 (L)ui ,t

))
,

and a long but straightforward calculation yields the following expression:

Cov(g u
1 (L)ui ,t , g u

2 (L)ui ,t ) =−τ−1

((
1− λ̂

ρ

)
1

1−ϑλ̂

)2
1− λ̂ρ

(1− λ̂ϑ)(1− λ̂2)
∆,

where

∆≡ (
ϑ3λ̂

(
1− λ̂2)−3ϑλ̂

(
1−ϑλ̂)+ (

1−ϑ2))ρ2 − (
ϑ3 (

1− λ̂2)+ϑ(
3ϑλ̂−2

))
ρ+ϑ2.

With τ = τ̂ and ρ = ρ̂, agents are rational and KBGMS = 0. That is, Cov
(
Errori ,t , Revisioni ,t

) = 0. Let us assume

momentarily that ∆> 0. It follows that

Cov(Errort , Revisiont ) =
(

1

1−ρ
(
1− ϑ

ρ

))2

Cov
(
g ε1 (L)εt+1, g ε2 (L)εt

)
=−

(
1

1−ρ
(
1− ϑ

ρ

))2

Cov
(
g u

1 (L)ui ,t , g u
2 (L)ui ,t

)> 0,

which implies that KCG > 0.

The argument is completed by the lemma below, which verifies that ∆> 0 by mapping ρ to x, ϑ to y , and λ to z.
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Lemma. When x, y, z ∈ (0,1), the following inequality holds

(
y3z

(
1− z2)−3y z

(
1− y z

)+ (
1− y2))x2 − (

y3 (
1− z2)+ y

(
3y z −2

))
x + y2 > 0

Proof. Recast the left hand side of the above inequality as a quadratic in x:

C (x) ≡ (
y3z

(
1− z2)−3y z

(
1− y z

)+ (
1− y2))x2 − (

y3 (
1− z2)+ y

(
3y z −2

))
x + y2.

This has two real roots, x = x1 and x = x2, given by

x1 =− y

1− y z
and x2 =− y

y2z2 −2y z − y2 +1
.

Clearly, given the assumption that y, z ∈ (0,1) , x1 is negative and C (0) = y2 > 0. If x2 is negative, then C (x) is positive

when x ∈ (0,1). If x2 is positive, to guarantee that C (x) is positive when x ∈ (0,1), we need to show that x2 > 1, which

is equivalent to show that

y2z2 −2y z + (
y − y2 +1

)> 0

Define the following quadratic equation in z:

D(z) = y2z2 −2y z + (
y − y2 +1

)
.

Its discriminant is −4y3
(
1− y

)
, which is negative given that y ∈ (0,1). Therefore, D(z) is always positive, which in

turn verifies x2 > 1.

Case 2: τ= τ̂=∞ and ρ 6= ρ̂. If τ̂= τ=∞, then λ̂= ϑ= 0. In this case, all agents receive the same signal, and there

is no distinction between Ei ,t [·] and Et [·]. It follows that KCG = KBGMS.

To derive the KBGMS, note that

yt+1 −Ei ,t [yt+1] = 1

1− ρ̂ (εt+1 + (ρ− ρ̂)yt )

Ei ,t [yt+1]−Ei ,t−1[yt+1] = 1

1− ρ̂ ρ̂(yt − ρ̂yt−1)

It follows that

KBGMS = ρ̂(1−ρρ̂)(ρ− ρ̂)

(ρ̂2 + ρ̂4 −2ρρ̂3)

Clearly, the sign of KBGMS is the same as the sign of ρ− ρ̂.

The sequence of the forecast error IRF {ζk }∞k=1 is given by

ζk = 1

1− ρ̂ ρ
k−1(ρ− ρ̂),

which are either all positive or all negative. Since the IRF of the outcome is always positive, the sign of KKW is the

same as ρ− ρ̂.

Case 3: 0 < τ̂ < ∞ and ρ̂ > ρ > 0. With τ̂ = ∞, the signs of KCG > 0 and KKW < 0 are always the same as ρ − ρ̂.

Therefore, 0 < τ̂<∞ is necessary to allow KCG > 0 and KKW < 0.

With ρ̂ ≤ ρ, the average forecast error is always positive, the IRF of the forecast error is always positive. Together

with the fact that the IRF of the outcome is always positive, we have KKW > 0. Therefore, ρ̂ > ρ is necessary to allow

KKW < 0.
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Proofs of Proposition 6 and Corollary 4

We first consider the case with “higher-order doubts”. The recursive formulation of individual consumer i ’s con-

sumption choice is

ci ,t = Et [ξt ]+βEt [ci ,t+1]+ (1−β)Et [ct+1]

As ξt is perfectly observed by consumer i , we guess the policy function is

ci ,t = aξt ,

for some constant a.

Under the assumption that agent i believes that other agents observe the fundamental shock with probability q ,

it follows that

Ei ,t [ci ,t+1] = Ei ,t [aξt+1] = aρξt Ei ,t [Et [ξt ]] = qξt , Ei ,t [ct+1] = Ei ,t [Et [aξt+1]] = aqρξt .

Substituting these expectations into consumers’ optimal response leads to

aξt = ξt +βaρξt + (1−β)aqρξt ,

which further verifies our guess by setting the constant a as

a = 1

1− (βρ+ (1−β)qρ)
< 1

1−ρ .

In the economy without higher-order doubts but with mis-perceived ρ̂, the aggregate outcome is

ct = 1

1− ρ̂ ξt .

The outcomes in the two economies are observationally equivalent iff

1

1− ρ̂ = 1

1− (βρ+ (1−β)qρ)
→ ρ̂ = ρ− (1−β)ρ(1−q) < ρ

In terms of forecasts, in the economy with higher-order doubts,

Ei ,t [ct+1] = Et [ct+1] = qE∗t [ct+1].

where E∗t [·] is the perfect-information rational expectation operator.

