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Abstract

We study the optimal design of a queueing system when agents’ arrival and servicing

are governed by general Markov processes. The designer of the system chooses entry

and exit rules for agents, their service priority—or queueing discipline—as well as

their information, while ensuring that agents have incentives to follow the designer’s

recommendations not only to join the queue but more importantly to stay in the queue.

The optimal mechanism has a cutoff structure—agents are induced to enter up to a

certain queue length and no agents are to exit the queue once they enter the queue; the

agents on the queue are served according to a first-come-first-served (FCFS) rule; and

they are given no information throughout the process beyond the recommendations

they receive from the designer. FCFS is also necessary for optimality in a rich domain.

We identify a novel role for queueing disciplines in regulating agents’ beliefs, and their

dynamic incentives, revealing a hitherto unrecognized virtue of FCFS in this regard.
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Keywords: Queueing disciplines, information design, mechanism design, dynamic

matching.

1 Introduction

Consider the problem faced by somebody, called a designer, who designs a queueing system

for agents seeking to receive a service or product. Agents arrive stochastically according to
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some Markov process, and are served according to another Markov process, both depending

on the number of agents in the queue. Aside from these two processes, which are exogenous

and thus beyond her control, the designer can choose many aspects of the queue design.

She can let an arriving agent enter the queue or turn him away. She can remove an agent

from the queue. She can also decide which agent will be served at each point, or more

generally, how an available service capacity is allocated among agents in the queue. Finally,

the designer can control how much information an agent can have about the queue or his

expected waiting time throughout the process, both when he arrives at the queue and at any

point after he has joined.

Casual observation of real-world queues suggests a wide range of choices available along

these different dimensions of queue design. Service call centers sometimes encourage cus-

tomers to wait in line (i.e., to be put on hold); other times, presumably in the face of high

call volume, they tell customers to try another time. Similarly, some call centers ask cus-

tomers who have already been waiting for some time, to leave the queue and return later.

Queue disciplines—the service priorities for agents in the queue—also take a variety of forms:

first-come-first-served (FCFS) is the oldest and by far the most common queue system, but

service-in-random-order (SIRO) which assigns priority at random, has been also used. Some

authors have proposed other rules such as last-come-first-served (LCFS) (e.g., Hassin (1985),

Su and Zenios (2004), and Platz and Østerdal (2017)). Finally, a range of different informa-

tion policies are commonly observed. Some queueing systems keep customers completely in

the dark about the queue’s length, their relative positions, or their estimated waiting times.

For instance, many offices for social housing do not disclose any information on positions

on waiting lists.1 Other systems provide customers with their estimated waiting time or

the number of customers ahead of them. For instance, popular ride-hailing apps provide a

customer with not only the estimated arrival time of a vehicle but also its current location

in a map.

A queue design, together with the primitive process, induces a Markov chain on the length

of the queue; naturally we focus on the Markov chain in its steady state, or at its invariant

distribution. This in turn determines an agent’s expected waiting time and the service rate

in steady state. For this outcome to be feasible, the associated queueing behavior must be

compatible with agents’ incentives. While the designer can keep an agent from joining the

queue or remove one from the queue, she cannot coerce an agent to enter the queue or to

stay in it against his will.2 In other words, when recommended to either join a queue or

1This is the case, for instance, for several housing choice voucher programs in California, e.g., PCCDS

Housing Service or HACA among others.
2Given our assumption, a possible incentive by an agent to queue up against desires of the designer is not

a problem, since the designer can simply block an entry by such an agent. In this sense, excessive entry, as

observed by Naor (1969) to occur under FCFS, does not arise our model. However, this feature of our model

is natural and realistic in many “regulated” settings where a designer has control over entry into a queue.
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stay in the queue, an agent must have an incentive to obey this recommendation given the

information he has. The designer chooses a feasible outcome that maximizes a weighted

sum of agents’ welfare and the service provider’s profit, the former consisting of a lump-sum

benefit from service minus linear waiting costs, and the latter consisting of a fixed (possibly

shadow) profit it enjoys for each agent served. Since the weight is arbitrary, the designer can

be a service provider maximizing profit, a consumer advocate maximizing agents’ welfare,

or a regulator who values both.

The question is: how should the designer choose all different aspects of the queue design?

Our answer is strikingly simple and consistent with many observed practices of queue design.

The optimal queue design has the following features:

(i) The optimal queue design has a cutoff policy: namely, there exists a maximal queue

length K ≥ 0 such that agents are recommended to enter the queue as long as its

length is less than K − 1 but they are turned away if the queue reaches K in length.

No agents leave the queue once they join it.3

(ii) Those who join the queue are then prioritized to receive a service according to FCFS.

(iii) No information is provided to agents beyond the recommendations they receive to join

or to stay in the queue.4

Result (i) means that no agent should be either removed or incentivized to leave the queue

once he or she joins it, except possibly when the queue is full. In other words, reneging—

or abandonment of the queue—is never part of the optimal queue behavior, again except

possibly when the queue is full. Results (ii) and (iii) mean that, at least in the canonical

model we consider, the most tried-and-true queueing norm is as good as any others and often

strictly better, provided that agents are kept in the dark throughout.

The intuition behind the information policy—no information beyond recommendation—

is explained as follows. It is well known and intuitive that incentive constraints are relaxed

most when agents are given as little information as possible. If an agent has the incentive to

join a queue or to stay in it for a set of signals he may receive under any queueing discipline,

he must also have the incentive to join the queue when all these signals are pooled into

one. Since this “pooled” signal is precisely what the agent will have given “no information”

3When the queue length is K − 1, an agent is recommended to enter with positive probability possibly

equal to one. If this probability is less than one, the entry is “rationed” at K − 1. While such an rationed

entry can be equivalently implemented by an agent exiting at a positive rate when the queue is full, we

“normalize” the policy throughout so that no agents exit.
4Since recommendations contain information about the state, this policy should not be confused with

“no information” authors often use, which refers to “no communication” what so ever. Agents can make

Bayesian inferences on their expected waiting times, based on the recommendation they receive, the queue

design that the designer commits to, and the elapsed time after joining the queue.
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beyond the recommendation to enter a queue or to stay in it, the same queue discipline must

also be incentive compatible under a no information policy. This explains why providing no

information is optimal.

To explain why FCFS is optimal, fix an optimal entry and exit policy—i.e., a cutoff policy

with some maximal length K. Assuming agents obey the recommendation, this induces a

distribution of queue length in the steady state. Since our agents are homogeneous, the

expected waiting time when averaged across possible initial queue lengths is the same for each

agent, and does not depend on the queueing discipline in use. Then, given no information,

the incentive for joining the queue will be the same across all queueing disciplines, meaning

if it is incentive compatible to join the queue under any queue discipline it will be incentive

compatible to do so under any other. Hence, from this standpoint, FCFS is not particularly

necessary or desirable.

However, the dynamic incentives that agents face—particularly their incentive to obey the

recommendation to stay in the queue once they enter it—differ across queueing disciplines,

assuming the no information policy. The reason is that the belief an agent forms about the

remaining waiting time evolves differently over time under different queueing disciplines. Our

main insight is that, under a very mild condition on the primitive process, the evolution of

this belief becomes progressively more favorable under FCFS. Consequently, under this mild

condition, agents are willing to stay in the queue under FCFS with no information. Thus,

the optimal queueing outcome can be implemented by FCFS, provided that no information

is provided to the agents.

The progressively favorable beliefs under FCFS stem from its fundamental property:

namely, that one’s service priority can only improve over time under FCFS. Hence, starting

with any initial queue length, the elapse of time is indeed good news about the remaining

waiting time: as time passes, one’s priority, and correspondingly, one’s chance of receiving

service by a given date, can only improve under FCFS. But this is not the only force at

work. Since an agent is not told about the queue length k when he joins the queue (recall no

information), his belief about this will be also updated as time progresses. On this account,

the elapse of time is actually bad news, since it indicates that the agent likely underestimated

the initial length of the queue when he joined it. Our proof boils down to showing that the

good news dominates the bad news. As noted above, this means that incentive compatibility

is maintained throughout once an agent joins under FCFS.

The same is not true, however, for other queueing disciplines, as the belief evolution need

not be as favorable over time. Consider SIRO. Since priority is assigned randomly, the more

agents there are in the queue, the less likely it is for an agent to receive service. When

no information is given, an agent’s belief about the queue length is therefore crucial for his

dynamic incentives. This is what the agent updates over time to decide whether it is worth

staying in the queue. Since service priority does not improve with time under SIRO, the

updating is not as favorable as under FCFS. Further, elapse of time without being served
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indicates that there are more agents in the queue than he initially thought. So the agent is

more likely to become pessimistic as time passes. Indeed, we can find simple cases such as

the standard M/M/1 queue in which the belief worsens over time to such a degree that an

agent leaves the queue after entering it, thus failing the incentive requirement necessary for

implementing the optimal cutoff policy.

In sum, we identify a novel role played by queueing disciplines in shaping and regulating

agents’ beliefs about the remaining waiting time, and thus their dynamic incentives to stay

in a queue—a crucial element for the eventual outcome when agents cannot be coerced

to remain in a queue. In particular, our analysis reveals a hitherto unrecognized virtue

of FCFS in this regard. Further, we show that no other queueing disciplines possess this

virtue. Specifically, for any queueing discipline differing from FCFS, one can always find an

environment under which it is strictly suboptimal no matter the information policy adopted.

In this sense, FCFS is not only optimal under the no information policy, it is also necessary

for optimality in a rich domain.

The current paper follows the long line of queueing theory research, in particular, the

rational queueing literature. This literature, which has developed into a significant body

of work since the seminal work by Naor (1969), studies the strategic behavior of rational

Bayesian agents in a variety of queueing scenarios.5 While sharing their focus and approach,

the current paper is distinguished from standard works in this literature in several respects.

First, our Markovian model is general and flexible enough to encompass many settings

of interest. A typical queueing model tends to focus on a specific process such as M/M/1

or M/M/c. Similarly, a standard dynamic matching model in economics considers a specific

match technology. By contrast, our model allows the arrival and servicing of agents to follow

general Markov processes that may depend on the current queue length, which nests M/M/c

(which in turn subsumes M/M/1) queueing models as well as recent economic models of

dynamic matching as special cases.6

Second, we consider agents’ incentives not only to join but more importantly to stay in

the queue when recommended by the designer to do so. Addressing these latter dynamic

incentives distinguishes the current paper from most of existing ones. There are a few

papers that consider incentives by agents to abandon a queue, or to “renege”; see Hassin

and Haviv (1995), Haviv and Ritov (2001), Mandelbaum and Shimkin (2000), Sherzer and

Kerner (2018), and Cripps and Thomas (2019). However, these papers approach the issue

as a positive theory, trying to explain reneging as a rational strategic response to various

5See Hassin and Haviv (2012) and Hassin (2012), for an excellent survey of the literature.
6As we mention in Section 3, the models in this literature consider agents who can only be matched with

agents (or objects) in the queue that are compatible with them. Assuming that each pair is compatible with

some fixed probability, the effective arrival rate (i.e., the rate at which an agent joins the queue) and the

effective service rate (i.e., the rate at which an agent leaves the queue) depends on the number of agents in

the queue.
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features such as nonlinear waiting costs or aggregate uncertainty. Our approach is instead

to treat the issue from a normative perspective, and more systematically as part of incentive

design, following the tradition of mechanism design, as we note next.

Third, the current paper is distinguished in its comprehensive treatment of many as-

pects of queueing system design. Most of the existing papers do not consider the optimal

entry/exit policies explicitly, but rather focus on some, typically unregulated, exogenously

given queueing environment. Likewise, queueing disciplines are often assumed in the litera-

ture to be FCFS or, less frequently, SIRO. In addition, agents’ information is also typically

fixed; authors often assume that agents have either full information about the queue or no

information whatsoever.7

A few papers study the optimal design of queueing disciplines while taking other aspects

of queueing system as given. Following Naor (1969)’s seminal observation that FCFS causes

agents to queue excessively, ignoring the “congestion” externality they inflict on later agents,

Hassin (1985) and Su and Zenios (2004) argue that LCFS can “cure” this externality and is

optimal for agents.8 Meanwhile, Leshno (2019) considers a different environment in which

FCFS creates too few incentives for queueing (due to excess supply of agents), and finds

that other mechanisms such as SIRO would perform better by providing greater incentives

for queueing. The suboptimality of FCFS in these papers rests crucially on the unregulated

nature of queueing system and the full information assumption (i.e., complete observability

of queues), respectively. We consider a general model wherein agents’ private incentives for

queueing may either exceed or fall short of the designer’s objective and show that FCFS

is always optimal if she can regulate excessive queue and choose the optimal information

policy—namely, no information. Further, its optimality is strict if one also considers agents’

dynamic incentive to stay in the queue after joining it, which the above papers do not

consider.9

7Here no information means that agents truly do not have any information, including a recommendation

from the designer. In fact, this assumption is typically made in the context of an unregulated environment,

where there is no designer or supervisory entity overseeing or managing the queue. See Hassin and Haviv

(2012) for the canonical description of the unregulated environment.
8Platz and Østerdal (2017) find a similar result when there are a continuum of agents who enter at

their endogenously chosen times. See also Haviv and Oz (2016) for alternative schemes in the observable

environment and Haviv and Oz (2018) for extensions to the unobservable queue environment.
9Several papers study alternative queueing disciplines in environments that are less related or comparable

to ours. FCFS is shown to be optimal in Bloch and Cantala (2017) and a part of the optimal design

in Margaria (2020) in models where, unlike the standard queueing model, the lengths of queues are non-

stochastic, either because arrival occurs only when an agent exits (the former) or because there are a

continuum of agents (the latter). Further, they do not consider information design, so the reason for the

optimality of FCFS is totally different in these models than in our model. Kittsteiner and Moldovanu

(2005) consider the allocation of priority in queues via bidding mechanisms where processing time is private

information. The crucial difference is the use of transfers implicit in bidding mechanisms, which is not allowed

in our model. Also related is the growing literature on dynamic matching; see Akbarpour, Li, and Gharan
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Despite its practical relevance, information design has received attention only recently

in the queueing literature; see Simhon, Hayel, Starobinski, and Zhu (2016), Lingenbrink

and Iyer (2019), and Anunrojwong, Iyer, and Manshadi (2020).10 While the latter two

papers identify the same optimal information design as the current paper, they do not study

the optimal queueing discipline but they instead take FCFS as given. These models are

also more special in their primitive processes, and they do not consider dynamic incentives.

By contrast, we allow all these dimensions of design—entry, exit, queueing disciplines, and

information design—to be chosen optimally by the designer (in the face of the dynamic

incentive problem).

In terms of style, the current paper is closest in spirit to the mechanism design liter-

ature, pioneered by Myerson (1981), which takes the underlying physical character of the

environment as given but otherwise allows the designer to choose all other aspects of the

system optimally.11 Interestingly, our main findings are also similar in flavor as those of

Myerson (1981): the optimal mechanism is both simple and resembles commonly observed

practices. As mentioned, the cutoff policy conforms to the standard practice of capping the

queue length at some level. The optimality of FCFS accords well with its prevalent use

in practice, and is reassuring in light of its perceived fairness (see Larson (1987)). The no

information beyond recommendation policy also conforms to standard practice in call centers

which put customers on hold, often with no information on their waiting times, unless they

are explicitly discouraged from waiting on line.12

The rest of the paper is organized as follows. Section 2 describes the model and formulates

the optimization problem facing the designer. Section 3 discusses the scope of applications

and relationships with some existing models. Section 4 solves the relaxed design problem and

(2020), Akbarpour, Combe, Hiller, Shimer, and Tercieux (2020), Baccara, Lee, and Yariv (2020), Doval

and Szentes (2018), and Ashlagi, Burq, Jaillet, and Manshadi (2019), among others. The primary focus of

this literature is the optimal timing of matching and assignment, rather than queueing incentives. None

of these papers consider information design or the incentives to stay in the queue, but they have elements

(e.g., preference heterogeneity) not present in our model. Hence, the current work should be viewed as

complementary to this literature.
10In a less related model, Ashlagi, Faidra, and Nikzad (2020) study optimal dynamic matching with

information design, showing that FCFS, together with an information disclosure scheme, can be used to

implement the optimal outcome. Although similar at first glance, their model is quite different from, and

not easily comparable to, ours. There are a continuum of agents in their model, and their information policy

pertains to the quality of good rather than to agents’ queue position. In particular, the virtue of FCFS in

regulating agents’ beliefs on where they stand in the queue is orthogonal to Ashlagi, Faidra, and Nikzad

(2020)’s insights.
11Within the queueing literature, the optimal design or control literature focuses on the ex ante choice of

the service and arrival process, which takes as given (see Shaler Stidham (2009) for a survey). Hence, one

can view the current work as complementing this literature.
12As we already pointed out, offices for social housing often provide applicants with very limited infor-

mation on their position in the list. In addition, these offices often close waiting lists when they are too

long.
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establishes the cutoff structure of the optimal mechanism. Section 5 shows that FCFS with

no information can attain the solution of the relaxed problem and is thus optimal. Section 6

show how other information policies or other queueing rules (even under no information)

such as SIRO are suboptimal. Section 7 show that FCFS with no information is the only

design that is optimal for all regular environments. Section 8 concludes.

2 Model and Preliminaries

We consider a general queueing model in which agents arrive sequentially at a queue to

receive a service. Time is continuous, with t ∈ R+.

Agents’ payoffs. There are three parties: a designer, who organizes resource allocation

including the queueing policy, a service provider who services agents, and agents who receive

service. As will be seen, the designer may be the service provider, a representative of the

agents, or a planner who reflects the welfare of both parties.

The agents are homogeneous in their preferences. Each agent enjoys a payoff of

U(t) , V − C · t,

if she receives service after waiting t ∈ R+ periods, where V > 0 is the net surplus from

service (possibly after paying a fixed service fee to the designer) and C > 0 is a per-period

cost of waiting. The service provider earns revenue R > 0 from each agent she services.13

The designer’s objective, which will be specified more fully below, is a weighted sum of the

service provider’s and agents’ payoffs. An agent’s outside option, which she collects when

not joining the queue or from exiting one, yields a payoff normalized to zero.

Primitive process. At each instant, given the number of agents in the queue, or queue

length, k ∈ Z+, an agent arrives at a Poisson rate of λk > 0 and an agent in a queue (if it is

nonempty) is served at a Poisson rate of µk > 0. Hence, a pair (λ, µ), where λ , {λk} and

µ , {µk}, specifies a primitive process. We assume that µk is uniformly bounded over k.

The state-contingent primitive process allows for a general class of environments that nests a

variety of settings of interest, including M/M/c queue models as well as dynamic matching

models, which are of growing interest within economics (see Section 3 for further details on

the scope of applications).

Designer’s policy. The designer has at her disposal a number of instruments. We focus

on an anonymous stationary Markovian policy that treats all agents identically based on a

13In many contexts, R may not take a monetary form but rather a shadow benefit of fulfilling a service

requirement (e.g., promised by an outsourced call center).
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couple of state variables: the queue length k and the queue position `, namely the arrival

order of an agent among those in a queue. The stationarity restriction means that the policy

does not depend on the calendar time.

The designer chooses a set of policies:

• entry rule x = {xk}, where xk ∈ [0, 1] is the probability with which an arriving agent

is asked to join a queue of length k. We let X denote the set of all entry rules.

• exit rule y = {yk,`}, where yk,` ≥ 0 is the Poisson rate at which an agent with

queue position ` is removed from a queue of length k. The exit rule y captures both

the explicit policy of diverting some agent away from a service pool, as has been

considered by Mandelbaum and Shimkin (2000), as well as the abandonment induced

by a queueing policy (to be described below). We let Y denote the set of all exit rules.

• queueing rule q = {qk,`}, where qk,` ≥ 0 is the Poisson rate at which an agent receives

service when the queue length is k and her position in the queue is `. Service capacity

is limited by the service rate µk, so any queueing rule must satisfy
∑k

`=1 qk,` = µk,

for all k. We let Q denote the set of all such feasible queueing rules. The set Q
is large enough to encompass all standard queueing disciplines, such as first-come-

first-served (FCFS), in which case qk,` , qF` for some qF` which depends only on

`; last-come-first-served (LCFS), in which case qk,` , qLk−` for some qLk−` which

depends only on k − `; service-in-random-order (SIRO), in which case qk,` , qSk
for some qSk which depends only on k. In fact, we can allow queueing rules to be fully

general, i.e., without limiting ourselves to those that depend only on (k, `); examples

include rules that allow service probabilities to vary with time and to depend on other

variables. However, our class entails no loss since the optimal rule in the general case

belongs to this class.

• information rule I = {It}t∈R+ , where It represents the information an agent has

about the state—i.e., the queue length k and her position `—after staying in the queue

for a duration t ≥ 0. Note that an information rule pertains to an agent who has just

arrived and is deciding whether to join the queue (in which case t = 0) as well as to

those who are already in the queue (t > 0). As is well-known, say from Kamenica

and Gentzkow (2011), the information It can be represented as the distribution of

“posterior beliefs” about (k, `) when recommended to join the queue (i.e., for t = 0)

and/or to stay in the queue (for t > 0), i.e., It ∈ ∆(∆(Z+×Z+)). The belief is a mean-

preserving spread of the true state, adapted to the filtration generated by the primitive

process (λ, µ) and a Markov policy (x, y, q). We let I denote the set of all information

rules. The set I is general enough to include all realistic information structures that

are feasible. Special cases are full information, in which case It coincides with the

distribution of the true state (k, `), and no information (beyond recommendations),
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in which case the conditional belief It is degenerate on the posterior obtained by the

Bayes updating via (x, y, q), from the prior beliefs I0. As with the queueing rule, given

the constructive nature of our result, we can allow the class of information structures

to be fully general, beyond those that refer to the beliefs on (k, `) over time.14 We

limit the class of information structures just for expositional ease.

Given the primitive process (λ, µ), a Markov policy (x, y, q) generates a Markov chain—

more specifically, a birth-and-death process—on the queue length k. Given (λ, µ), we only

consider Markov policies that induce a Markov chain with an invariant distribution. As is

well-known, the invariant distribution p , (p0, p1, .....p∞) is characterized by the following

balance equation:

λkxkpk = (µk+1 +
∑
`

yk+1,`)pk+1, ∀k ∈ supp(p) (B)

The LHS of the equation is the rate with which the queue length transits from k to k + 1:

with probability pk the queue length is k, in which case an agent arrives at rate λk and is

recommended to join the queue with probability xk. The balance equation (B) requires this

rate to equal the rate with which the queue length transits from k+ 1 to k, namely its RHS:

with probability pk+1 the queue length is k + 1, in which case an agent is served at rate

µk+1 or is removed with rate
∑

` yk+1,` from the queue. We say that an entry/exit policy

(x, y) ∈ X ×Y implements an invariant distribution p if (x, y, p) satisfies (B), and call such

a triple (x, y, p) an outcome.

Incentives. We assume that the designer may prevent an agent from joining the queue

and may also remove an agent from a queue, but that the designer cannot coerce an agent to

join the queue or to stay in a queue against her will. In this sense, the entry rule (specifying

if agents join the queue) and exit rule (specifying if agents stay in the queue) should be

regarded as a recommendation. In other words, when recommended to enter the queue or to

stay in the queue, an agent must have an incentive to obey that recommendation, given the

information available to her. For conceptual clarity, we describe this obedience constraint

indirectly through the expected waiting time induced by the policy. Suppose that our policy

(x, y, q) induces a state-contingent expected waiting time τ k,` ∈ R+, namely, the expected

number of periods an agent in state (k, `) must wait before she either receives the service

or is removed from the queue. Note that, given the linearity of preference in the waiting

time, only the expected waiting time is payoff relevant; all other aspects of the waiting time

distribution do not matter. The policy also induces the probability {Yk,`} of eventually being

removed from the queue before receiving service. Finally, the policy (x, y, q) together with

14For instance, the class of relevant information structures may include those that refer to beliefs about

the particular service probabilities at each public or even private history.
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information rule I induces posterior beliefs γt = {γtk,`} for an agent who is recommended to

join or to stay in the queue.

The obedience constraints require that any agent recommended to join the queue or to

stay in the queue must have an incentive to follow that recommendation:∑
k,`

γtk,` [V (1− Yk,`)− C · τ k,`] ≥ 0, ∀γt ∈ supp(It),∀t ≥ 0. (IC)

In the sequel, we refer to the incentive constraint for t by (ICt). We say that a queue-

ing/information policy (q, I) ∈ Q × I implements an outcome (x, y, p) if (IC) holds,

meaning the induced beliefs distributions and the exptected waiting times satisfy (ICt) for

all t ≥ 0. Even though we interpret an implemented outcome as resulting from the designer’s

policy choice, this is without loss, due to the revelation principle. Our model can capture any

equilibrium outcome, both regulated and unregulated. For instance, consider the textbook

unregulated and unobservable M/M/1 queue governed by FCFS, in which agents make their

entry decisions without any recommendation or any information about the queue length,

which is unobserved (see Hassin and Haviv (2012) for instance). It is an equilibrium for

an agent to enter the queue with some probability e ∈ (0, 1] and stay in the queue forever

once joining the queue.15 In our model, this corresponds to our entry policy of xk,` = e and

yk,` = 0, for all k, ` (along with FCFS and no information).

Problem statement. The designer’s objective is evaluated at the stationary distribution

p = (pk) of the Markov chain. It can be written as follows:

W (p) , (1− α)R
∞∑
k=1

pkµk + α
∞∑
k=1

pk(µkV − kC),

where α ∈ [0, 1]. The first term is the flow expected profit for the service provider: with

probability pk, the queue has k agents, and an agent is served at rate µk in that case,

generating a “profit” of R for a fulfilled service. In a customer service context, the profit

may not take the form of monetary fees collected from customers but rather the shadow

value of fulfilling a warranty service or more generally addressing any customer needs. The

second term is the flow expected utility for agents: again with probability pk, the queue has

k agents, each of whom pays flow holding/waiting cost of C (the second term), and an agent

is served at rate µk, in which case he receives a surplus of V (gross of the waiting cost). The

objective is a weighted sum of these two terms, with weight α ∈ [0, 1].

15 More specifically, if λ is sufficiently low (more precisely, if (µ − λ)V > C), then agents enter with

probability e = 1 (since, by Lemma S2 in the online appendix, (IR) holds when the queue length is infinite

if and only if (µ − λ)V > C). If not, then there exists a random entry probability e ∈ (0, 1) such that

if all agents adopt this mixing strategy, each agent becomes indifferent to entry, making it an equilibrium

behavior.
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The designer’s problem is to choose (p, x, y, q, I) ∈ ∆(Z+)×X × Y ×Q× I to

[P ] Maximize W (p)

subject to (B) and (IC),

where the expected waiting times {τ k,`} and exit rates {Yk,`} in (IC) are induced by

(p, x, y, q). In words, the designer picks the outcome that maximizes her objective among

those that are implementable by some queueing/information policy. While the entry/exit

policy (x, y) uniquely pins down the invariant distribution, we include p as part of a choice.

Let W denote the supremum of the value of program [P ].

3 Scope of Applications

Our model encompasses a variety of queueing and dynamic matching models considered by

the existing literature.

• M/M/1 queue model: This is the most canonical queueing model in which the arrival rate

λk and service rate µk do not depend on the queue length k. Naor (1969) and Hassin (1985)

investigate agents’ incentives to join the queue under FCFS and LCFS, respectively. Hassin

and Haviv (1995) consider “reneging,” or agents’ dynamic incentives to leave the queue,

when they face nonlinear holding costs in an unobservable and unregulated system operated

by FCFS. More recently, Simhon, Hayel, Starobinski, and Zhu (2016) and Lingenbrink and

Iyer (2019) study information design to manage agents’ incentive to join the queue, both

under FCFS queueing rule. While similar to these latter papers in considering information

design, our model is more general in several respects: the queueing environment (we allow

for state-dependent arrival and service rates), agents’ incentives (we consider their incentives

to stay in, not just to join, a queue), and queueing rules (we allow for fully general queueing

rules, not just FCFS).

• M/M/c queue model: This generalizes the M/M/1 queue model to allow for multiple

c ≥ 2 servers, each with exponential service time. As with M/M/1, the arrival rate is

independent of the queue length k, but the service rate is linear in the number of available

servers, so µk = min{k, c}µ. Haviv and Ritov (2001) extend Hassin and Haviv (1995)’s

inquiry about reneging incentives to the M/M/c setup.

• Team servicing model: Suppose there are m customers (or machines) each having a ser-

vicing need arising at an independent Poisson rate while operating (see Gnedenko and Ko-

valenko (1989), p. 42). There are c servers which can serve a customer at rate µ. When

there are k agents in the queue, the new arrival rate is λk = (m− k)λ and the service occurs

at rate µk = min{k, c}µ.

12



• Dynamic one-sided matching with stochastic compatibility: Suppose each agent is com-

patible with another agent with probability θ ∈ (0, 1]. In this model, an agent joins a queue

only when he arrives at some rate η and is incompatible with the agents already in the queue

(or else he matches and leaves the queue), which occurs with probability (1 − θ)k, and an

agent leaves the queue when he matches, which occurs with probability η(1− (1− θ)k). This

is a special case of our model in which λk = η(1− θ)k and µk = η(1− (1− θ)k). Doval and

Szentes (2018) consider such a model with p = 1 and study agents’ incentive to join a queue

under FCFS. Akbarpour, Li, and Gharan (2020) study the limit as θ ∈ (0, 1) tends to 0 but

the arrival rate increases. Their focus differs from ours; for instance, they do not consider

the incentive to join or stay in a queue, the queueing rule, or information design. Instead,

they study the benefit from thickening the market, which we do not consider.

• Dynamic two-sided matching with stochastic compatibility: Heterogeneous agents on one

side match with heterogeneous agents or objects (e.g., housing) on the other side. If the types

of the matched pair are compatible, then high surplus is realized; if not, a low surplus is

realized. The designer operates buffer queues for different types of agents or objects to keep

the agents waiting until a compatible match is found. Leshno (2019) and Baccara, Lee, and

Yariv (2020) consider such models. In these models, if one buffer queue is active, the other is

empty. Hence, the system can be analyzed as a one-dimensional Markov chain, and so it can

be embedded in our setting. Some of our results below rely on the system induced by a given

policy to exhibit birth and death processes. Indeed, this feature is satisfied under the optimal

policy under Baccara, Lee, and Yariv (2020) but not under Leshno (2019). Nevertheless, our

central results apply to the latter setup. Baccara, Lee, and Yariv (2020) consider optimal

matching policy under both FCFS and LCFS, whereas Leshno (2019) considers a general

class of queueing rules, and finds random queueing rules to be optimal. Both papers assume

complete information, i.e., neither considers information design. Again, the current paper

is differentiated by its consideration of broad incentive issues (i.e., the incentive to stay in,

not just to join, a queue) and a general class of queueing rules as well as information design.

The fact that we draw a different conclusion on the optimal queueing rule—namely, FCFS—

relative to Leshno (2019) is attributed to our ability to combine information design with the

choice of a queueing rule (see Section 8 for further discussion).

4 Optimality of the Cutoff Policy

The designer’s problem [P ] is in general difficult to solve. Instead, we are interested in the

relaxed problem facing the designer. Consider a linear program:

[P ′] max
p∈∆(Z+)

W (p)

13



subject to

∞∑
k=1

pk(µkV − kC) ≥ 0; (IR)

λkpk − µk+1pk+1 ≥ 0. (B′)

Here, the planner maximizes the designer’s objective subject only to the individual rationality

(IR) and a weakening (B′) of the balance equation (B).

It is clear that [P ′] is a relaxation of [P ]. First, (IR) must be implied by (IC). If the

former condition fails in a mechanism, the agents do not collectively break even. Then,

there must exist some agent and some belief induced by that mechanism such that the agent

with that belief would not wish to join a queue when called upon to do so. Hence, (IC)

would fail.16 Next, since the (xk, yk,`) are nonnegative, (B) implies (B′). Let W∗ denote the

supremum of the value of program [P ′]. Then, whenever W∗ <∞, we must have W∗ ≥ W .

The program [P ′] is interesting in its own right: it can be interpreted as the problem facing

a planner who chooses the invariant distribution p directly to maximize her objective, simply

facing the primitive process (λ, µ), but disregarding agents’ incentives altogether, except for

guaranteeing some minimal payoff for them. Ultimately, however, we are interested in [P ′] as

an analytical tool for characterizing an optimal queue design that solves [P ], since a solution

to this relaxed program [P ′] may be attained by a mix of policy tools (x, y, q, I).

Indeed, our ultimate goal is to prove such a policy mix exists, which will then imply that

it optimally solves [P ], the real objective of interest. The analysis will involve demonstrating

three claims: (i) an optimal solution p∗ to [P ′] exists, (ii) there exists an entry/exit policy

(x∗, y∗) that implements p∗; namely, the associated outcome (x∗, y∗, p∗) satisfies (B); and

(iii) there exists a queueing/information policy (q∗, I∗) that implements the optimal out-

come (x∗, y∗, p∗), meaning (x∗, y∗, p∗, q∗, I∗) satisfies (IC). The remainder of this section will

address (i) and (ii), while claim (iii) will be taken up in the next section.

With respect to (ii), we establish not only that the optimal p∗ is well-defined and can be

implemented by some entry/exit policy (x∗, y∗), but also that, under a very mild condition

16This can be shown more precisely. Fix any (x, y, p, q, I) that satisfies (IC0). Aggregating (IC0) across

all beliefs γ0 ∈ supp(I0), we get∫
γ0∈supp(I0)

∑
k,`

γ0k,`[V (1− Yk,`)− Cτk,`]I0(dγ0) ≥ 0.

Clearly, the ex ante probability of receiving service,
∫
γ0∈supp(I0)

∑
k,` γ

0
k,`(1 − Yk,`)I0(dγ0), equals∑

k pkµk/[
∑
k pkλkxk]—the average rate of receiving service divided by the average rate of entering the

queue at p. Next, by Little’s law, the ex ante expected waiting time,
∫
γ0∈supp(I0)

∑
k,` γ

0
k,`τk,`I0(dγ0), equals∑

k pkk/[
∑
k pkλkxk]—the average queue length divided by the average entry rate. Subsituting these two

expressions and simplifying the terms, the above inequality implies (IR).
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on (λ, µ), (x∗, y∗) takes a particularly intuitive form:

Definition 1. An entry/exit policy (x, y) is a cutoff policy if there exists K ∈ Z+∪{+∞}
such that xk = 1 for all k = 0, 1, ..., K − 2, xK−1 ∈ (0, 1], and xk = 0 for all k ≥ K and that

yk,` = 0 for all k, `.

In words, under a cutoff policy p, the designer sets a maximum queue length K and

recommends an arriving agent to join a queue as long as k ≤ K − 1 and recommends those

who join the queue to stay in the queue (i.e., never to exit) until they are served. In other

words, no agent is diverted away or induced to abandon his queue, once he has joined it. It

is possible that xK−1 ∈ (0, 1) in which case the K-th entrant may be randomly rationed.17

Although a cutoff policy seems natural, it may not arise without policy intervention. For

instance, the aforementioned unregulated/unobservable M/M/1 queue (governed by FCFS)

will not exhibit a cutoff structure if agents randomize on entry with an interior probability

e ∈ (0, 1).18

Observe that an invariant distribution p is implemented by a cutoff policy (x, y) with

maximal length K (potentially infinite) if and only if supp(p) = {0, ..., K} and (B′) binds for

all k = 0, ..., K − 2 and holds for k = K − 1 (with weak inequality). It is this latter feature

that we will establish below. To this end, we define a condition.

Definition 2. The service process µ = {µk} is regular if (i) µk is nondecreasing in k and

(ii) µk − µk−1 is nonincreasing in k.

Regularity of the service process is very mild. In fact, condition (i) follows from a simple

optimality axiom: the maximal service rate µk facing k agents must be no less than the

maximal service rate µk−1 facing k − 1 agents, since the service provider can simply ignore

one agent. Condition (ii) is less obvious but also very reasonable; in fact, without (ii), FCFS

is not well defined, as will be seen later (see Lemma 1). For instance, in an M/M/1 queue,

both λk and µk are constant, trivially satisfying both conditions. In an M/M/c queue,

λk is constant in k and µk = min{k, c}µ satisfies (i) and (ii). Likewise, with the random

compatibility model, λk = η(1−θ)k and µk = η(1− (1−θ)k), and so (i) and (ii) are satisfied.

Our characterization follows:

Theorem 1. An optimal solution of [P ′] exists. If µ is regular, there is an optimal solution

of [P ′] implemented by a cutoff policy with maximal queue length K∗ ≥ arg maxk µkV −kC.

17 While we assume yk = 0 for all k, this is just a convenient normalization. If xK−1 ∈ (0, 1) in a cutoff

policy, the same p∗ can be implemented by any (x′, y′) such that x′K−1 =
µK+

∑
` y
′
K,`

µK
xK−1; see (B). In this

sense, the reader should interpret the cutoff policy as an equivalence class involving a set of such pairs. This

means that while it is unnecessary to induce an agent to exit from a queue after he joins it, doing so when

the queue is full is consistent with a cutoff policy if xK−1 ∈ (0, 1). In other words, encouraging a customer

to come back later is not at odds with a cutoff policy.
18Recall from Footnote 15 that such a mixing is an equilibrium if (µ− λ)V < C.
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Proof. See Appendix A.

The intuition behind the result is most clear when the coefficient on pk in the objective

as well as in (IR) is decreasing in k ≥ 1—this occurs, for instance, if µk is constant in k

as in the M/M/1 queue model. In this case, one can increase the value of the objective

and relax (IR) by shifting probability mass pk toward lower values of k in the sense of

first-order stochastic dominance while keeping constant the mass at state 0.19,20 The simple

intuition is that adding an agent when the queue is long entails more wait (for agents

collectively) than when the queue is short. This logic suggests that the mixing equilibrium

in the aforementioned unregulated/unobserved M/M/1 queue is suboptimal for any α.21

The agents will be collectively better off if agents are encouraged to enter fully if k < K∗

but never if k > K∗, for some K∗. In short, a cutoff policy is optimal.

To show this for a general “regular” service process, we use the fact that the coefficient

f(k) , µk((1 − α)R + (α + ξ)V ) − (α + ξ)ck of pk in the Lagrangian function, for any

Lagrangian multiplier ξ ≥ 0 for (IR), is single-peaked when µk is regular: namely, f is

increasing when k < k∗, is constant when k∗ ≤ k ≤ k∗∗, and is decreasing when k > k∗∗,

where k∗ and k∗∗ are possibly zero or infinite, in which case f is monotonic. The single

peakedness of f means that on the increasing region, one would like to put the greatest

possible mass on a higher k within that region—a goal that is accomplished by binding (B′)

for k in that region. For k in the decreasing region, the intuition provided above applies.

The proof requires some care since the Lagrangian method may not be valid in an infinite

dimensional LP. Our approach follows several steps. First, we consider a finite K-dimensional

LP—one in which pk = 0 for all k > K—and prove by using the Lagrangian method that its

optimal solution pK = (pK0 , ..., p
K
K) exhibits a cutoff policy. Second, we show that an optimal

solution p = (p0, ..., p∞) to [P ′] exists. This follows from the observation that the set of p’s

satisfying (IR) is closed and its elements have a vanishing tail sum so that the feasible set

of solutions is “tight” and therefore sequentially compact, by Prokhorov’s theorem. This,

together with the upper semi-continuity of the objective, gives us the existence of an optimal

solution. Third, the same observation means that the value of K-truncation of p, pK ,

19 Note that this does not mean that reducing the queue length all the way down to zero is desirable,

for the value of objective is zero at k = 0. Maintaining a nonzero queue length is desirable from the pure

efficiency standpoint. If the queue length is too low, there is a risk of server(s) going idle and wasted (which

happens when the agents in the queue are served in a row without a new arrival). However, the decreasing

value of objective means that the benefit from reducing this risk decreases as more agents are added to the

queue.
20 The only remaining issue then is that the LP, which is infinite dimensional, admits an optimal solution.

The space of p’s satisfying (IR) and with a cutoff structure is “tight” and is thus sequentially compact by

the Prokhorov’s theorem. Lingenbrink and Iyer (2019) uses this method to arrive at a similar conclusion.