Next, we consider the level-k thinking. The agents are assumed to observe the fundamental and to have the

correct prior about its process but a mis-specified prior about the behavior of others: they are “level-k thinkers” for

some finite integer k ≥ 0. Level 0 agents are assumed to play ct = c0
t ≡ 0, for all t and for all ξt . Level 1 agents believe

that other agents are level 0. They therefore play ct = c1
t , where c1

t is given by the solution to

c1
t = ξt +βEt [c1

t+1]

Level 2 agents believe that other agents are level 1. They therefore choose ct = c2
t , where c2

t is given by the solution to

c2
t = ξt +βEt [c2

t+1]+ (1−β)Et [c1
t+1].

Similarly, the aggregate outcome for level-k agent when k > 0 satisfies

ck
t = ξt +βEt [ck

t+1]+ (1−β)Et [ck−1
t+1 ].
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We proceed by a guess-and-verify approach. Suppose that ck
t = akξt . Then for k > 0, ak has the following recursive

structure

ak = 1+βρak + (1−β)ρak−1.

Using the fact g0 = 0, we have for k > 0,

ak = 1

1−ρ

(
1−

(
(1−β)ρ

1−βρ
)k

)
,

which has proved the conjecture.

Compared with the economy with mis-perceived ρ̂, the aggregate outcomes are equivalent iff

1

1− ρ̂ = 1

1−ρ

(
1−

(
(1−β)ρ

1−βρ
)k

)
.

Since

(
1−

(
(1−β)ρ
1−βρ

)k
)
< 1, we have ρ̂ < ρ.

In terms of the forecast, in the level-k economy,

Ei ,t [ct+1] = Et [ct+1] = ak−1ρξt = ak−1

ak
E∗t [ct+1],

where ak−1
ak

< 1.

Lastly, consider the cognitive discounting economy. We still proceed by a guess-and-verify approach. Suppose

that the actual law of motion of ct is

ct = Rct−1 +Dεt ,

and the perceived law of motion is

ct = mRct−1 +Dεt .

Meanwhile, the perceived law of motion of ξt is

ξt = mρξt−+εt .

Recall that the aggregate outcome is given by

ct =
∞∑

k=0
βkEt [ξt+k ]+ (1−β)

∞∑
k=0

βkEt [ct+k+1].

Using the mis-specified priors, we have

ct = 1

1−βmρ
ξt + (1−β)

mR

1−βmR
ct ,

which leads to the actual law of motion of ct as

ct = ρct−1 + 1−βmR

1−mR

1

1−βmρ
εt .

To be consistent with our guess, we have

R = ρ, D = 1

1−mρ
.

Compared with the economy with mis-perceived ρ̂, the aggregate outcomes are equivalent iff

1

1− ρ̂ = 1

1−mρ
, → ρ̂ = mρ < ρ.
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In terms of the forecast, in the cognitive-discounting economy,

Ei ,t [ct+1] = Et [ct+1] = mE∗t [ct+1].

In all the three economies (higher-order doubts, level-k, cognitive discounting), the individual forecast is the

same as the average forecast about the aggregate outcome , and it follows that KCG = KBGMS. In addition, in all the

three economies,

ct =ϕξt , and Et [ct+1] = ζE∗t [ct+1] = ζρϕξt ,

for some constant ϕ and ζ ∈ (0,1). Therefore, we have

Cov(Errort ,Revisiont ) = Cov(ϕξt+1 −ζρϕξt ,ζρϕξt −ζ2ρ2ϕξt−1) =ϕ2ρ2ζ(1−ζ)
1−ζρ2

1−ρ2 ,

which implies KCG = KBGMS > 0.

In addition, the law of motion of the forecast error is

Errort =ϕ1−ζρL
1−ρL εt+1 =ϕ

(
(1−ζ)

1

1−ρL
+ζ

)
εt+1,

and the corresponding IRF is always positive given ζ ∈ (0,1).

Given that in all these economies the IRF of the outcomes are always positive and that the IRF of the forecast

error is always positive, we know that KKW in all of these economies have to be positive as well.

Proof of Lemma in Appendix C

We consider the case with k = 1. Note that average revision, Revisiont , and the idiosyncratic component of individual

revision, (Revisioni ,t −Revisiont ), are independent of each other. Therefore, the regression coefficient on the average

forecast revision remains to be KCG.

The covariance between individual forecast error and idiosyncratic revision component is

Cov(Errori ,t ,Revisioni ,t −Revisioni ,t ) = Cov

(
− ρ̂− λ̂

1− λ̂Lui ,t ,
ρ̂− λ̂

1− λ̂L (τ−
1
2 ui ,t − ρ̂τ−

1
2 ui ,t−1)

)

=−τ−1 (ρ̂− λ̂)2(1− λ̂ρ̂)

1− λ̂2

=−κ1Vaggτ
−1.

Denote the regression coefficient on (Revisioni ,t −Revisiont ) as β. It follows that

β= Cov(Errori ,t ,Revisioni ,t −Revisiont )

Vidio
= Cov(Errori ,t ,Revisioni ,t )−Cov(Errort ,Revisiont )

Vidio

= Vind

Vidio
KBGMS −

Vagg

Vidio
KCG,

and hence

Knoise =−βVidio

Vagg
= KCG − Vind

Vagg
KBGMS

Using the definitions of KCG and KBGMS, we then also have Knoise = κ1τ
−1. Because κ1are independent of τ, Knoise is

decreasing in τ, and vanishes when τ→∞.
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