However, this simple approach does not work for our theorem due to the greater generality.
21As is seen from Lemma S2 in the online appendix, the mixing occurs in equilibrium if (µ − λ)V < C

since in that case (IR) is violated if the queue length is infinite.
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(p0, ..., pK), which is feasible for [P ′], converges to W∗ as K →∞. Fourth, by definition, pK

attains a weakly higher value than pK , so its limit p∗ as K → ∞ attains W∗. Finally, the

set of feasible p exhibiting a cutoff policy is closed, so the limit p∗, which is optimal, retains

the cutoff structure.

It is possible that the optimal cutoff policy may have K∗ =∞. In that case, it is optimal

for agents to enter into the queue irrespective of its size and no agent is ever induced to

abandon the queue; an unregulated queue would then implement this optimal outcome (if

it is incentive compatible—an issue we address in the next section). However, we next show

that this possibility is somewhat limited.

Proposition 1. Assume µ is regular. If α > 0, then the optimal cutoff policy has a

queue length K∗ < ∞. If α = 0, the optimal cutoff policy has K∗ < ∞ if and only if∑∞
k=1

∏k
`=1

λ`−1

µ`
[µkV − Ck] < 0. If the latter condition holds, then (IR) binds if α > 0 is

sufficiently small or if α < 1 and R is sufficiently large. Finally, if (IR) binds, then generically

x∗K∗−1 ∈ (0, 1).22

Proof. See Appendix B.

The optimality of a finite queue length is not surprising when α > 0: an arbitrarily long

queue would entail an arbitrarily large marginal loss on the designer’s objective, so reducing

the length will improve the objective without violating (IR). If α = 0, so the designer

maximizes the service provider’s profit, then K∗ = ∞ is possible as long as (IR) is not

violated. The latter requires the arrival rate to be sufficiently small relative to the service

rate and for C to be sufficiently small relative to V . For instance, in the M/M/1 model,

K∗ =∞ if and only if (µ− λ)V ≥ C (see Corollary S1 in the online appendix).

The last result implies that, while randomizing on the entry or exit of an agent is never

optimal for k < K∗− 1, it is generically optimal for the threshold state K∗− 1 when (IR) is

binding. While this may be surprising at first glance, it follows from the binding (IR) and

the use of a cutoff policy.23

5 Optimality of FCFS with No Information

In this section, we establish the general optimality of FCFS with minimal information.

Assume that the service rate is regular. Then, by Theorem 1, the optimal solution p∗ to [P ′]

is implemented by a cutoff policy (x∗, y∗) with a maximal queue length K∗ ∈ Z+ ∪ {+∞}.
22The expression “generically” means that

∑K
k=1

∏k
`=1

λ`−1

µ`
[µkV − Ck] 6= 0, for all K ∈ Z+ ∪ {∞}.

23 The use of a cutoff policy means (B′) is binding for all k = 0, ...,K∗−2, which pins down p∗k = 1, ...,K∗−1,

once p∗0 is determined. Hence, the fact that (IR) holds with equality together with the fact that the p∗k’s sum

to one requires randomization at k = K∗ − 1, except in a knife-edge case. The arguments in Appendix B

provide a precise characterization for the rationing rule together with p∗ = (p∗k).
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Recall that the optimal cutoff policy may involve random entry at k = K∗ − 1; we let

x∗K∗−1 ∈ (0, 1] denote the optimal randomization at k = K∗ − 1. To avoid the trivial case,

we assume that K∗ > 1.

In the sequel, we fix the optimal outcome (x∗, y∗, p∗) and K∗ > 1 the maximal queue

length. We will show that FCFS, together with an optimal information design, implements

(x∗, y∗, p∗); namely, (IC) holds under that policy. Since [P ′] is a relaxation of [P ], this will

prove that the identified policy mix solves [P ].

First, we formally define FCFS as follows:

Definition 3. A queueing rule is first-come-first-served (FCFS) if, for each ` = 1, ..., K,

there exists q∗` such that qk,` = q∗` for all k ≥ `.

In other words, under the FCFS queueing rule, the probability that an agent is served/matched

depends only on his queue position, namely the number of agents who arrived before that

agent and are still in the queue. Recall the feasibility requirement
∑k

`=1 qk,` = µk for all k,

which now simplifies to
∑k

`=1 q
∗
` = µk, for each k = 1, ..., K∗. This pins down the service

probability:

q∗` = µ` − µ`−1,∀` = 1, ..., K∗,

where µ0 ≡ 0. Part (ii) of the regularity condition then implies that q∗i ≥ q∗j if i ≤ j, which

captures the intuitive property that an agent with a low-numbered position, i.e., one who

arrived earlier, has a higher chance of being served than an agent with a higher-numbered

position, i.e., one who arrived later. It is useful to consider a few examples. In the M/M/1

queue model, µk = µ for all k ≥ 1, for some µ > 0. In this case, q∗1 = µ and q∗` = 0 for all

` > 1, so only the agent at the top position can be served at any time. In the M/M/c queue

model, there are c > 1 servers, so µk = min{c, k}µ for all k ≥ 1, for some µ > 0. In this

case, q∗` = µ for all ` ≤ c, and q∗` = 0 for all ` > c, so agents with queue positions no greater

than the number of servers can be served at any time. Under the dynamic matching model

with stochastic compatibility, we have q∗` = η(1− θ)`−1θ, which is clearly decreasing in `.

Naturally, under FCFS, the expected waiting time depends only on one’s queue position

`, so we use τ ∗` to denote the expected waiting time for an agent with queue position `. Given

the primitives, this can be pinned down exactly.

Lemma 1. For any ` = 1, ..., K∗, τ ∗` = `/µ`. Given the regularity of µ, τ ∗` is nondecreasing

in `. If 2µ1 > µ2, then τ ∗` is strictly increasing in `.

Proof. See Appendix C.1

We next introduce the information rule I∗, wherein no information is provided to each

agent both at the time of joining the queue and after joining the queue, beyond what he

can infer from the recommendations to join or stay in the queue. This means that when

he joins at time t = 0, he holds his prior belief on his position ` based on the underlying
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invariant distribution. From then on, he updates the belief on his queue position at each

t > 0 according to Bayes rule without any further information.

Given the queueing and information rules (q∗, I∗), the incentive constraint at time t is

given by

(ICt) V − C
K∗∑
`=1

γ̃t` · τ ∗` ≥ 0,

where γ̃t = (γ̃t1, ...., γ̃
t
K∗) ∈ ∆({1, ..., K∗}) is the belief on his position in the queue after

spending time t on the queue. Since the expected waiting time depends only on one’s

position, the belief on other variables such as the queue length k does not affect the agent’s

incentive to join or stay in the queue.

Given the information rule I∗, the belief at the time of joining the queue must be:

γ̃0
` =

{
p`−1λ̃`−1∑K∗−1
i=0 piλ̃i

if ` = 1, ..., K∗

0 if ` > K∗,
(1)

where λ̃k is an “effective” arrival rate given by: λ̃k , λk for k = 0, ..., K∗ − 2, and

λ̃K∗−1 , x∗K∗−1λK∗−1. This corresponds to the probability of being at position ` condi-

tional on entering the queue. Its numerator is the probability that an agent joins the queue

in state `−1, which is the probability of the state being `−1 (i.e., that there are `−1 agents

already in the queue) multiplied by the probability of entry per unit time in that state λ̃`−1.

Its denominator is the total probability of entering the queue per unit time.

The next lemma observes that the candidate policy (q∗, I∗) provides the agents with

incentives enter the queue:

Lemma 2. The queueing/information policy (q∗, I∗) satisfies (IC0).

Proof. See Appendix C.2.

In order to ensure (ICt) holds under (q∗, I∗) for each t > 0, we need to understand how

an agent’s belief evolves once he joins the queue. Since the optimal queue requires that

no agent abandon the queue, (ICt) requires that agents’ beliefs about their queue positions

should become (at least weakly) more favorable as time passes.

Suppose that an agent has belief γ̃t after spending time t ≥ 0 in the queue. At time

t+ dt, by Bayes rule, his belief is updated to:

γ̃t+dt` =
γ̃t`(1−

∑`
i=1 q

∗
i dt) + γ̃t`+1

∑`
i=1 q

∗
i dt∑K∗

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt).

The numerator is the probability that his queue position is ` after staying in the queue for

length t + dt of time. This event occurs if either (i) the agent already has position ` in
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the queue at time t and none of them, including himself, are served during time increment

dt; or (ii) if he has position ` + 1 at t and one agent ahead of him is served by t + dt.

The denominator in turn gives the probability that the agent has not been served by time

t. Hence, given that an agent has not been served by t, the above expression gives the

conditional belief that his position in the queue is ` at time t+ dt.

We can use the feasibility requirement
∑`

i=0 q
∗
i = µ` to rewrite the belief updating rule

as follows:

γ̃t+dt` =
(1− µ`dt)γ̃t` + µ`dtγ̃

t
`+1∑K∗

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt). (2)

We now study how the belief updates dynamically over time under (q∗, I∗). The statistic

we focus on is the likelihood ratio rt` ,
γ̃t`
γ̃t`−1

of beliefs about being in queue position `

versus being in queue position `− 1 after spending time t on the queue. One can use (2) to

derive a system of ordinary differential equations (ODEs) on the likelihood ratios:

ṙt` = rt`
(
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

)
,

where ` = 2, ..., K∗. Further, the invariant distribution p∗ can be used to obtain the boundary

conditions, r0
` = λ̃`−1

µ`−1
, for ` = 2, ..., K∗, where λ̃k is an effective arrival rate: λ̃k , λk for

k < K∗ − 1 and λ̃K∗−1 , x∗K∗−1λK∗−1. Appendix C.3 derives this system of ODEs and

establishes existence of a unique solution.

We provide a condition under which these likelihood ratios—the solution to the above

ODEs—decline over time, meaning one’s belief about his position becomes progressively

favorable under (q∗, I∗). At first glance, this seems obvious under FCFS since, starting at

any position ` at time t = 0, an agent’s queue position can only improve as time passes.

Yet, this is not the only event about which the agent updates his beliefs. The agent is also

updating his belief about his initial position `. The elapse of time without being served is

“bad” news in this regard, as it suggests that he may have been too optimistic about his

position initially, causing him to revise his initial queue position pessimistically.

Indeed, the bottom curve in the graph of Figure 1 (which assumes an M/M/1 queue with

K∗ = 2) shows that one’s belief that his initial queue position was ` = 1 falls over time.24

The difference between the top and bottom curves in the graph of Figure 1 is explained by

24More precisely, the bottom graph plots

Pr{` = 1 at t = 0| not served by t} =
γ̃01e
−µt

γ̃01e
−µt + γ̃02(2e−µt − e−2µt)

,

where γ̃01e
−µt is the joint probability that the queue was empty when he joined it and he is not served by

time t, and γ̃02(2e−µt − e−2µt) is the probability that the queue had one agent when he joined it and he is

not served by t.
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Figure 1: Belief about position ` = 1

Note: M/M/1 with K∗ = 2; λ = µ = 1.

a growing belief that an initial position of ` = 2 has moved up to ` = 1. One can see that

this latter “position-improvement” effect dominates the worsening posterior about the initial

position, resulting in an overall improvement in the belief, shown by the top curve.

In fact, this result holds generally under a mild condition:

Definition 4. The primitive process (λ, µ) is regular if the service process µ is regular and

if λk − λk−1 ≤ µk − µk−1 for each k ≥ 1.

In all examples of Section 3, λk is either constant or decreasing, so the regularity of µ

implies that (λ, µ) is regular. The next lemma provides the key result:

Lemma 3. Assume that the primitive process (λ, µ) is regular. Then, for all ` ∈ {2, ..., K∗},
rt` is nonincreasing in t for all t ≥ 0.

Proof. See Appendix C.3.

Hassin and Haviv (1995) and Haviv and Ritov (2001) establish a similar result; they

show that, given FCFS, an agent’s waiting time exhibits an increasing failure rate (so his

waiting is increasingly likely to stop) over time under the unregulated M/M/1 and M/M/c

queue models, respectively. This result arises primarily from agents’ employing a strategy

of queueing only for a finite time in these models, which is in turn a rational response to

the nonlinear waiting cost (i.e., “a deadline” effect).25 No such nonlinear waiting costs are

25Without the nonlinear waiting costs, one can show that in an unregulated/unosbservable M/M/1 queue
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assumed in our model. Instead, our current result arises under the optimal cutoff strategy,

and under a general birth-death process, not just M/M/1 or M/M/c. Our proof method also

differs from the standard argument, which focuses on establishing an increasing hazard rate

of the service commencement. Our argument instead focuses on how agents’ beliefs evolve

over time, given a general birth-and-death process. This approach has some advantages.

It reveals competing forces in the belief updating. For instance, if, contrary to regularity,

λk − λk−1 > µk − µk−1 for all k, then a delay is more of a signal about the initial queue

length being long than about predecessors have been served, so the pessimistic updating

about the initial position may dominate the optimistic updating about a shrinking queue.

In that case, agents may renege immediately after joining the queue, causing (ICt) to fail

for a small t > 0.

We are now in a position to prove the following theorem.

Theorem 2. Assume that the primitive process is regular. Then, FCFS with no information

(q∗, I∗) implements the optimal outcome (x∗, y∗, p∗). Consequently, (x∗, y∗, p∗, q∗, I∗) is an

optimal solution of [P ].

Proof. It suffices to prove that (ICt) holds for all t ≥ 0. Note first that, by Lemma 2, (IC0)

holds. Next consider (ICt) for any t > 0. Lemma 3 proves that rt` ≤ r0
` for each `. Since τ ∗`

is nondecreasing in ` by Lemma 1, this means that

K∗∑
`=1

γ̃t` · τ ∗` ≤
K∗∑
`=1

γ̃0
` · τ ∗` ,

so we have

V − C
K∗∑
`=1

γ̃t` · τ ∗` ≥ V − C
K∗∑
`=1

γ̃0
` · τ ∗` ≥ 0,

where the last inequality follows from (IC0). Hence, (ICt) holds for any t > 0.

We make two remarks. First, the above result relies on the designer’s ability to stop an

agent from entering a queue. While the designer does have such a power in many settings,

the power is unnecessary if V µK∗ ≤ CK∗, which holds for instance if (IR) is binding at the

optimal outcome. In that case, the designer can simply issue a “recommendation” not to

enter (when k = K∗), and the agent will obey that recommendation.26 Second, FCFS with

no information does not just implement the optimal outcome, but it can also implement any

outcome (x, y, p) satisfying (IR) and (B) in which xk is nonincreasing in k and yk,` = 0 for

(that the former paper considers), beliefs about one’s queue position stays constant over time. This means

that the “good” news one gets from the elapse of time about position improvement precisely cancels out the

“bad” news he gets about the initial queue position!
26Given the length K∗ (which the agent infers from the recommendation not to enter), he expects to wait

for τ∗K∗ = K∗/µK∗ (recall Lemma 1).

22



each `, k. Essentially, such an outcome guarantees the regularity of the “effective” processes

(λ̃, µ), where λ̃k , xkλk, which allows Theorem 2 to apply.27

6 Other Common Queue Designs

Theorem 2 shows that under a mild condition, namely the regularity of the primitive pro-

cess, FCFS with no information is optimal. This leaves open the possibility that other

queue designs may also be optimal in some situations. To see this, suppose for instance

α = 1 so that the designer maximizes the welfare of the agents. Then, we can show that

Naor (1969)’s classic result (obtained for the M/M/1 queue) generalizes to our more general

Markov process: agents would have excess incentives to queue under FCFS with full infor-

mation.28 Since our designer can simply stop excessive queueing, this means that FCFS,

and similarly SIRO, with full information, denoted IFI , can be used to attain optimum. Of

course, no information, which is optimal, would have also worked in that case. In fact, one

can show that, with no information I∗, agents will always have the incentives under the

optimal cutoff policy regardless of the queue discipline.

Proposition 2. Suppose first α = 1 and µ is regular. Then, FCFS or SIRO with full

information, (q∗, IFI), implements the optimal cutoff outcome (x∗, y∗, p∗). Next, fix any

α ∈ [0, 1] and the optimal cutoff outcome (x∗, y∗, p∗). Then, the no information policy I∗

satisfies (IC0) under any feasible queueing rule q.

Proof. See Appendix D.1.

The second result establishes the equivalence of alternative queueing rules under no in-

formation, in terms of agents’ incentives to enter a queue (but not necessarily in terms of

their incentive to stay in the queue). The intuition behind this result is simple. Given no

information, agents’ incentives to join a queue depends only on the expected waiting time

they anticipate when they join. By Little’s law, the expected waiting time does not depend

on the queueing rule and, by (IR), the waiting time is short enough for entry to be profitable.

This result suggests that, given no information, alternative queueing rules could matter only

because of the dynamic incentives they generate, namely, their incentives to stay after they

have joined the queue.

Indeed, despite this positive result for some queue designs, we will show more generally

that commonly-used queue designs that differ from our optimal design are often suboptimal

in many situations. We first show that “no information” is indispensable for optimality when

(IR) binds.

27Appendix C.3 provides the argument to extend Lemma 3.
28This generalization, which could be of independent interest, is shown in Appendix D.1.
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Proposition 3. Suppose next (IR) binds at (x∗, y∗, p∗) and the information rule I ∈ I
induces a non-degenerate distribution of beliefs at t = 0 leading to distinct expected waiting

times. Then, for any q ∈ Q, (q, I) fails (IC) at t = 0 and cannot implement the optimal

policy.

Proof. See Appendix D.2.

We now study specific queue designs in detail. In the sequel, we will focus on situations in

which incentive problems are most demanding, namely when (IR) is binding at the optimal

cutoff policy that solves [P ′]. As noted in Proposition 1, this is the case when α is sufficiently

small or when α < 1 and R is sufficiently large. In that case, the optimal cutoff policy involves

a finite cap K∗ <∞. From now on, we fix such an optimal outcome (x∗, y∗, p∗).

6.1 FCFS with Information.

We know from Lemma 1 that the expected waiting time is k/µk for an agent if he joins a

queue of length k− 1 under FCFS. The hypothesis of the second part of Proposition 3—the

one leading to the suboptimality of providing information—will be met if 1/µ1 < K∗/µK∗

and the queue length is fully observable or if 1/µ1 < 2/µ2 and the information rule admits

signals that are ordered in first-order stochastic dominance (FOSD).29 Examples of the latter

information design include scenarios in which customers are told estimated waiting times or

some information about the number of customers ahead of them.

Corollary 1 (FCFS with Information). If 1/µ1 < K∗/µK∗ then FCFS with full information

cannot implement the cutoff policy. If 1/µ1 < 2/µ2 and the information rule I admits

γ, γ′ ∈ supp(I0), where γ′ 6= γ are ordered in FOSD, then FCFS with I cannot implement

the optimal policy.

Proof. If 1/µ1 < K∗/µK∗ , then, under full information, the expected waiting time when the

initial queue has nobody ahead of the agent and the expected waiting when the initial queue

has K∗ − 1 agents ahead of him are distinct, so the result follows from Proposition 3. Next,

if 1/µ1 < 2/µ2, then the expected waiting time k/µk is strictly increasing in the initial queue

position k, by Lemma 1. If the information rule I admits two distinct beliefs at t = 0 ordered

in FOSD, then the associated expected waiting times are distinct, so the result again follows

from Proposition 3.

6.2 SIRO

In SIRO, agents are served with equal probability up to the service capacity. Specifically,

under SIRO, each agent in a queue is served at rate qk,` = µk/k, regardless of his queue

29Two beliefs, γ and γ′ are ordered in FOSD if
∑k
i=1 γ

′
j ≤

∑k
i=1 γj for all k = 1, ...,K∗, or vice versa.
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position ` ≤ k. The expected waiting time can then be characterized as a function of the

current length of the queue.

Lemma 4. (Waiting time under SIRO) Let τ k be the expected waiting time under SIRO

for an agent who enters a queue with k−1 agents. The tuple τ = (τ 1, ..., τK∗) is well defined

and τ k is nondecreasing in k. Further, τ 1 ≥ 1/µ1 and τK∗ ≤ K∗/µK∗ . If 1/µ1 < K∗/µK∗ ,

then τ 1 < τK∗ . If 1/µ1 < 2/µ2, then τ k is strictly increasing in k.

Proof. See Appendix D.3.

� SIRO with information. Lemma 4 enables us to produce the same corollary for SIRO

as for FCFS, suggesting that providing agents with nontrivial information about the queue

length is generally suboptimal.

Corollary 2 (SIRO with information). If 1/µ1 < K∗/µK∗ then SIRO with full information

cannot implement the cutoff policy. If 1/µ1 < 2/µ2 and information rule I admits γ, γ′ ∈
supp(I0), where γ′ 6= γ are ordered in FOSD, then SIRO with I cannot implement the

optimal policy.

Proof. The arguments are analogous to the proof of Corollary 1, upon using Lemma 4.

� SIRO with no information. We next consider SIRO when no information is provided

to agents beyond the recommendations to join the queue or to stay in it. To investigate

the implementability of the optimal outcome with this queue/information design, we must

examine the dynamic evolution of agents’ beliefs conditional on staying in the queue, again

characterized via a system of ODEs (see Appendix D.4).

Proposition 4 (SIRO with no information). Assume the service process is regular, 1/µ1 <

K∗/µK∗ , and λk

(
1− µk+1

µk

k
k+1

)
is strictly decreasing in k for k = 2, ..., K∗ − 1. Then,

SIRO cannot implement the optimal cutoff policy under no information—hence under any

information policy.

Proof. See Appendix D.4.

One can see that the conditions of Proposition 4 hold in the most canonical setting:

Corollary 3. SIRO with no information cannot implement the optimal cutoff policy in the

M/M/1 queue.

Proof. In the M/M/1 queue, µk = µ and λk = λ for all k, for some µ, λ > 0. Hence,

1/µ < K∗/µ for K∗ > 1. Further, λk

(
1− µk+1

µk

k
k+1

)
= λ 1

k+1
, which is strictly decreasing in

k. Hence, the result follows from Proposition 4.
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7 Necessity of FCFS for Optimality in a Rich Domain

In principle, there can be other queue designs. Although unobserved in practice, queueing

disciplines such as LCFS and LIEW (Load Independent Expected Wait) have been studied

in the literature. Instead of studying these queueing disciplines separately, we consider all

feasible queueing disciplines and all (regular) environments and show that FCFS is the only

queueing rule that is optimal for all (regular) queueing environments. In other words, for

any queueing discipline differing from FCFS, there is a (regular) environment in which it

cannot implement the optimal cutoff policy solving [P ′] under any information policy. This

will prove the necessity of FCFS to implement the solution of [P ′] in a rich domain.

Since we have already established that FCFS with no information can implement the

solution of [P ′] in any regular environment, it suffices to show that for each discipline differing

from FCFS, there exists some regular environment under which that mechanism cannot

implement the optimal cutoff policy. To this end, we focus on a M/M/1 queue environment

in which (i) the optimal cutoff policy involves the maximal length K∗ = 2, (ii) no rationing

at k = 1 (i.e., x∗1 = 1), and (iii) (IR) is binding at the optimal cutoff policy that solves [P ′].30

Given K∗ = 2, a queue discipline matters only when there are two agents in the queue.

In that case, let π denote the probability that the first agent receives first priority, or equiva-

lently, that newly arrived agents receive second priority. Then, a newly arrived agent receives

first priority with probability 1− π. Clearly, FCFS corresponds to π = 1, SIRO corresponds

to π = 1/2, and LCFS corresponds to π = 0. LIEW is designed to ensure that an agent

faces the same expected waiting time when he joins the queue regardless of the current queue

length. It will be seen that π = λ
2λ+p

∈ (0, 1/2) implements this rule. It is not difficult to

see that any feasible Markovian queueing discipline is characterized fully by parameter π.

Fix any π ∈ [0, 1]. There are only three relevant “states,” (k, `) = (1, 1), (2, 1), (2, 2),

based on the length k of the queue and one’s service priority `. Let τ 1,1, τ 2,1 and τ 2,2 denote

the expected waiting times for an agent, when he is the only one in the queue, when he

has first priority among two agents, and when he has second priority among two agents,

respectively. The expected waiting time τ 1,1 must satisfy:

τ 1,1 = (µdt)dt+ λdt(dt+ πτ 2,1 + (1− π)τ 2,2) + (1− λdt− µdt)(dt+ τ 1,1) + o(dt),

since, for a small time increment dt, the sole agent in the queue waits for time dt if he is

served during that period (which occurs with probability µdt), for dt+ πτ 2,1 + (1− π)τ 2,2 if

another agent arrives (which occurs with probability λdt), and for dt + τ 1,1 if neither event

arises (which occurs with probability 1− λdt− µdt). Similar reasoning yields:

τ 2,1 = (µdt)dt+ (1− µdt)(dt+ τ 1,1) + o(dt)

τ 2,2 = (µdt)(dt+ τ 1,1) + (1− µdt)(dt+ τ 2,2) + o(dt).

30This is the uniquely optimal policy if V/C = 2λ+µ
(λ+µ)µ and α = 0.
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Letting dt→ 0 and simplifying, we obtain:

τ 1,1 =
µ+ λ

µ(µ+ λπ)
, τ 2,1 =

1

µ
, τ 2,2 =

µ+ λ

µ(µ+ λπ)
+

1

µ
. (3)

One can see that

τ 2,1 ≤ τ 1,1 < τ 2,2.

The intuition for the first inequality, which holds with equality only when π = 1 (i.e., FCFS),

is that an agent who has service priority in a k = 2 queue never loses that priority until he

is served (since there is no more entry), whereas an agent in a k = 1 queue may lose his

priority if somebody else enters the queue before he is served.

When an agent enters a k = 1 queue, he expects to wait for πτ 2,2 + (1−π)τ 2,1. When he

enters an empty queue, then he expects to wait for τ 1,1. It is intuitive, and one can easily

confirm, that πτ 2,2 + (1− π)τ 2,1 > τ 1,1 under FCFS (i.e., when π = 1) and under SIRO (i.e.,

when π = 1/2). It is also intuitive that the opposite is true, namely πτ 2,2 +(1−π)τ 2,1 < τ 1,1,

under LCFS (i.e., when π = 0). Equalizing the two waiting times gives rise to LIEW, or

π = λ
2λ+µ

∈ (0, 1/2).

We now consider the information policy that provides no information (beyond the rec-

ommendations) for all t ≥ 0. This is without loss since, if a queueing rule π fails (ICt), for

some t ≥ 0, under no information, it would fails (ICt) under any information policy. For our

purposes, we study the evolution of an agent’s beliefs γt = (γt1,1, γ
t
2,1, γ

t
2,2) on the relevant

state (k, `) over time, where k = 1, 2, ` ≤ k. Under no information, there is a unique belief

γt in supp(It) at each t ≥ 0. Of particular interest is the expected waiting time conditional

on having waited for t ≥ 0 in the queue:

ω(t) = γt1,1τ 1,1 + γt2,1τ 2,1 + γt2,2τ 2,2.

Although suppressed for notational ease, both γt = (γt1,1, γ
t
2,1, γ

t
2,2) and τ = (τ 1,1, τ 2,1, τ 2,2)

depend on π.

The next result provides a crucial characterization:

Proposition 5. If π < µ+λ
µ+2λ

, then there exists t > 0 such that ω(t) > ω(0), and π fails (ICt)

under no information (again under the assmption that (IR) binds at the optimal cutoff

policy).

Proof. See Appendix E.

Figure 2 illustrates expected waiting times under different values of π corresponding to

LCFS, LIEW, SIRO, and FCFS. As is clearly seen, as time passes an agent in the queue

expects to wait increasingly more under the first three rules and increasingly less under

FCFS.
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Figure 2: Expected waiting times under alternative values of π.

Note: M/M/1 with K∗ = 2; λ = µ = 1.

To see why a low π leads to less favorable belief as time passes, it is instructive to

consider LCFS with π = 0. Panel (a) of Figure 3 depicts how an agent’s beliefs over states

(k, `) = (2, 1), (1, 1), (2, 2) evolve over time. Under LCFS, when an agent joins a queue (i.e.,

at t = 0), he can be sure that he is not at state (k, `) = (2, 2); either the queue was empty, in

which case he is at (1, 1) or else, he receives priority, so (k, `) = (2, 1). In the latter case, he

is likely to be served soon, whereas the former means that he will not be served as quickly.

As time passes, the fact that he is still in the queue without having been served gives more

credence to the former possibility (k, `) = (1, 1). This is why as time passes, the updating

becomes more unfavorable, with γt1,1 rising faster than γt2,1.

Like LCFS, LIEW has π < 1/2, and a similar intuition applies; as time passes without

getting served, an agent’s belief that (k, `) = (2, 1) updates downward; see Panel (b) of

Figure 3.31

We are now ready to state our main result:

Theorem 3. For any π < 1, there exists (V,C, λ, µ) such that the queueing rule π fails

(ICt) for some t > 0 under any information. Hence, π cannot implement the optimal cutoff

policy under any information policy.

Proof. For any π, there exist λ and µ such that π < µ+λ
µ+2λ

. Next, for V and C such that

V = 2λ+µ
(λ+µ)µ

C, under the optimal policy, (IR) binds with K∗ = 2 and there is no rationing

31As pointed out earlier, similar unfavorable updating on the initial state occurs with FCFS, but the belief

on (k, `) = (2, 2) falls over time and this favorable belief evolution dominates the unfavorable updating on

the initial queue length. See panel (c) of Figure 3.
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(a) π = 0 (LCFS) (b) π = 1/3 (LIEW) (c) π = 1 (FCFS)

Figure 3: Evolution of beliefs under alternative queueing disciplines

Note: M/M/1 with K∗ = 2; λ = µ = 1.

at k = 1. By Proposition 5, the rule π fails (ICt) for some t > 0 under a “no” information

rule. This in turn implies that for the same t, (ICt) must fail under any information. This

is due to the martingale property, if γt fails (ICt) under no information, for any other I, we

must have some γ̃t ∈ supp(It) that must fail (ICt). Hence, π fails to implement the optimal

solution to [P ′] under any information policy.

8 Concluding Remarks

We have focused on a canonical queueing model involving a single queue. But the insights

we obtain appear general and apply beyond our model. Here we discuss how one may extend

our analysis to other settings of potential interest.

Dynamic two-sided matching. As noted earlier, there is a growing interest in extending

two-sided matching analysis to a dynamic framework. Leshno (2019) and Baccara, Lee, and

Yariv (2020) consider models in which two different types of agents match with either two

different types of objects (e.g., housing) or two different types of agents. In such a model,

efficiency demands that the designer accumulates agents in a queue until a right type of object

or agent arrives, to avoid mismatching. Leshno (2019) assumes overloaded demand so that

the planner wishes to incentivize the agents to queue as much as possible, and demonstrates

in the full information model that SIRO outperforms FCFS in this regard, and LIEW, by

equalizing the waiting time regardless of the queue length, outperforms all other mechanisms.

Despite the ostensible difference relative to our model, Section S.4 in the online appendix

shows that our analysis applies without much modification to this model, and points out

that the main results from Leshno (2019) rest crucially on his full information assumption.

With optimal information design, the FCFS could do just as well as any other mechanism,

including LIEW, in incentivizing agents to enter a queue. If one includes the dynamic
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incentive problem, which Leshno (2019) does not consider,32 then FCFS does strictly better

than other queueing disciplines. Baccara, Lee, and Yariv (2020)’s model is similar to that

of Leshno (2019), except that there are agents on both sides. Hence, our main insight of

Theorem 2 applies, except for one difference. Unlike Leshno (2019), agents’ incentives to

enter a queue may be excessive under FCFS with full information. While this is an issue

in their decentralized matching, in our setting the designer can easily solve the problem by

preventing an agent from entering a queue, as is often done in practice. Meanwhile, they

also show that a queueing discipline admits insufficient entry under LCFS. In that case,

information design can be useful even with their assumption. In addition, they too do not

consider dynamic incentives, for which our analysis will prove useful.

Transfers. We have assumed that the designer is unable to use transfers, say to incentivize

agents. This assumption is based on realism; monetary compensation is rarely used in

practice to incentivize queueing. One difficulty with transfers may be to discern genuine

customers from “pretenders” who may not have real demand for service; if a monetary

reward is given out, a customer may call a customer service even without having a genuine

issue with a product. Setting aside such difficulties, it is rather straightforward to extend

our analysis to allow for transfers. With transfers, [P ′] reduces to the maximization of a sum

of W and agents’ utilities without (IR),33 and the ensuring problem is qualitatively similar

to that of [P ′]. In particular, both Theorem 1 and Theorem 2 remain valid. Intuitively, the

fact that FCFS with no information provides better (dynamic) incentives than other policies

means that even when (IR) binds so that transfers are required to subsidize agents’ entry, the

policy will minimize the amount of entry subsidy and therefore will continue to be desirable.

In short, the main thrust of our analysis and results will generalize to this environment.

Avenues of Future Research. There are several interesting avenues along which one

could extend the current model. First, it would be interesting to relax the homogeneity

of agents’ preferences. In practice, it is reasonable that agents differ in their waiting costs

32The dynamic incentive issue does not arise in SIRO or FCFS under complete information: any agent

who joins the queue will have the incentive to stay in the queue. Recall, however, that neither discipline

would implement the optimum under complete information. Under no information (which is optimal),

dynamic incentives will be an issue. Although an agent may not leave the queue and unilaterally “claim” a

mismatched object, which is presumably under the designer’s control, he/she may leave the queue without

claiming any object. If the value of outright exit is not very low (e.g., in comparison with the value of a

mismatched object), then the dynamic incentives will matter just as they do in our model. Specifically,

both SIRO (under no information) and LIEW (under any information) would be vulnerable to reneging, and

cannot implement the optimal outcome, as stated in our Theorem 3.
33This can be seen from substituting the constraint (now with transfer) into the objective function when

(IR) is binding. The logic is analogous to the well-known fact that Pareto optimality reduces to utilitarian

welfare maximization when there are perfect transfers.
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and/or in their value of service. The optimal policy will then call for treating agents differ-

ently based on their heterogeneous preferences—for instance, encouraging agents with low

waiting costs to join the queue and discouraging those with high waiting costs from doing

so. To the extent that preference heterogeneity is unlikely to be observed, eliciting prefer-

ences will also become important. How the tradeoff between these two considerations must

be balanced is an interesting problem that warrants investigation. Another interesting av-

enue of research is to consider uncertainty in the agents’ arrival or server’s capacity. Such

an uncertainty about the primitive process will create incentives for agents to learn about

the current “state,” and will engender a nontrivial dynamic consideration in their decision

making.34 These and other worthy extensions of the current model await future research.

References

Akbarpour, M., J. Combe, V. Hiller, R. Shimer, and O. Tercieux (2020): “Un-

paired Kidney Exchange: Overcoming Double Coincidence of Wants without Money,”

NBER Working paper number 27765. 7

Akbarpour, M., S. Li, and S. O. Gharan (2020): “Thickness and information in

dynamic matching markets,” Journal of Political Economy, 128(3), 783–815. 6, 13

Anunrojwong, J., K. Iyer, and V. Manshadi (2020): “Information Design for Con-

gested Social Services: Optimal Need-Based Persuasion,” EC ’20: Proceedings of the 21st

ACM Conference on Economics and Computation, pp. 349–350. 7

Ashlagi, I., M. Burq, P. Jaillet, and V. Manshadi (2019): “On Matching and

Thickness in Heterogeneous Dynamic Market,” Operations Research, 67(4), 927–949. 7

Ashlagi, I., M. Faidra, and A. Nikzad (2020): “Optimal Dynamic Allocation: Sim-

plicity through Information Design,” Discussion paper, Stanford. 7

Baccara, M., S. Lee, and L. Yariv (2020): “Optimal dynamic matching,” Theoretical

Economics, 15, 1221–1278. 7, 13, 29, 30

Bloch, F., and D. Cantala (2017): “Dynamic assignment of objects to queuing agents,”

American Economic Journal: Microeconomics, 9, 88–122. 6

Cripps, M. W., and C. D. Thomas (2019): “Strategic experimentation in queues,”

Theoretical Economics, 14, 647–708. 5, 31

Doval, L., and B. Szentes (2018): “On the efficiency of queuing in dynamic matching,”

Discussion paper, Caltech and London School of Economics. 7, 13

34See Cripps and Thomas (2019) for such a model.

31



Gnedenko, B., and I. Kovalenko (1989): Introduction to Queueing Theory. Birkhauser.

12

Hassin, R. (1985): “On the optimality of first come last served queues,” Econometrica, 53,

201–202. 2, 6, 12

Hassin, R. (2012): Rational Queueing. CRC Press. 5

Hassin, R., and M. Haviv (1995): “Equilibrium strategies for queues with impatient

customers,” Operations Research Letters, 17, 41–45. 5, 12, 21

(2012): To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems.

Kluwer Academic Publishers. 5, 6, 11

Haviv, M., and B. Oz (2016): “Regulating an observable M/M/1 queue,” Operations

Research Letters, 44, 196–198. 6

(2018): “Self-Regulation of an Unobservable Queue,” Management Science, 64,

1–10. 6

Haviv, M., and Y. Ritov (2001): “Homogeneous customers renege from invisible queues

at random times under deteriorating waiting conditions,” Queueing Systems, 38, 495–508.

5, 12, 21

Kamenica, E., and M. Gentzkow (2011): “Bayesian persuasion,” American Economic

Review, 101, 2590–2615. 9

Kipp, M., C. Ryan, and S. Matt (2016): “The Slater Conundrum: Duality and Pricing

in Infinite-Dimensional Optimization,” SIAM Journal on Optimization, 1(26), 111–138.

34

Kittsteiner, T., and B. Moldovanu (2005): “Priority auctions and queue disciplines

that depend on processing time,” Management Science, 51, 236–248. 6

Larson, R. C. (1987): “Perspectives on queues: social justice and the psychology of

queueing,” Operations Research, 35, 895–905. 7

Leshno, J. (2019): “Dynamic matching in overloaded waiting lists,” Discussion paper,

SSRN Working Paper 2967011. 6, 13, 29, 30

Lingenbrink, D., and K. Iyer (2019): “Optimal signaling mechanisms in unobservable

queues,” Operations Research, 67, 1397–1416. 7, 12, 16

Mandelbaum, A., and N. Shimkin (2000): “A model for rational abandonments from

invisible queues,” Queueing Systems, 36, 141–173. 5, 9

32



Margaria, C. (2020): “Queueing to learn,” Discussion paper, Boston University. 6

Myerson, R. B. (1981): “Optimal auction design,” Mathematics of Operations Research,

6(1), 58–73. 7

Naor, P. (1969): “The regulation of queue size by levying tolls,” Econometrica, 37, 15–24.

2, 5, 6, 12, 23

Platz, T. T., and L. P. Østerdal (2017): “The curse of the first-in–first-out queue

discipline,” Games and Economic Behavior, 104, 165–176. 2, 6

Shaler Stidham, J. (2009): Optimal Design of Queueing Systems. CRC Press. 7

Sherzer, E., and Y. Kerner (2018): “Customers’ abandonment strategy in an M/G/1

queue,” Queueing Systems, 90, 65–87. 5

Simhon, E., Y. Hayel, D. Starobinski, and Q. Zhu (2016): “Optimal information

disclosure policies in strategic queueing games,” Operations Research Letters, 44, 1109–

113. 7, 12

Su, X., and S. Zenios (2004): “Patient choice in kidney allocation: The role of the

queueing discipline,” Manufacturing and Services Operations Management, 6, 280–301. 2,

6

33



A Proof of Theorem 1

We first denote by M the set of distributions in ∆(Z+) : p = {pk}∞k=0 satisfying the following

constraint

λkpk − µk+1pk+1 ≥ 0,∀k = 0, ...

We rewrite the LP problem [P ′] as:

[P ′] max
p∈M

∞∑
k=0

pk [µk((1− α)R + αV )− αCk]

subject to
∞∑
k=0

pk [µkV − Ck] ≥ 0.

(recall our convention that µ0 = 0). While this is an LP problem, it is infinite dimensional.

In particular, a saddle point characterization of the optimal solution, which we use, may not

be assured.A.35 Since this is a critical part of our argument below, we first study a finite

dimensional truncation of [P ′] where the state space contains finitely many states, say K,

where K can potentially be “large”. In this environment, we will show that an optimal

solution pK exhibits a cutoff policy (Appendix A.1). In a second step, we will show that as

K gets large, a limit point of {pK} is an optimal solution of [P ′] and exhibits a cutoff policy

(Appendix A.2).

A.1 Finite dimensional analysis

We denote by MK the set of distributions p = {pk}Kk=0 in ∆({0, 1, ..., K}) satisfying the

following constraints

λkpk − µk+1pk+1 ≥ 0, ∀k = 0, ..., K − 1.

We consider the following “truncated” version of [P ′], say [P ′K ]

[P ′K ] max
p∈MK

K∑
k=0

pk [µk((1− α)R + αV )− αCk]

subject to
K∑
k=0

pk [µkV − Ck] ≥ 0.

A.35Countably infinite linear programs (CILPs) are linear optimization problems with a countably infinite

number of variables and a countably infinite number of constraints. It is well-known that many of the nice

properties of finite dimensional linear programming may fail to hold in these problems. Indeed, while in finite

dimensional LP problems, Slater’s condition—ensuring zero duality gap— is very weak, infinite dimensional

versions of Slater’s condition are much more demanding and zero duality gap may often fail. See Kipp,

Ryan, and Matt (2016) and references therein.
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Let us fix ξ ≥ 0 and consider the problem [Lξ]

[Lξ] max
p∈MK

L(p, ξ)

where

L(p, ξ) ,
K∑
k=0

pk [µk((1− α)R + αV )− αCk] + ξ
K∑
k=0

pk [µkV − Ck] .

We can write L(p, ξ) as
K∑
k=0

pkf(k; ξ)

where f(k; ξ) , µk((1− α)R + (α + ξ)V )− (α + ξ)Ck.

The Lagrangian dual of problem [P ′K ] is taking the inf over ξ ≥ 0 of the value of [Lξ].
Since MK is a convex set, the problem constitutes a finite dimensional linear program, so

strong duality applies. In such environments, p∗ is an optimal solution if and only if there is

(a Lagrange multiplier) ξ∗ ≥ 0 such that (p∗, ξ∗) is a saddle point of the function L(·, ·), i.e.,

L(p, ξ∗) ≤ L(p∗, ξ∗) ≤ L(p∗, ξ)

for any ξ ≥ 0 and p ∈MK . We use this saddle point characterization in the remaining parts

of our proof. In the sequel, we fix (p∗, ξ∗) a saddle point of the function L(·, ·).
In this section, we will show a finite-dimensional version of Theorem 1 stated below.

Proposition A.6. If µ is regular, then there is an optimal solution for [P ′K ] which exhibits a

cutoff policy. In addition, p∗k > 0 for each k ≤ min{k∗, K} where k∗ , min arg max f(k; ξ∗).

In the sequel, we say that a function f : Z+ → R is single-peaked if f(k − 1) < f(k) for

all k ≤ min arg maxk∈Z+ f(k) while f(k) > f(k + 1) for all k ≥ max arg maxk∈Z+ f(k). Our

convention is that if arg maxk∈Z+ f(k) is empty, then min arg maxk∈Z+ f(k) is set to +∞. We

now show that regularity implies single-peakedness of f(·; ξ).

Lemma A.5. If µ is regular, then for any ξ ≥ 0, function f(·; ξ) is single-peaked.

Proof. Fix any ξ ≥ 0. We start by showing that if f(k; ξ) ≥ f(k + 1; ξ) then f(k′; ξ) ≥
f(k′ + 1; ξ) for any k′ ≥ k, i.e., if the function decreases at some state k, then it decreases

at larger states. Indeed, assume that f(k; ξ) ≥ f(k + 1; ξ), i.e.,

µk((1− α)R + (α + ξ)V )− (α + ξ)Ck ≥ µk+1((1− α)R + (α + ξ)V )− (α + ξ)C(k + 1).

Simple algebra shows that this is equivalent to

µk+1 − µk ≤
(α + ξ)C

(1− α)R + (α + ξ)V
.

35



Since µ is regular, µk+1 − µk is nonincreasing and so, for k′ ≥ k, we must have

µk′+1 − µk′ ≤ µk+1 − µk ≤
(α + ξ)C

(1− α)R + (α + ξ)V
.

Hence, f(k′; ξ) ≥ f(k′ + 1; ξ), as claimed.

Now, let k∗ , min arg maxk∈Z+ f(k; ξ); recall that our convention allows k∗ to be +∞.

Now, there are two candidates. First, k∗ = +∞. In that case, since we showed that whenever

the function f(·; ξ) decreases at some state k, it must decrease at larger states, it must be

that f(·; ξ) is a strictly increasing function and we are done. Second, k∗ < +∞. Fix k ≤ k∗.

We need to show that

µk−1((1− α)R + (α + ξ)V )− (α + ξ)C(k − 1) < µk((1− α)R + (α + ξ)V )− (α + ξ)Ck.

Simple algebra shows that this is equivalent to

µk − µk−1 >
(α + ξ)C

(1− α)R + (α + ξ)V
.

By definition of k∗, function f(·; ξ) achieves a maximum at k∗ and k∗− 1 is not a maximum,

hence,

µk∗ − µk∗−1 >
(α + ξ)C

(1− α)R + (α + ξ)V
.

Since µ is regular, µk − µk−1 is nonincreasing and so, for k ≤ k∗, we must have

µk − µk−1 ≥ µk∗ − µk∗−1 >
(α + ξ)C

(1− α)R + (α + ξ)V
.

It thus follows that for any k ≤ k∗,

µk−1((1− α)R + (α + ξ)V )− (α + ξ)C(k − 1) < µk((1− α)R + (α + ξ)V )− (α + ξ)Ck,

as claimed. The argument for k ≥ max arg maxk∈Z+ f(k; ξ) is similar.

Before proceeding, we make the following straightforward observations (1) p∗0 > 0 (or

else p∗k = 0 for all k); (2) for all ξ, f(0; ξ) = 0. Using these two facts, we claim that

Proposition A.6 holds whenever f(k; ξ∗) = f(k′; ξ∗) for all k, k′ in the support of p∗. Indeed,

since p∗0 > 0, f(k; ξ∗) = 0 for all states k in the support of p∗. In that case, supp L(p, ξ∗) = 0.

Thus, the value of the problem [P ′K ] is 0. Clearly, the distribution p corresponding to the

Dirac measure on state 0 yields the same value and is a cutoff policy. Hence, in this very

special case, Theorem 1 holds true. Thus, in the sequel, we assume that there is a pair of

states k and k′ in the support of p∗ satisfying f(k; ξ∗) 6= f(k′; ξ∗). We will use the following

claim.
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Lemma A.6. Fix any ` ≤ K − 1 such that

f(`; ξ∗) < f(`+ 1; ξ∗).

We must have µ`+1p
∗
`+1 = λ`p

∗
` .

Proof. Fix ` satisfying the properties of the claim. Since p∗ is an optimal solution of [P ′K ],

we know that µ`+1p
∗
`+1 ≤ λ`p

∗
` . Assume that µ`+1p

∗
`+1 < λ`p

∗
` (otherwise, we are done). Now,

simply consider p̂ which is defined by p̂`+1 = p∗`+1+ε and p̂` = p∗`−ε (p̂ is equal to p∗ otherwise)

and note that we can choose ε > 0 so that µ`+1p̂`+1 = λ`p̂` while ensuring p̂`, p̂`+1 ∈ [0, 1].A.36

Clearly,
∑K

k=0 p̂k = 1. Now, let us show that µk+1p̂k+1 ≤ λkp̂k,∀k = 0, ...K − 1. Since

this constraint holds when replacing p̂ by p∗ (because p∗ is an optimal solution of [P ′K ]), by

construction of p̂, we only need to check this constraint for k = `+ 1 and k = `− 1. For the

constraint at k = ` + 1, note that since the constraints of the LP problem hold for p∗, we

have

µ`+2p̂`+2 = µ`+2p
∗
`+2 ≤ λ`+1p

∗
`+1 ≤ λ`+1p̂`+1.

Similarly, for the constraint at k = `− 1,

µ`p̂` ≤ µ`p
∗
` ≤ λ`−1p

∗
`−1 = λ`−1p̂`−1.

Now, we show that the value of the objective of [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. We have

K∑
k=0

p̂kf(k; ξ∗)−
K∑
k=0

p∗kf(k; ξ∗) = p̂`f(`; ξ∗)− p∗`f(`; ξ∗) + p̂`+1f(`+ 1; ξ∗)− p∗`+1f(`+ 1; ξ∗)

= −εf(`; ξ∗) + εf(`+ 1; ξ∗) = ε (f(`+ 1; ξ∗)− f(`; ξ∗)) > 0

where the inequality comes from the assumption in the claim. To conclude, we must have

that L(p̂, ξ∗) > L(p∗, ξ∗) which contradicts the fact that (p∗, ξ∗) is a saddle point of the

function L(·, ·).

In the proof of Proposition A.6, we will need the following simple lemma which proof is

relegated to Section S.1 of the online appendix.

Lemma A.7. Assume that p′ stochastically dominates p. Let ϕ be a nondecreasing function.

If there is κ such that
K∑
k=κ

p′k >

K∑
k=κ

pk

A.36Indeed, at ε = 0, we have µ`+1p̂`+1 < λ`p̂`. In addition, for ε = p` > 0 we have p̂`+1 = p`+1 + ε =

p`+1 + p` ≤ 1 and µ`+1p̂`+1 > λ`p̂` = 0. Hence, by the Intermediate Value Theorem, there must exist

ε ∈ (0, p`) so that µ`+1p̂`+1 = λ`p̂`.
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and ϕ(κ) > ϕ(κ− 1) then
K∑
k=0

p′kϕ(k) >
K∑
k=0

pkϕ(k).

Proof of Proposition A.6. Let k∗ be min arg maxk f(k; ξ∗) and k∗∗ be max arg maxk f(k; ξ∗).

Recall that k∗ can be equal to +∞. By Lemma A.6, we know that f(k; ξ∗) is strictly

increasing up to k∗. Hence, the above claim implies that µkp
∗
k = λk−1p

∗
k−1 for each k ≤

min{k∗, K}. Note that this also implies that p∗k > 0 for each k ≤ min{k∗, K}, as stated

in Proposition A.6. If K ≤ k∗, we are done. So assume from now on that K > k∗; note

that this implies that k∗ < +∞. By means of contradiction, let us assume that p∗ does not

exhibit a cutoff policy. This means that there is k0 > k∗ at which µk0p
∗
k0
< λk0−1p

∗
k0−1 and

p∗k0+1 > 0 (hence, p∗k0 > 0). Wlog, assume that for any k < k0, we have µkp
∗
k = λk−1p

∗
k−1.

We consider two cases.

Case 1 : p∗k > 0 for some k > k∗∗. We build p̂ which strictly increases the value of the

objective of [Lξ∗ ] over p∗. Define p̂ to be equal to p∗ for k ≤ k0 − 1. Then, for each k ≥ k0,

build p̂ inductively so that µkp̂k = λk−1p̂k−1. Since the total mass of p̂ must be equal to

1, this may be possible only up to a point. Hence, there is K̂ ≥ k0 (potentially equal to

K) such that µkp̂k = λk−1p̂k−1 for k = 0, ..., K̂ − 1, and p̂k = 0 for k > K̂. One can show

inductively that p̂k > p∗k for all k = k0, ..., K̂ − 1 while, by construction, p̂k = p∗k for all

k ≤ k0 − 1. We claim that distribution p∗ stochastically dominates distribution p̂. To see

this, fix any κ > K̂. Clearly,
∑K

k=κ p̂k = 0 ≤
∑K

k=κ p
∗
k. Now, fix κ ≤ K̂.

K∑
k=κ

p̂k = 1−
κ−1∑
k=0

p̂k ≤ 1−
κ−1∑
k=0

p∗k =
K∑
k=κ

p∗k (A.4)

where the inequality uses the fact that p̂k ≥ p∗k for all k = 0, ..., κ − 1. Importantly, the

above inequality is strict for all κ ∈ {k0 + 1, ..., K̂} since p̂k > p∗k for all k = k0, ..., K̂ − 1.A.37

It is also strict for any κ ≥ K̂ + 1 as long as p∗κ > 0 since in that case the LHS is simply 0

while the RHS is strictly positive. In particular, given our assumption that p∗k > 0 for some

k > k∗∗, it must be that p∗k∗∗+1 > 0 and so we have

K∑
k=κ

p̂k <

K∑
k=κ

p∗k (A.5)

for κ = max{k0 + 1, k∗∗ + 1}.
Now, we show that the value of the objective in [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. We have to show that

K∑
k=0

p̂kf(k; ξ∗) >
K∑
k=0

p∗kf(k; ξ∗).

A.37Recall that, by construction, k0 + 1 ≤ K̂.
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Since p̂k = p∗k for all k ≤ k0 − 1, this is equivalent to showing the following inequality

K∑
k=k0

p̂kf(k; ξ∗) >
K∑

k=k0

p∗kf(k; ξ∗) (A.6)

Now, define a function ϕ : N→ R as follows. On the set {0, ..., k0− 1}, function ϕ equals

to an arbitrary decreasing function which is greater than f(k0; ξ∗) . In addition, for all k ≥ k0,

ϕ(k) = f(k; ξ∗). Since k0 > k∗, by Lemma A.5, this function is weakly decreasing and it is

strictly decreasing from k to k + 1 for any k ≥ max{k0, k
∗∗}. Thus, ϕ(κ − 1) > ϕ(κ) for

κ = max{k0 + 1, k∗∗+ 1}. Now, we know that p∗ stochastically dominates p̂, that inequality

(A.5) holds at κ = max{k0 + 1, k∗∗ + 1}. and that ϕ(κ− 1) > ϕ(κ). Applying Lemma A.7,

the expectation of ϕ with respect to p̂ must be strictly greater than its expectation with

respect to p∗, i.e.,
K∑
k=0

(p̂k − p∗k)ϕ(k) > 0.

Since p̂k = p∗k for all k ≤ k0−1, this is equivalent to Equation (A.6). To conclude, L(p̂, ξ∗) >

L(p∗, ξ∗) which contradicts the fact that (p∗, ξ∗) is a saddle point of L(·, ·).

Case 2 : p∗k = 0 for all k > k∗∗. Recall our assumption that there is a pair of states k and

k′ in the support of p∗ satisfying f(k; ξ∗) 6= f(k′; ξ∗). Hence, because f(·; ξ∗) is single-peaked,

f must be weakly increasing on the support of p∗ and strictly increasing from k to k + 1

for all k < k∗. In particular, this holds at k = 0, and so we have f(0; ξ∗) < f(1; ξ∗) and

p∗0 > 0. Recall that k0 is the first state in {k∗ + 1, ..., k∗∗ − 1} at which µkp
∗
k < λk−1p

∗
k−1 and

p∗k+1 > 0. Build p̂ as follows. p̂k = p∗k/Z1 for all k ≤ k0 − 1 where Z1 > 1, p̂k = p∗k for each

k ≥ k0 + 1 and p̂k0 = p∗k0 + Z2 where Z2 ,
∑k0

k=0(p∗k − p̂k) so that p̂ sums up to 1. We pick

Z1 small enough so that p̂k0 remains between 0 and 1 for each k. We show that, for Z1 > 1

small enough, for each k ≤ K, µkp̂k ≤ λk−1p̂k−1. To see that this is true, first fix k ≤ k0 − 1

and note that

µkp̂k = µkp
∗
k/Z1 ≤ λk−1p

∗
k−1/Z1 = λk−1p̂k−1

where the inequality simply comes from the fact that p∗ is a solution of [P ′K ]. Now, for

k = k0, we have

µk0 p̂k0 = µk0
(
p∗k0 + Z2

)
≤ λk0−1p

∗
k0−1/Z1 = λk0−1p̂k0−1

where the inequality holds for Z1 small enough since, by assumption, µk0p
∗
k0
< λk0−1p

∗
k0−1

(and Z2 vanishes as Z1 goes to 1). Now, for k = k0 + 1, we have

µk0+1p̂k0+1 = µk0+1p
∗
k0+1 ≤ λk0p

∗
k0
≤ λk0(p

∗
k0

+ Z2) = λk0 p̂k0 .

Finally, by construction, for any k > k0 + 1, µkp̂k ≤ λk−1p̂k−1 must hold since p∗ and p̂

coincide.
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Now, we show that the value of the objective in [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. To see this, observe first that p̂ must stochastically dominate p∗. Indeed,

fix any κ > k0. Clearly, since p̂k = p∗k for all k ≥ k0 + 1,
∑K

k=κ p̂k =
∑K

k=κ p
∗
k. Now, fix

κ ≤ k0.
K∑
k=κ

p̂k = 1−
κ−1∑
k=0

p̂k > 1−
κ−1∑
k=0

p∗k =
K∑
k=κ

p∗k (A.7)

where the inequality uses the fact that p̂k = p∗k/Z1 < p∗k for all k = 0, ..., κ− 1 (since Z1 > 1

and p∗k > 0 for such k). Now, we have to show that the value of the objective in [Lξ∗ ] strictly

increases when we replace solution p∗, i.e.,

K∑
k=0

p̂kf(k; ξ∗) >
K∑
k=0

p∗kf(k; ξ∗).

We know that p̂ stochastically dominates p∗, that inequality (A.7) holds at κ = 1 and that

f(0; ξ∗) < f(1; ξ∗). In addition, f(·; ξ∗) is nondecreasing on the support of p∗ and p̂. Hence,

this follows from Lemma A.7.

A.2 Infinite dimensional analysis

Let us consider the sequence {pK}K where for each K, pK is an optimal solution of problem

[P ′K ] and exhibits a cutoff policy which is well-defined by Proposition A.6. For each K, we see

pK as a point in RZ+ with value 0 on states weakly greater than K+1. We will be interested

in the limit points of sequence {pK}K . The following statement implies Theorem 1.

Proposition A.7. Sequence {pK}K has a subsequence which converges to a distribution p∗

which is an optimal solution to [P ′]. Further, p∗ exhibits a cutoff policy.

We show this result with the following steps. First, we show that the infinite-dimensional

problem [P ′] is well-behaved, i.e., it does have a solution (Proposition A.8). Then, we show

that the set of feasible distributions of [P ′] exhibiting a cutoff-policy is sequentially compact;

proving that {pK}K has a subsequence converging to a point which exhibits a cutoff policy

(Proposition A.11). Finally, we argue that any limit point of {pK}K must be an optimal

solution of [P ′] (Proposition A.12).

A.2.1 Existence of a solution in the infinite-dimensional problem

Our problem [P ′] can be written as

[P ′] max
p∈M ′

∞∑
k=0

pk [µk((1− α)R + αV )− αCk]
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where M ′ , {p ∈ ∆(Z+) :
∑∞

k=0 pk [µkV − Ck] ≥ 0, λkpk ≥ µk+1pk+1, ∀k}. We prove the

following result.

Proposition A.8. The set of optimal solutions of [P ′] is nonempty.

We start by showing that the objective of the optimization problem is upper semi-

continuous (Proposition A.9). In terms of topology, we assume that Z+ is endowed with

the discrete topology and ∆(Z+) with the weak topology. Note that since Z+ endowed with

the discrete topology is a metric space, so is ∆(Z+) by Prokhorov’s Theorem. Then, we

show that set M ′ is compact (Proposition A.10). This enough for our purpose. Indeed, by

the maximum theorem for upper semi-continuous functions, optimization problem [P ′] has

a solution.

Proposition A.9. The function which maps p ∈ ∆(Z+) to

∞∑
k=0

pk [µk((1− α)R + αV )− αCk]

is upper semi-continuous.

Proof. Consider a sequence {pn} in ∆(Z+) converging to p∗. Since the function k 7→ µk((1−
α)R+ αV )− αCk is continuous (in the discrete topology) and upper boundedA.38, by Port-

manteau’s Theorem, lim sup
∑∞

k=0 p
n
k [µk((1− α)R + αV )− αCk] ≤

∑∞
k=0 p

∗
k [µk((1− α)R + αV )− αCk]

and so we get the upper semi-continuity of our function.

Proposition A.10. Set M ′ is compact.

Proof. The proof is based on the two lemmas proved below.

Lemma A.8. The set M ′ is tight.

Proof. We need to show that for any ε > 0, there is n large enough so that any probability

measure p ∈ M ′ has
∑∞

k=n+1 pk < ε. Proceed by contradiction and assume that there is

ε > 0 and a sequence {pn}n in M ′ (which satisfies
∑∞

k=0 p
n
k [µkV − Ck] ≥ 0) such that∑∞

k=n+1 p
n
k > ε for all n. This implies

∞∑
k=0

pnk(µkV − Ck) = V
∞∑
k=0

pnkµk − C
∞∑
k=0

pnkk

≤ V − C
∞∑

k=n+1

pnkk

A.38Recall our assumption that µk is uniformly bounded.
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≤ V − C(n+ 1)
∞∑

k=n+1

pnk

≤ V − C(n+ 1)ε.

Note that for n large enough, the above term must be strictly negative. This contradicts the

fact that
∑∞

k=0 p
n
k(µkV − Ck) ≥ 0 for all n.

Lemma A.9. The set M ′ is closed.

Proof. Recall that since ∆(Z+) is a metric space, p ∈ ∆(Z+) is a limit point of M if and

only if there is a sequence of points in M\{p} converging to p. We need to show that any

limit point of M ′ is contained in M ′. Take any sequence {pn}n in M ′ converging to p∗. We

need to show that (1)
∑∞

k=0 p
∗
k(µkV − Ck) ≥ 0 and (2) for all k, λkp

∗
k ≥ µk+1p

∗
k+1.

(1)
∑∞

k=0 p
∗
k(µkV − Ck) ≥ 0. Proceed by contradiction and assume that

∑∞
k=0 p

∗
k(µkV −

Ck) < 0. By Portmanteau’s Theorem, since the function k 7→ µkV − Ck is bounded above

(and trivially continuous in the discrete topology), we must have that lim sup
∑∞

k=0 p
n
k(µkV −

Ck) ≤
∑∞

k=0 p
∗
k(µkV − Ck). Hence, since, by assumption,

∑∞
k=0 p

∗
k(µkV − Ck) < 0, it must

be that for n large enough,
∑∞

k=0 p
n
k(µkV − Ck) < 0, a contradiction with the fact that

pn ∈M ′.

(2) For all k, λkp
∗
k ≥ µk+1p

∗
k+1. By contradiction, assume that for some k, λkp

∗
k < µk+1p

∗
k+1.

Since pnk and pnk+1 converge pointwise to p∗k and p∗k+1, for n large enough we have λkp
n
k <

µk+1p
n
k+1 which contradicts the fact that pn is in M ′.

Hence, M ′ is closed and tight. By Prokhorov Theorem, M ′ must be sequentially compact.

Since ∆(Z+) is a metric space, this implies that M ′ is compact, as claimed.

A.2.2 Completion of the proof of Proposition A.7

Let M ′′ be the set of p in M ′ which exhibits a cutoff policy, i.e., such that for some K̂,

λkpk = µk+1pk+1, ∀k = 0, ..K̂ − 1 and pk = 0 for all k ≥ K̂ + 1. Recall that the sequence

{pK}K is defined as for each K, pK is an optimal solution of [P ′K ] and exhibits a cutoff

policy. In addition, we recall that for each K, we see pK as a point in RZ+ with value 0

on states weakly greater than K + 1. Clearly {pK}K is a sequence in M ′′. In the next

proposition we show that M ′′ is (sequentially) compact. This will show that {pK}K must

have a subsequence converging to a point exhibiting a cutoff policy.

Proposition A.11. {pK}K must have a subsequence converging to a feasible point p∗ of

[P ′] exhibiting a cutoff policy. In addition, p∗k > 0 for each k ≤ min arg maxk µkV − Ck.

Proof. In order to prove the first part of the statement, it is enough to show that M ′′ is

(sequentially) compact. Since M ′′ is a subset of M ′ which is compact (Proposition A.10),

we only need to show that M ′′ is closed. Consider a sequence {pn} in M ′′ converging to p∗.
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We need to show that p∗ ∈ M ′′. Since M ′ is (sequentially) compact, we already know that

p∗ ∈M ′. Letting K̂ be the largest state in the support of p∗ (which is potentially +∞ if the

support is unbounded), we proceed by contradiction and assume that there exists k0 < K̂

such that λk0−1p∗k0−1 > µk0p
∗
k0

. Now, simply pick n large enough so that (1) pnk > 0 for all

k = 0, ..., k0 + 1 and (2) λk0−1p
n
k0−1 > µk0p

n
k0

. This contradicts the assumption that pn is in

M ′′.

Now, we show the second part of the statement. We just proved that {pK}K must

have a subsequence converging to a feasible point p∗ of [P ′]. We show that p∗ satisfies

p∗k > 0 for each k ≤ min arg maxk µkV − Ck. First, we simply observe that for any ξ ≥ 0,

min arg maxk µkV −Ck ≤ min arg max f(k; ξ). Now, we proceed by contradiction and assume

that there is k0 ≤ min arg maxk µkV − Ck such that p∗k0 = 0. Let us assume that k0 is

the smallest state satisfying this property, so, in particular, p∗k0−1 > 0. This implies that

p∗k0µk0 < p∗k0−1λk0−1. Since {pK}K converges to p∗, we must have that for K large enough,

pKk0µk0 < pKk0−1λk0−1. Note that this contradicts Lemma A.6 since k0 ≤ min arg max f(k; ξ∗K)

and so using single-peakedness of f(·; ξ∗K), we must have f(k0 − 1; ξ∗K) < f(k0; ξ∗K) (where

we use the notation (pK , ξ∗K) for the saddle point of the Lagrangian in [P ′K ]).

Finally, we complete the proof of Proposition A.7 via the following proposition.

Proposition A.12. Take any subsequence of {pK}K converging to a limit p∗. p∗ must be

an optimal solution of [P ′].

Proof. In the sequel, we let p∗ be the limit of an arbitrary converging subsequence {pK}K .

We proceed by contradiction and assume that p∗ is not a solution to the infinite dimensional

problem. By Proposition A.8, we know that there is a solution to this problem. Let us call

it p̄. By assumption,

∞∑
k=0

p̄k [µk ((1− α)R + αV )− αCk] >
∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] . (A.8)

Now, let us note by p̄K the distribution p̄ conditional on {0, ..., K}, i.e., p̄Kk = 0 for all

k ≥ K + 1 while p̄Kk = p̄k

/∑K
k=0 p̄k for all k ≤ K. We claim that

lim
∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] =
∞∑
k=0

p̄k [µk ((1− α)R + αV )− αCk] .

Indeed, by construction, for each K,

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] =
K∑
k=0

p̄k [µk ((1− α)R + αV )− αCk]

/
K∑
k=0

p̄k .
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Taking limits on both sides asK increases gives us (and using the fact that limK→∞
∑K

k=0 p̄k =

1),

lim
∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] =
∞∑
k=0

p̄k [µk ((1− α)R + αV )− αCk] ,

as claimed.

Now, using Equation (A.8), for K large enough, we must have

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] >
∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] + ε (A.9)

for some ε > 0. Now, since {pK}K converges weakly to p∗, by Proposition A.9,

lim sup
∞∑
k=0

pKk [µk ((1− α)R + αV )− αCk] ≤
∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] .

Hence, we must have that for K large enough,

∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] + ε >
∞∑
k=0

pKk [µk ((1− α)R + αV )− αCk] . (A.10)

Using Equation (A.9) and (A.10), we conclude that for K large enough,

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] >
∞∑
k=0

pKk [µk ((1− α)R + αV )− αCk] .

This contradicts that the fact that pK is an optimal solution of [P ′K ] since p̄K is feasible in

this problem.

B Proof of Proposition 1

In the sequel, given K ∈ Z+ ∪ {∞} and x ∈ (0, 1], we consider the probability distribution

over Z+ defined by

pk = p0

k∏
`=1

λ`−1

µ`
(B.11)

for any k = 1, ..., K − 1 and if K <∞

pK = p0

K−1∏
`=1

λ`−1

µ`

λK−1x

µK
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while p0 is defined to ensure that the total mass of pk’s is equal to 1. Given K ∈ Z+∪{∞} and

x, whenever well-defined, such a distribution will be denoted by p(K, x).B.39 By Theorem 1

we know that, when µ is regular, there is an optimal solution p∗ of [P ′] which can be

implemented by a cutoff policy. Recall our observation that this implies that (B′) binds for

all k = 0, ..., K − 1 and holds with weak inequality for k = K − 1 where K is the largest

state in the support of p∗. A simple inductive argument yields that p∗ is equal to p(K∗, x)

for some K ∈ Z+ ∪ {∞} and x∗ ∈ (0, 1]. We say p(K∗, x∗) is optimal in that case.

Central to our analysis is the following function ψ : Z+ ∪ {∞} → R defined as

ψ(K) ,
K∑
k=1

k∏
`=1

(
λ`−1

µ`

)
[µkV − Ck] .

Proposition 1 follows from the two propositions below. Recall that the environment is

generic if ψ(K) 6= 0 for all K ∈ Z+ ∪ {∞}. Our first proposition is stated as follows.

Proposition B.13. Assume µ is regular. Suppose p(K∗, x∗) is optimal. If α = 0, then

K∗ < ∞ if and only if ψ(∞) < 0. If ψ(∞) < 0, then K∗ < ∞ and (IR) binds if α > 0 is

sufficiently small or if α < 1 and R is sufficiently large. If (IR) binds and the environment

is generic, then x∗K∗−1 ∈ (0, 1).

Our second proposition states that the maximum queue length at the optimal policy is

finite whenever α > 0.

Proposition B.14. Assume µ is regular and α ∈ (0, 1]. Let p(K∗, x∗) be the optimal policy.

We have K∗ <∞.

B.1 Proof of Proposition B.13

We first prove that, as K and x increase, p(K, x) places more mass to higher states.

Lemma B.10. The following must hold.

1. Fix K ′ > K and any x, x′ ∈ (0, 1]. Whenever well-defined, p(K ′, x′) dominates

p(K, x) in the likelihood ratio order and the mass on state 0 is strictly smaller

under p(K ′, x′) than under p(K, x).

2. AssumeK <∞. Fix any x, x′ ∈ (0, 1] with x′ > x. We have that p(K, x′) dominates

p(K, x) in the likelihood ratio order and the mass on state 0 is strictly smaller

under p(K, x′) than under p(K, x).

B.39We note that for K =∞, p0 may not always be well-defined.
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Proof. We start by showing Part 1. Fix any K ′ > K and any x, x′ ∈ (0, 1]. To ease

notations, we let p′ and p be p(K ′, x′) and p(K, x) respectively. By construction, we have

for all k = 1, ..., K − 1
p′k
p′k−1

=
λk−1

µk
=

pk
pk−1

while
p′K
p′K−1

=
λK−1

µK
≥ λK−1x

µK
=

pK
pK−1

.

Finally, for any k ≥ K + 1,

p′kpk−1 ≥ p′k−1pk = 0.

Thus, p′ dominates p in the likelihood ratio order. Now, we argue that p′0 < p0. By

construction, we have

1 = p0 +
K∑
k=1

pk ≤ p0 + p0

K∑
k=1

k∏
`=1

(
λ`−1

µ`

)
(B.12)

and

1 = p′0 +
K′∑
k=1

p′k > p′0 + p′0

K′−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
≥ p′0 + p′0

K∑
k=1

k∏
`=1

(
λ`−1

µ`

)
(B.13)

where the strict inequality follows since p′K′ > 0. Equations (B.12) and (B.13) together

imply that p′0 < p0, as claimed.

We next prove Part 2. Assume K <∞. Fix any x, x′ ∈ (0, 1] with x′ > x. Again to ease

notations, we let p′ and p be p(K, x′) and p(K, x) respectively. Again, by construction, we

have for all k = 1, ..., K − 1
p′k
p′k−1

=
λk−1

µk
=

pk
pk−1

while
p′K
p′K−1

=
λK−1x

′

µK
≥ λK−1x

µK
=

pK
pK−1

.

We conclude that p′ dominates in the likelihood ratio order distribution p. Now, we argue

that p′0 < p0. By construction, we have

1 = p0 + p0

K−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
+ p0

K−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

µK

)
(B.14)

and

1 = p′0 + p′0

K−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
+ p′0

K−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

′

µK

)
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> p′0 + p′0

K−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
+ p′0

K−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

µK

)
(B.15)

where the strict inequality comes from the fact that x′ > x. Equations (B.14) and ap-

pendix B.1 together imply that p′0 < p0, as claimed.

We show that, given the regularity of µ, function ψ is single-peaked: ψ(K−1) < ψ(K) for

all K ≤ min arg maxK∈Z+ ψ(K) while ψ(K+1) < ψ(K) for all K ≥ max arg maxK∈Z+ ψ(K).

We recall our convention that if arg maxK∈Z+ ψ(K) is empty, then min arg maxK∈Z+ ψ(K) is

set to +∞.

Lemma B.11. Assume µ is regular. Function ψ is single-peaked.

Proof. Single-peakedness of ψ is equivalent to: ψ(K − 1) ≤ (<)ψ(K) implies ψ(K ′ − 1) ≤
(<)ψ(K ′) for all K ′ ≤ K. We just prove the strict inequality version; the argument for the

weak inequality version is identical. Assume that ψ(K − 1) < ψ(K). This is equivalent to

K∏
`=1

(
λ`−1

µ`

)
[µKV − CK] > 0

which in turn is equivalent to µKV −CK > 0. We claim that this implies µK′V −CK ′ > 0

for any K ′ ≤ K—which by the above reasoning will imply ψ(K ′ − 1) < ψ(K ′).

First, by the regularity of µ, recall Lemma A.5 (with α = 1 and ξ = 0) which proves

that h(K) , µKV − CK is single-peaked. Now, observe that function h is equal to 0 at

K = 0. Hence, if h(K) = µKV − CK > 0, given single-peakedness of h, we must have

h(K ′) = µK′V − CK ′ > 0 for any K ′ = 1, ..., K, as claimed.

We define K̄ , inf{K ′ ∈ Z+ : ψ(K ′) < 0} and K̄ =∞ if ψ(∞) ≥ 0. Given Lemma B.11

(together with ψ(0) = 0), we have that ψ(K) ≥ 0 if and only if K < K̄ whenever K̄ < ∞.

In the sequel, given K ∈ Z+ ∪ {∞}, x ∈ (0, 1] and α ∈ [0, 1], whenever p(K, x) is well-

defined, we let Φ(K, x;α) ,
∑∞

k=1 pk(K, x) [(1− α)µkR + α(µkV − Ck)] be the objective in

[P ′]. Note that K can be infinite so that p(K, x) may not always be well-defined. In the

online appendix Section S.2, we show that p(∞, x) is well-defined whenever K̄ =∞ and so

for any x and α, Φ(K̄, x;α) is well-defined for any value of K̄.

In Proposition B.13 below we will show that (for α small enough) the optimal policy is

p(K∗, x∗) for K∗ ∈ {K̄ − 1, K̄} and some x∗ ∈ (0, 1]. In order to show this, we will use the

following straightforward corollary of Lemma B.10.

Corollary B.4. Assume µ is regular. Fix any K̂ ∈ {K̄ − 1, K̄} and x̂ ∈ (0, 1]. We have

1. For K < K̂ and x ∈ (0, 1]

Φ(K̂, x̂; 0) > Φ(K, x; 0).
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2. For x, x′ ∈ (0, 1] with x′ > x

Φ(K̂, x′; 0) > Φ(K̂, x; 0).

Proof. Given Lemma B.10 and the fact that, by regularity, µk is nondecreasing in k, it is

straightforward to show that each of the two inequalities must hold weakly. The fact that

it holds with strict inequality comes from Lemma A.7 together with the observation that

µ1R > µ0R = 0.

Corollary B.4 above is proved for α = 0. We show below that, provided that K̄ <∞, a

similar result applies when α is small enough.

Lemma B.12. Assume µ is regular. Let K̄ <∞. Fix any K̂ ∈ {K̄ − 1, K̄} and x̂ ∈ (0, 1].

There is α̂ > 0 such that for any α < α̂, we have

1. For K < K̂ and x ∈ (0, 1]

Φ(K̂, x̂;α) > Φ(K, x;α).

2. For x, x′ ∈ (0, 1] with x′ > x

Φ(K̂, x′;α) > Φ(K̂, x;α).

Proof. We first make the simple observation that Φ(K, x;α) ≥ 0 for any x and K < K̄. In

order to show this, observe that for any x and K < K̄, Φ(K, x;α) is equal to

p0(K, 1)
K−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
g(k, α) + p0(K, 1)

K−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

µK

)
g(K,α)

where g(k, α) , (1 − α)µkR + α(µkV − Ck). Given that for all k, µkR ≥ 0, the above

expression is greater than

αp0(K, 1)

[
K−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
(µkV − Ck) +

K−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

µK

)
(µKV − CK)

]
.

Now, if µKV − CK ≤ 0 then the above term is weakly greater than αp0(K, 1)ψ(K) which

is weakly greater than 0 since K < K̄. If, on the contrary, µKV − CK ≥ 0 then the above

term is weakly greater than αp0(K, 1)ψ(K − 1) which for the same reason must be no less

than 0. We conclude that Φ(K, x;α) ≥ 0 for any x and K < K̄.

Now, let us fix K̂ ∈ {K̄ − 1, K̄} and any x̂ ∈ (0, 1]. By Corollary B.4, we know that

Φ(K̂, x̂; 0) > Φ(K, 1; 0) ≥ Φ(K, x; 0) for any K < K̂ and x ∈ (0, 1]. Consider any K < K̂.

By continuity, limα→0 Φ(K̂, x̂;α) = Φ(K̂, x̂; 0). So for α small enough,

Φ(K̂, x̂;α) > Φ(K, 1; 0). (B.16)
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Now, for each α ∈ [0, 1], let x(α) ∈ arg maxx∈[0,1] Φ(K, x;α) which by continuity of Φ(K, ·;α)

and compactness of [0, 1] is well-defined. By Berge’s Maximum Theorem and Corollary B.4,

limα→0 Φ(K, x(α);α) = Φ(K, 1; 0). This, together with Equation (B.16), imply that there is

α̂ > 0 such that for any α < α̂, Φ(K̂, x̂;α) > Φ(K, x(α);α) ≥ Φ(K, x;α) for any x ∈ [0, 1].

Since there are finitely many positive integers K < K̂, we obtain that there is α̂ > 0 such

that for any α < α̂,

Φ(K̂, x̂;α) > Φ(K, x;α) (B.17)

for any x ∈ [0, 1] and any K < K̂.

Now, for part 2., we need to show that for α small enough and for x′ > x

Φ(K̂, x′;α) > Φ(K̂, x;α).

We claim that for a given α ∈ [0, 1], the above inequality holds true for any x′ > x if

Φ(K̂, 1;α) > Φ(K̂ − 1, 1;α).

This would be sufficient for our purpose since by Equation (B.17) (setting x̂ = x = 1), for α

small enough,

Φ(K̂, 1;α) > Φ(K̂ − 1, 1;α).

Let us note that Φ(K̂, 1;α) > Φ(K̂ − 1, 1;α) means

p0(K̂, 1)
K̂∑
k=1

k∏
`=1

(
λ`−1

µ`

)
g(k, α) > p0(K̂ − 1, 1)

K̂−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
g(k, α)

where we recall that g(k, α) = (1−α)µkR+α(µkV −Ck). Since, by Lemma B.10, p0(K̂, 1) <

p0(K̂ − 1, 1) and since, as we already argued, Φ(K̂ − 1, 1;α) ≥ 0 because K̂ ≤ K̄, the above

expression implies

p0(K̂, 1)
K̂∑
k=1

k∏
`=1

(
λ`−1

µ`

)
g(k, α) > p0(K̂, 1)

K̂−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
g(k, α).

This implies g(K̂, α) > 0. Now, simple algebra yields that Φ(K̂, x′;α) > Φ(K̂, x;α) is

equivalent to

K̂−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

′

µK

)
g(K̂, α) >

K̂−1∏
`=1

(
λ`−1

µ`

)(
λK−1x

µK

)
g(K̂, α).

The above expression holds true whenever x′ > x and Φ(K̂, 1;α) > Φ(K̂ − 1, 1;α) since, as

we just showed, the latter implies g(K̂, α) > 0.
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Completion of the proof of Proposition B.13. Fix α = 0. Assume that ψ(∞) ≥ 0. This

means that (IR) is satisfied at K̄ =∞. Corollary B.4 yields that K∗ =∞.

Now, assume that ψ(∞) < 0 and note that this implies that K̄ < ∞. We consider two

cases.

Case 1. ψ(K̄ − 1) = 0. Pick α̂ as defined in Lemma B.12 where K̂ = K̄ − 1 and x̂ = 1.

we show that if α < α̂ then K∗ <∞ and (IR) binds. We claim that the optimal policy has

K∗ = K̄−1 and x∗ = 1, i.e., it is equal to p(K̄−1, 1). Indeed, for any x ∈ (0, 1] and K ≥ K̄,

K∑
k=1

pk(K, x) [µkV − Ck] < p0(K, x)
K̄−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
[µkV − Ck] = ψ(K̄ − 1) = 0

where the strict inequality holds since ψ(K̄) < 0. The inequality implies µKV −CK < 0 for

all K ≥ K̄.B.40 Hence, (IR) is violated at p(K, x). Now, because ψ(K̄ − 1) = 0 implies that

(IR) holds for p(K̄ − 1, 1), Lemma B.12 completes the argument.

Case 2. ψ(K̄ − 1) > 0. Note that
∑K̄

k=1 pk(K̄, x) [µkV − Ck] tends to ψ(K̄ − 1) > 0

when x goes to 0 and to ψ(K̄) < 0 when x goes to 1 and it is nonincreasing in x. Thus,

there is a unique x̄ ∈ (0, 1) such that

K̄−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
[µkV − Ck] +

K̄−1∏
`=1

(
λ`−1

µ`

)(
λK̄−1x

µK̄

)[
µK̄V − CK̄

]
= 0. (B.18)

Pick α̂ as defined in Lemma B.12 where K̂ = K̄ and x̂ = x̄. We show that if α < α̂ then

K∗ < ∞ and (IR) binds. We claim that the optimal policy has K∗ = K̄ and x∗ = x̄, i.e.,

it is equal p(K̄, x̄). Our choice of x̄ ∈ (0, 1) ensures that (IR) is binding. Using a similar

argument as in Case 1, it is easy to show that for any x > x̄, (IR) is violated at p(K̄, x) and

similarly at p(K, x) for K > K̄ and x ∈ (0, 1]. We conclude using Lemma B.12.

Given the above arguments in Case 1. and 2., we conclude that when ψ(∞) < 0, for any

α > 0 small enough, K∗ < ∞ and (IR) binds. Since R is interchangeable with 1/α in the

objective of [P ′], as long as α < 1, the same conclusion holds for any α < 1, if ψ(∞) < 0

and R is large enough.B.41

B.40Indeed, since ψ is single-peaked, ψ(0) = 0 and ψ(K̄) < 0, it must be that ψ is strictly decreasing over

{K̄, ...}. Simple algebra shows that this implies µKV − CK < 0 for any K ≥ K̄.
B.41To see this, assume ψ(∞) < 0 and fix any α < 1, and let the service provider’s profit be R = βR̂, where

R̂ > 0 is an arbitrary positive number. The objective function of [P ′] can be rewritten as

(1− α)β

(1− α)β + α
R̂µk +

α

(1− α)β + α
(V µk − Ck).

Clearly, [P ′] with R is the same as [P ′] with revenue R̂ and weight (on agents’ welfare) α/((1 − α)β + α).

Since α < 1, this latter weight goes to 0 as β →∞, or as R→∞. Hence, given our previous result, for R is

sufficiently large, K∗ <∞ and (IR) binds.
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Finally, suppose (IR) binds at the optimal policy p(K∗, x∗). If the environment is generic,

ψ(∞) 6= 0 and so K∗ 6= ∞. Given this, if (IR) is binding then x∗ = x̄ ∈ (0, 1] as defined in

Equation (B.18). Since the environment is generic, ψ(K̄ − 1) 6= 0 and so x̄ 6= 1.

B.2 Proof of Proposition B.14

Define function g : Z+ → R as

g(K) , (1− α)µKR + α [µKV − CK] .

Lemma A.5 (with ξ = 0) implies that function g is single-peaked when µ is regular.

Define K̄2 , sup{K ′ : g(K ′) ≥ 0}, where K̄2 , ∞ whenever g(K ′) ≥ 0 for all K ′ ∈ Z+.

Observe that, when µ is regular, because g is single-peaked (and since g(0) = 0), g(K) ≥ 0

if and only if K ≤ K̄2. We state the following result.

Lemma B.13. Assume µ is regular. Let p(K∗, x∗) be the optimal policy. We have K∗ ≤ K̄2.

Proof. The value of the objective of [P ′] is given by

K∗∑
k=1

pk(K
∗, x∗)g(k) = p0(K∗, x∗)

K∗−1∑
k=1

k∏
`=1

λ`−1

µ`
g(k) + p0(K∗, x∗)

K∗−1∏
`=1

λ`−1

µ`

λK∗−1x
∗

µK∗
g(K∗).

By way of contradiction, assume that K∗ > K̄2. As we already stated, by definition of K̄2

and single-peakedness of g, it must be that g(K ′) < 0 for K ′ = K̄2 + 1, ..., K∗. Consider

the distribution p(K̄2, 1). Compared to p(K∗, x∗), this distribution removes all weight on

negative values and, for each positive value, increases its weight. This must strictly increase

the value of the objective.

Now, it remains to show that (IR) is satisfied under p(K̄2, 1). Since p(K∗, x∗) is optimal,

(IR) holds at p(K∗, x∗):

p0(K∗, x∗)
K∗−1∑
k=1

k∏
`=1

(
λ`−1

µ`

)
h(k) + p0(K∗, x∗)

K∗−1∏
`=1

(
λ`−1

µ`

)(
λK∗−1x

∗

µK∗

)
h(K∗) ≥ 0

where we recall that h(k) = µkV −Ck. From this, it follows that ψ(K∗) ≥ 0 if h(K∗) ≥ 0 and

that ψ(K∗ − 1) ≥ 0 if h(K∗) ≤ 0. Since, by Lemma B.11, ψ is single-peaked and ψ(0) = 0,

this implies that ψ(K ′) ≥ 0 for any K ′ < K∗. In particular, ψ(K̄2) ≥ 0. This implies that

(IR) holds at p(K̄2, 1). This contradicts our assumption that p(K∗, x∗) is optimal.

Completion of the proof of Proposition B.14. Given Lemma B.13, it is enough to prove that

K̄2 < ∞. This follows since α ∈ (0, 1] and µk is uniformly bounded, which imply g(K) →
−∞ a K →∞.
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C Proofs from Section 5: FCFS with No Information

C.1 Proof of Lemma 1

The expected waiting time satisfies the following recursion. The agent in the first position

has expected waiting time

τ ∗1 = (q∗1dt)dt+ [1− q∗1dt](τ ∗1 + dt) + o(dt),

since he waits for dt period with probability q∗1dt and for τ ∗1 + dt periods with the remaining

probability. Letting dt→ 0, we get

τ ∗1 = 1/q∗1 = 1/µ1.

More generally, the agent in queue position ` waits for

τ ∗` = (q∗`dt)dt+

[
1−

∑̀
j=1

q∗jdt

]
(τ ∗` + dt) +

(
`−1∑
j=1

q∗jdt

)
(τ ∗`−1 + dt) + o(dt),

since he is served in dt period with probability q∗`dt, in τ ∗` + dt periods with probability

1−
∑`

j=1 q
∗
jdt (when nobody before him is served), and in τ ∗`−1 + dt periods with probability∑`−1

j=1 q
∗
jdt (when somebody before him is served).

The recursion equations yield a unique solution:

τ ∗` =
`∑`
j=1 q

∗
j

=
`

µ`
,

where the last equality follows from feasibility.

Part (ii) of regularity implies that q∗` is nonincreasing in `. Therefore, for each `

τ ∗`+1 − τ ∗` =

∑`
j=1 q

∗
j − `q∗`+1

(
∑`

j=1 q
∗
j )(
∑`+1

j=1 q
∗
j )
≥ 0.

Hence, it follows that τ ∗` is nonincreasing in `. Further, if 2µ1 > µ2, then q∗1 > q∗2 ≥ q∗` for all

` ≥ 2. Then, the above inequality becomes strict for all `, which proves the last statement.

C.2 Proof of Lemma 2

Recall the optimality of the cutoff policy means x∗k = 1 for all k = 0, ..., K∗ − 2 and x∗k = 0

for all k > K∗ − 1, and y∗k,` = 0 for all (k, `). Substitute these into (B). Use the resulting

equations to rewrite (1):

γ̃0
` =

p∗`µ`∑K∗

i=1 p
∗
iµi

,∀` = 1, ..., K∗.
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An agent’s expected payoff when joining the queue after being recommended to do so is:

V − C
K∗∑
k=1

γ̃0
k · τ ∗k =V − C

∑K∗

k=1 p
∗
kµk · τ ∗k∑K∗

i=1 p
∗
iµi

=V − C
∑K∗

k=1 p
∗
kk∑K∗

i=1 p
∗
iµi

=

(
1∑K∗

i=1 p
∗
iµi

)
K∗∑
k=1

p∗k (µkV − kC) ,

where the first equality is from the preceding observation and the second equality follows

from Lemma 1. Since
∑K∗

i=1 p
∗
iµi > 0, (IC0) holds if and only if (IR) holds.

C.3 Proof of Lemma 3

In the sequel, we want to show the following lemma which implies Lemma 3.

Lemma C.14. Assume that λk − λk−1 ≤ µk − µk−1 for each k. Consider any (x, y, p)

satisfying (B) and (IR) where xk is nonincreasing in k and yk,` = 0 for each `, k. Then, for

all ` ∈ {2, ..., K∗}, rt` is nonincreasing in t for all t ≥ 0.

In the sequel, we let the effective arrival rate be λ̃k , λkxk for each k. The following

straightforward lemma is stated without proof.

Lemma C.15. Assume that λk−λk−1 ≤ µk−µk−1 for each k. Then, λ̃k− λ̃k−1 ≤ µk−µk−1

holds for each k if xk is nonincreasing in k.

Consider (x, y, p) satisfying (B) and (IR). Further assume that xk is nonincreasing in

k and yk,` = 0 for each `, k. We now go through the proof of Lemma C.14. We let K̄ be

the largest state in the support of p (which can potentially be infinite). We first study the

dynamics for the case with K̄ < ∞. The proof for K̄ = ∞ requires more care and will be

provided thereafter.

C.3.1 The case of K̄ <∞.

Using (2), we write for each such ` ≥ 2,

rt+dt` =
γ̃t+dt`

γ̃t+dt`−1

=
(1− µ`dt)γ̃t` + µ`dtγ̃

t
`+1

(1− µ`−1dt)γ̃
t
`−1 + µ`−1dtγ̃

t
`

+ o(dt) =
1− µ`dt+ µ`dtr

t
`+1

(1− µ`−1dt)
1
rt`

+ µ`−1dt
+ o(dt).

Rearranging, we get

rt+dt` − rt`
dt

=
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

(1− µ`−1dt)
1
rt`

+ µ`−1dt
+ o(dt)/dt.
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Letting dt→ 0, we obtain

ṙt` = rt`
(
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

)
. (C.19)

(C.19) forms a system of ordinary differential equations. The boundary condition is defined

as follows. For ` ≤ K̄,

r0
` =

γ̃0
`

γ̃0
`−1

=
p`µ`

p`−1µ`−1

=
λ̃`−1

µ`−1

. (C.20)

where the second equality uses the fact that γ̃0
` = p`µ` \

∑∞
i=1 piµi for each `, while the third

one uses (B) whereby p`
p`−1

= λ̃`−1

µ`
. It is routine to see that the system of ODEs (C.19)

together with the boundary condition (C.20) admits a unique solution (rt`)` for all t ≥ 0.C.42

We first claim that ṙ0
` ≤ 0 for all ` = 2, ..., K̄. It follows from (C.19) that ṙ0

` ≤ 0 if and

only if

µ`−1 − µ` ≤ µ`−1r
0
` − µ`r0

`+1. (C.21)

Consider any ` ≤ K̄. Substituting (C.20) into (C.21), the condition simplifies to:

µ`−1 − µ` ≤ λ̃`−1 − λ̃`,

which holds by Lemma C.15.

Having established that ṙ0
` ≤ 0 for each ` = 2, ..., K̄, we next prove that ṙt` ≤ 0, for all

t > 0. To this end, suppose this is not the case. Then, there exists

` ∈ arg min
`′
T`′ ,

where

T`′ , inf{t′ : ṙt′`′ > 0}

if the infimum is well defined, or else T`′ , ∞. Let t = T` < ∞, by the hypothesis. Then,

we must have

r̈t` > 0; ṙt`′ ≤ 0,∀`′ 6= `; and ṙt` = 0.

Differentiating (C.19) on both sides, we obtain

0 < r̈t` = ṙt`
(
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

)
− rt`(µ`−1ṙ

t
` − µ`ṙt`+1) = rt`µ`ṙ

t
`+1 ≤ 0,

a contradiction. We thus conclude that ṙt` ≤ 0, for all ` = 2, ..., K̄, for all t ≥ 0.

C.42This follows from the observation that the RHS of (C.19) is locally Lipschitzian in r (a fact implied by

the continuous differentiability of RHS in rt`’s). See Hale p. 18, Theorem 3.1, for instance.

54



C.3.2 The case of K̄ =∞.

We first derive the infinite system of ODEs in terms of agents’ belief of occupying queue

position k = 1, ...,∞ at time t. It follows from (2), together with q∗i = µi − µi−1, that

γ̃t+dt` =
(1− µ`dt)γ̃t` + µ`dtγ̃

t
`+1∑K̄

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt).

γ̃t+dtk − γ̃tk
dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1

dt
∑∞

i=1 γ̃
t
i(1− q∗i dt)

− γ̃tk
dt

+
o(dt)

dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1

dt
[
1− dt

∑∞
i=1 γ̃

t
iq
∗
i

] − γ̃tk
dt

+
o(dt)

dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1

dt
[
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

] − γ̃tk
dt

+
o(dt)

dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1 − γ̃tk

[
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

]
dt
[
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

] +
o(dt)

dt

=
−µkγ̃tk + µkγ̃

t
k+1 + γ̃tk

[∑∞
i=1 γ̃

t
i(µi − µi−1)

][
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

] +
o(dt)

dt
.

Letting dt→ 0, we obtain: for all k ∈ N,

˙̃γtk = −µkγ̃tk + µkγ̃
t
k+1 + γ̃tk

[
∞∑
i=1

γ̃ti(µi − µi−1)

]
, fk(γ̃

t), (C.22)

and let f , (fk)k∈N.

Let X be the set of sequences in `1-space endowed with `1-norm. As is well-known, this

is a Banach space. Clearly, ∆(Z+) ⊆ X. Further, we can see that f maps from X to X.

Indeed, for any γ̃t ∈ X, we have f(γ̃t) ∈ X:

||f(γ̃t)|| =
∞∑
k=1

∣∣fk(γ̃tk)∣∣
=

∞∑
k=1

∣∣∣∣∣−µkγ̃tk + µkγ̃
t
k+1 + γ̃tk

[
∞∑
i=1

γ̃ti(µi − µi−1)

]∣∣∣∣∣
≤

∞∑
k=1

∣∣−µkγ̃tk∣∣+
∞∑
k=1

∣∣µkγ̃tk+1

∣∣+
∞∑
k=1

∣∣∣∣∣γ̃tk
[
∞∑
i=1

γ̃ti(µi − µi−1)

]∣∣∣∣∣
≤ µ̄

∞∑
k=1

∣∣γ̃tk∣∣+ µ̄

∞∑
k=1

∣∣γ̃tk+1

∣∣+ µ̄

(
∞∑
k=1

∣∣γ̃tk∣∣
)(

∞∑
i=1

∣∣γ̃ti∣∣
)
<∞

where we recall that µ̄ , supk µk <∞ and use the fact that γ̃t ∈ X.
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Next, consider the restriction of f defined as follows f : U → X where U , {{xk}k≥1 ∈
X :

∑∞
k=1 |xk| < 1 + ε} ⊂ X, for some ε > 0, is an open set containing ∆(N). We show that

f (restricted to U) is Lipschitz continuous. Indeed, for any γ̃ and γ̃′ in U ,

‖f(γ̃′)− f(γ̃)‖ =
∞∑
k=1

|fk(γ̃′)− fk(γ̃)|

≤
∞∑
k=1

|−µkγ̃′k + µkγ̃k|+
∞∑
k=1

∣∣µkγ̃′k+1 − µkγ̃k+1

∣∣
+
∞∑
k=1

∣∣∣∣∣γ̃′k
[
∞∑
i=1

γ̃′i(µi − µi−1)

]
− γ̃k

[
∞∑
i=1

γ̃i(µi − µi−1)

]∣∣∣∣∣
≤

∞∑
k=1

µk |γ̃′k − γ̃k|+
∞∑
k=1

µk
∣∣γ̃′k+1 − γ̃k+1

∣∣
+ max{

[
∞∑
i=1

|γ̃′i| (µi − µi−1)

]
,

[
∞∑
i=1

|γ̃i| (µi − µi−1)

]
}
∞∑
k=1

|γ̃′k − γ̃k|

≤ µ̄ ‖γ̃′ − γ̃‖+ µ̄ ‖γ̃′ − γ̃‖+ (1 + ε)µ̄ ‖γ̃′ − γ̃‖ .

Thus, f restricted to U is Lipschitz continuous with Lipschitz constant equal to µ̄(3 + ε).

This fact is useful for two purposes. First, it allows us to get existence and uniqueness of

a solution to the system of ODEs given by (C.22) with an initial condition in ∆(Z+). In

order to see this, let us consider the system of ODEs given by (C.22) where the vector field

f is the mapping from X to X. Since f is bounded and Lipschitz continuous on ∆(Z+) and

∆(Z+) is positively invariant, existence and uniqueness of a solution for our system of ODEs

with initial condition in ∆(Z+) follows from Picard-Lindelöf Theorem on Banach spaces.C.43

Second, Lipschitz continuity of f restricted to U also gives us Grönwall’s inequality (on

continuous dependence of solutions to initial conditions) that we will use later on.

We let γ̃K(t) = (γ̃Kk (t))k∈Z+ denote a solution to the system given by (C.22)

˙̃γt = f(γ̃t),

when γ̃0 = γ̃K(0) , (γ̃Kk (0))k∈Z+ where γ̃Kk (0) is an agent’s belief of entering the queue with

position k at t = 0 under the cutoff policy with K < ∞ without any randomization.C.44

Meanwhile, γ̃∞(t) = (γ̃∞k (t))k∈Z+ denotes a solution to this system of ODEs when γ̃0 =

γ̃∞(0) , (γ̃∞k (0))k∈Z+ where γ̃∞k (0) is an agent’s belief of entering the queue with position k

at t = 0 under the cutoff policy with K =∞.

We now complete the proof of Lemma 3 when K̄ =∞ with the following steps.

C.43Recall that a subset S of X is positively invariant if no solution starting inside S can leave S in the

future.
C.44Note that γ̃Kk (0) = 0 for all k > K.
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Step 1.
∥∥γ̃K(0)− γ̃∞(0)

∥∥→ 0 as K →∞.

Proof. We know that for all ` = 2, ..., K : γ̃K` (0) =
∏`

i=2 r
0
i γ̃

K
1 (0) =

∏`
i=2

λi−1

µi−1
γ̃K1 (0), where

we used (C.20), while γ̃K` (0) = 0 for ` ≥ K + 1. In addition, we know that γ̃∞` (0) =∏`
i=2

λ̃i−1

µi−1
γ̃∞1 (0) and

∑∞
k=1

∏k
i=2

λ̃i−1

µi−1
γ̃∞1 (0) = 1 where our convention is that

∏1
i=2

λ̃i−1

µi−1
, 1.

Thus,

γ̃∞1 (0) =
1∑∞

k=1

∏k
i=2

λ̃i−1

µi−1

.

Note that this implies that
∑∞

k=1

∏k
i=2

λ̃i−1

µi−1
<∞. Similar computation yields

γ̃K1 (0) =
1∑K

k=1

∏k
i=2

λ̃i−1

µi−1

.

Note that
∣∣γ̃K1 (0)− γ̃∞1 (0)

∣∣→ 0 as K increases. We have

∥∥γ̃K(0)− γ̃∞(0)
∥∥ =

∞∑
k=1

∣∣γ̃Kk (0)− γ̃∞k (0)
∣∣

=
K∑
k=1

∣∣γ̃Kk (0)− γ̃∞k (0)
∣∣+

∞∑
k=K+1

|γ̃∞k (0)|

=
K∑
k=1

∣∣∣∣∣
k∏
i=2

λ̃i−1

µi−1

γ̃K1 (0)−
k∏
i=2

λ̃i−1

µi−1

γ̃∞1 (0)

∣∣∣∣∣+
∞∑

k=K+1

|γ̃∞k (0)|

=
∣∣γ̃K1 (0)− γ̃∞1 (0)

∣∣ K∑
k=1

k∏
i=2

λ̃i−1

µi−1

+
∞∑

k=K+1

|γ̃∞k (0)| .

Since
∣∣γ̃K1 (0)− γ̃∞1 (0)

∣∣ → 0 as K → ∞,
∑∞

k=1

∏k
i=2

λ̃i−1

µi−1
< ∞, and

∑∞
k=K+1 |γ̃

∞
k (0)| goes to

0 as K →∞, the result follows.

Step 2. For each t > 0,

lim
K→∞

∞∑
k=1

∣∣γ̃Kk (t)− γ̃∞k (t)
∣∣ = 0.

Proof. By Grönwall’s inequality,∥∥γ̃K(t)− γ̃∞(t)
∥∥ ≤ eCt

∥∥γ̃K(0)− γ̃∞(0)
∥∥ ,

where, as shown earlier, C , µ̄(3 + ε) is the Lipschitz constant for the Lipschitz continuous

function f restricted to open set U = {{xk}k≥1 ∈ X :
∑∞

k=1 |xk| < 1 + ε}. The result then

follows from Step 1.
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Step 3. ṙ∞` (t) ≤ 0 for all ` ≥ 2 and t, where r∞` (t) = γ̃∞` (t)/γ̃∞`−1(t) for all ` ≥ 2.

Proof. Recall from (C.19) that the system of ODEs is given by

ṙ∞` (t) = r∞` (t)
(
µ`−1 − µ` − µ`−1r

∞
` (t) + µ`r

∞
`+1(t)

)
for all ` ≥ 2. Suppose to the contrary that ṙ∞` (t) > 0 for some ` and t. We already proved

in the previous section where K̄ <∞ that

ṙK` (t) = rK` (t)
(
µ`−1 − µ` − µ`−1r

K
` (t) + µ`r

K
`+1(t)

)
≤ 0

for all K <∞, ` and t. To show a contradiction, it is enough to prove that

rK` (t)
(
µ`−1 − µ` − µ`−1r

K
` (t) + µ`r

K
`+1(t)

)
→ r∞` (t)

(
µ`−1 − µ` − µ`−1r

∞
` (t) + µ`r

∞
`+1(t)

)
as K → ∞. To this end, it suffices to show that rK` (t) and rK`+1(t) converge respectively to

r∞` (t) and r∞`+1(t). It follows from Step 2 that for each k :

lim
K→∞

γ̃Kk (t) = γ̃∞k (t).

By assumption γ̃∞k (0) > 0 for all k, so

lim
K→∞

rK` (t) = lim
K→∞

γ̃K` (t)

γ̃K`−1(t)
=

γ̃∞` (t)

γ̃∞`−1(t)
= r∞` (t)

Similarly,

lim
K→∞

rK`+1(t) = r∞`+1(t),

which completes the argument.

Step 3 produces the desired result.

D Proofs from Section 6

D.1 Proofs of Proposition 2

Consider FCFS with full information. We need to show that (ICt) holds for all t ≥ 0. With

the full information rule, we only need to show that (IC0) holds. By Lemma 1, condition

(IC0) can be written as:

V − C k

µk
≥ 0⇐⇒ µkV − Ck ≥ 0 (D.23)

for all k ≤ K∗. In the sequel, we let KFI be the largest integer satisfying (D.23). We know

that, by regularity of µ, k 7→ µkV − Ck is single-peaked (by Lemma A.5 for α = 1 and
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ξ = 0). Hence, KFI is well-defined (i.e., finite) given our assumption that µk is uniformly

bounded. In addition, Equation (D.23) holds at state k if and only if k ≤ KFI . Hence, it is

enough for our purpose to show that K∗ ≤ KFI .

Proceed by contradiction and assume that the optimal cutoff policy p∗, which we recall

solves [P ′], puts strictly positive weight on k > KFI . Note that, using again the fact that

k 7→ µkV − Ck is single-peaked, for any such k, µkV − Ck < 0. Now, build p′ such that

p′k = 0 for all k > KFI and p′k = Zp∗k for all k ≤ KFI where Z > 1 is set so that the sum of p′k
is equal to 1. Given that p∗ satisfies (B′) and given that, by construction, p′k/p

′
k−1 = p∗k/p

∗
k−1

for all k ≤ KFI , we must have that p′ also satisfies (B′). Compared to p∗, distribution p′

removes all weight on negative values and, for each positive value, increases its weight. This

must strictly increase the value of the objective. It remains to show that p′ satisfies (IR).

The value of the objective must be positive under p∗ (recall that the dirac mass on 0 brings

a value of the objective of 0), and so the value of the objective must be positive under p′ as

well. Given that α = 1, this implies that (IR) is satisfied.

Now, we show that the same result holds for SIRO with full information. We fix the

optimal cutoff outcome (x∗, y∗, p∗) and recall that K∗ is finite since K∗ ≤ KFI < ∞. We

need to show that under SIRO with full information (ICt) holds for all t ≥ 0. Again, with

full information, we only need to show that (IC0) holds. We denote τSk (τFk ) the expected

waiting time of an agent who joins a queue with k − 1 agents when the queue discipline is

SIRO (FCFS). Next, we claim τSK∗ ≤ τFK∗ . This follows from Lemma 1 and Lemma 4. Then,

V − CτSK∗ ≥ V − CτFK∗ ≥ 0.

Given that τSk is nondecreasing in k (see Lemma 4 for a formal argument), we obtain that

V − CτSk ≥ 0 for all k ≤ K∗ which yields (IC0) for SIRO with full information.

For the second statement, fix the outcome (x∗, y∗, p∗) associated with the optimal cutoff

policy. By Little’s law, the expected waiting time for an agent when he joins the queue is

given by

T ∗ ,

∑
k p
∗
kk∑

k p
∗
kµk

,

where the numerator is the average length of queue and the denominator is the average exit

rate (recall that y∗k = 0 for all k), both evaluated at the invariant distribution p∗. Hence, if

an agent is given no information except for the recommendation to join the queue, he will

join the queue as long as

V − cT ∗ ≥ 0⇔ V
∑
k

p∗kµk − C
∑
k

p∗kk ≥ 0,

which holds since p∗ satisfies (IR).

59



D.2 Proof of Proposition 3

Fix any queueing rule q ∈ Q, and suppose the information rule I ∈ I admits distinct beliefs

for expected waiting times. For each belief γ ∈ supp(I0), let τ(γ) denote the expected

waiting time. Let τ , supγ∈supp(I) τ(γ). Then, again by Little’s law,

T ∗ =

∫
γ∈supp(I)

τ(γ)I(dγ).

We must have τ > T ∗, or else τ(γ) = T ∗ for all γ ∈ supp(I), which contradicts the hypothesis

that distinct expected waiting time are possible for an agent at time t = 0. Since τ > T ∗,

there exists γ ∈ supp(I) such that τ(γ) > T ∗. Then, an agent with belief γ would receive

the payoff

V − τ(γ)C < V − T ∗C = 0

by obeying the designer’s recommendation to join the queue at t = 0. Hence, (IC0) fails

under (q, I).

D.3 Proof of Lemma 4

The agent in state k ≥ 1 waits for

τ k = (
µk
k
dt)dt+ λkdt(dt+ τ k+1) + [1− µkdt− λkdt] (τ k + dt) +

k − 1

k
µkdt(τ k−1 + dt) + o(dt),

where λK∗ = 0.

Simplifying and letting dt→ 0, we get

τ k =
1

µk + λk
+

λk
µk + λk

τ k+1 +
k − 1

k

µk
µk + λk

τ k−1. (D.24)

Let Φ(τ) denote the vector-valued map defined by the RHS of the above equations. Note

that

||Φ(τ ′′)− Φ(τ ′)|| ≤ ξ||τ ′′ − τ ′||,

where ξ , maxk{ λk
µk+λk

+ k−1
k

µk
µk+λk

} < 1.D.45 Hence, the self-map Φ : RK∗
+ → RK∗

+ is a

contraction, so admits a unique fixed point. Therefore, we conclude that τ is well defined.

We next prove that τ k is nondecreasing in k; the proof consists of several steps.

Step 1. If τ k <
k
µk

, then k > 1 and τ k > τ k−1.

Proof. Suppose to the contrary that τ k <
k
µk

, and either k = 1 or τ k ≤ τ k−1. Then, use

(D.24) to write

λk(τ k+1 − τ k) =
µk
k
τ k − 1 +

k − 1

k
µk(τ k − τ k−1) < 0, (D.25)

D.45The norm || · || denotes the norm max.
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since τ k <
k
µk

and either k = 1 or τ k ≤ τ k−1. It then follows that

τ k+1 < τ k <
k

µk
≤ k + 1

µk+1

,

so one can iterate the argument repeatedly. Eventually, we obtain τK∗ <
K∗

µK∗
and τK∗ <

τK∗−1. But (D.25) with k = K∗ and λk = 0 yields

K∗ − 1

K∗
µK∗(τK∗ − τK∗−1) = 1− µK∗

K∗
τK∗ > 0, (D.26)

since τK∗ <
K∗

µK∗
. Since this implies that τK∗−1 < τK∗ , we have a contradiction.

Since τ 1 ≥ 1
µ1

by Step 1 and, by assumption, K∗ < ∞, the states {1, ..., K∗} are parti-

tioned into a finite set of consecutive intervals K1, ...,Km, where Ki = {ki, ki + 1, ..., ki + ji},
Ki+1 = {ki + ji + 1, ..., ki + ji + ji+1}, for some ki, ji, ji+1 > 0, such that, τ k ≥ k

µk
for each

k ∈ Ki, if i is an odd number, and τ k <
k
µk

for each k ∈ Ki, if i is an even number.

Step 2. Suppose k ∈ Ki, where i is an odd number. Then, τ k+1 ≥ τ k. In addition,

τ ki > τ ki−1 when i > 1.

Proof. Let Ki = {ki, ki + 1, ..., ki + ji}. First, let k = ki. There are two cases. Suppose first

i = 1, so ki = 1. In this case, (D.25) with k = 1 gives

λ1(τ 2 − τ 1) = µ1τ 1 − 1 ≥ 0,

where the inequality follows from Step 1. So τ 2 ≥ τ 1. Suppose next i > 1. Then, we have

τ ki ≥
ki
µki
≥ ki − 1

µki−1

> τ ki−1,

where the last inequality follows from the fact that ki − 1 ∈ Ki−1, where i − 1 is an even

number. Using this and (D.25), we conclude that for k = ki,

λk(τ k+1 − τ k) =
µk
k
τ k − 1 +

k − 1

k
µk(τ k − τ k−1) ≥ 0,

where the inequality follows since k ∈ Ki with i being odd. Hence, τ ki+1 ≥ τ ki . One can

then iterate the argument to conclude that τ k+1 ≥ τ k for any k ∈ Ki.

Since, by Step 1, τ k > τ k−1 for any k ∈ Ki, where i is even, Step 2 implies that τ [·]

is nonincreasing. Step 1 further yields τ 1 ≥ 1/µ1. Meanwhile, it follows from (D.26) that

τK∗ ≤ K∗/µK∗ , since τK∗ ≥ τK∗−1.

Next, assume 1/µ1 < K∗/µK∗ . We prove that τK∗ > τ 1. Suppose not. Then, τ k must

be constant in k for all k = 1, ..., K∗. The recursion equations (D.25) then implies that

τ k = k/µk for all k = 1, ..., K∗. But this implies that 1/µ1 = K∗/µK∗ , a contradiction.
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Finally, suppose 2µ1 > µ2. We first prove τ 2 > τ 1. Suppose to the contrary that τ 2 = τ 1.

Then, (D.25) with k = 1 implies that τ 1 = 1/µ1. Since τ 3 ≥ τ 2, (D.25) with k = 2 gives

τ 2 = 2/µ1. But since 2µ1 > µ2, we have a contradiction to τ 2 = τ 1. Now that τ 2 > τ 1,

the proof of Step 2 holds with strict inequality—i.e., τ k+1 > τ k for all k ∈ Ki with i being

odd numbered. Combining Step 1 and Step 2 (with strict inequality) then produces strict

monotonicity of τ k in k.

D.4 Proof of Proposition 4

Let γt be the (degenerate) posterior belief induced by this information policy. Since the

expected waiting at each t depends only on the queue length at each t (and not on one’s

queue position), we can effectively focus on belief γt = (γtk), where γtk is the posterior

probability at time t that the queue length is k.

As before, we focus on the likelihood ratio rtk ,
γtk
γtk−1

. For k ≥ 2 and for a small period

dt, the likelihood ratio is updated from time t to t+ dt according to the following recursion:

rt+dtk =
γtk(1− λ̃kdt− µkdt) + γtk−1λ̃k−1dt+ γtk+1µk+1

k
k+1

dt

γtk−1(1− λ̃k−1dt− µk−1dt) + γtk−2λ̃k−2dt+ γtkµk
k−1
k
dt

+ o(dt)

=
rtk(1− λ̃kdt− µkdt) + λ̃k−1dt+ rtk+1r

t
kµk+1

k
k+1

dt

(1− λ̃k−1dt− µk−1dt) + 1
rtk−1

λ̃k−2dt+ rtkµk
k−1
k
dt

+ o(dt),

where we use the convention that rtK∗+1 = 0. (Recall also that λ̃k is an effective arrival rate:

λ̃k , λk for k < K∗ − 1 and λ̃K∗−1 , x∗K∗−1λK∗−1.) To understand the formula, consider

the numerator, which corresponds to the belief that the queue length is k at time t+ dt: it

equals γtk, the corresponding belief at time t, if either no agent arrives or no agent is served,

γtk−1 if an agent arrives during [t, t + dt), and γtk+1 if an agent other than himself is served

during [t, t + dt) whose probability is k
k+1

µk+1dt. The denominator, which corresponds to

the belief about the queue length being k − 1 at time t+ dt, is explained analogously.

Subtracting rtk from both sides and dividing it by dt and let dt→ 0, we obtain:

ṙtk = rtk

[
µk−1 + λ̃k−1 − µk − λ̃k +

λ̃k−1

rtk
+ µk+1r

t
k+1

k

k + 1
− λ̃k−2

rtk−1

− µkrtk
k − 1

k

]
.

We now evaluate this at t = 0. As before we use r0
k = λ̃k−1

µk−1
to obtain: for each k =

2, ..., K∗,

ṙ0
k = r0

k

[
µk−1 + λ̃k−1 − µk − λ̃k + µk−1 + λ̃k

µk+1

µk

k

k + 1
− µk−2 − λ̃k−1

µk
µk−1

k − 1

k

]
= r0

k

[
2µk−1 − µk − µk−2 + λ̃k−1

(
1− µk

µk−1

k − 1

k

)
− λ̃k

(
1−

µk+1

µk

k

k + 1

)]
, (D.27)
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where µ0 ≡ 0 and λ̃K∗ ≡ 0.

We first claim that ṙ0
k > 0 for all k = 2, ..., K∗. This follows for k = 2, ..., K∗ − 2 since

the RHS of (D.27) has the same sign as:

2µk−1 − µk − µk−2 + λk−1

(
1− µk

µk−1

k − 1

k

)
− λk

(
1−

µk+1

µk

k

k + 1

)
≥λk−1

(
1− µk

µk−1

k − 1

k

)
− λk

(
1−

µk+1

µk

k

k + 1

)
> 0,

where the first inequality follows from the regularity of service process and the last inequality

follows from the hypothesis assumed. For k = K∗ − 1, the relevant expression is:

2µK∗−2 − µK∗−1 − µK∗−3 + λK∗−2

(
1−

µK∗−1

µK∗−2

K∗ − 2

K∗ − 1

)
− x∗K∗−1λK∗−1

(
1− µK∗

µK∗−1

K∗ − 1

K∗

)
≥λK∗−2

(
1−

µK∗−1

µK∗−2

K∗ − 2

K∗ − 1

)
− λK∗−1

(
1− µK∗

µK∗−1

K∗ − 1

K∗

)
> 0,

where again the first inequality follows from the regularity of service process (which also

implies K∗

µK∗
≥ K∗−1

µK∗−1
; see Lemma 1). Finally, for k = K∗, the expression reduces to

2µK∗−1 − µK∗ − µK∗−2 + x∗K∗−1λK∗−1

(
1− µK∗

µK∗−1

K∗ − 1

K∗

)
> 0,

since x∗K∗−1 > 0.

Since ṙ0
k > 0 for all k = 2, ..., K∗, for t > 0 small enough, we have rtk > r0

k, for all

k = 2, ..., K∗. This means that γt strictly dominates γt in FOSD. Hence,
∑K∗

k=1 γ
t
kτ k >∑K∗

k=1 γ
0
kτ k, since τK∗ > τ 1 from Lemma 4. Since (IR) binds at t = 0, we have

0 = V − C
K∗∑
k=1

γ0
kτ k > V − C

K∗∑
k=1

γtkτ k,

which implies that (ICt) is violated at t > 0.

E Proof of Proposition 5

Fix any π and no information. Beliefs evolve during [t, t + dt) according to Bayes rule as

follows:

γt+dt1,1 =
γt1,1(1− λdt− µdt) + γt2,2µdt

γt1,1(1− µdt) + γt2,1(1− µdt) + γt2,2
+ o(dt),

γt+dt2,1 =
γt2,1(1− µdt) + γt1,1πλdt

γt1,1(1− µdt) + γt2,1(1− µdt) + γt2,2
+ o(dt),
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γt+dt2,2 =
γt1,1λdt(1− π) + γt2,2(1− µdt)

γt1,1(1− µdt) + γt2,1(1− µdt) + γt2,2
+ o(dt).

From these, we can derive ODEs that describe belief evolutions:

γ̇t1,1 = −γt1,1λ+ γt2,2(1− γt1,1)µ, (E.28)

γ̇t2,1 = λγt1,1π − µγt2,1γt2,2, (E.29)

γ̇t2,2 = γt1,1λ(1− π)− (γt2,2)2µ, (E.30)

with a boundary condition at t = 0:

γ0
1,1 =

p0λ

λp0 + λp1

=
µ

µ+ λ
, γ0

2,1 =
p1λ(1− π)

λp0 + λp1

=
λ(1− π)

µ+ λ
, γ0

2,2 =
p1λπ

λp0 + λp1

=
λπ

µ+ λ
,

where we used the fact that p1 = λ
µ
p0 and p2 = (λ

µ
)2p0 at the invariant distribution of k.

Substituting, we have at t = 0.

γ̇0
1,1 = −γ0

1,1λ+ γ0
2,2(1− γ0

1,1)µ = −µλ(µ+ (1− π)λ)

(µ+ λ)2
,

γ̇0
2,1 = λγ0

1,1π − µγ0
2,1γ

0
2,2 =

µλπ(µ+ πλ)

(µ+ λ)2
.

Then, the change in expected waiting time at t = 0 is:

ω′(0) =γ̇0
1,1τ 1,1 + γ̇0

2,1τ 2,1 + γ̇0
2,2τ 2,2

=γ̇0
1,1τ 1,1 + γ̇0

2,1

1

µ
+ γ̇0

2,2(τ 1,1 +
1

µ
)

=− γ̇0
2,1τ 1,1 − γ̇0

1,1

1

µ

=− µλπ(µ+ πλ)

(µ+ λ)2

µ+ λ

µ(µ+ λπ)
+
λ(µ+ (1− π)λ)

(µ+ λ)2

=− λπ(µ+ λ)

(µ+ λ)2
+
λ(µ+ (1− π)λ)

(µ+ λ)2

=− λ

(µ+ λ)2
[π(µ+ λ)− (µ+ (1− π)λ)] ,

which is strictly positive whenever π < µ+λ
µ+2λ

. Then, since (IR) is binding at the optimal

policy, this shows that (ICt) fails for sufficiently small t > 0 for any such π.
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