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Abstract

COVID-19 has revealed several limitations of existing mechanisms for rationing scarce

medical resources under emergency scenarios. Many argue that they abandon various ethical

values such as equity by discriminating against disadvantaged communities. Illustrating that

these limitations are aggravated by a restrictive choice of mechanism, we formulate pandemic

rationing of medical resources as a new application of market design and propose a reserve

system as a resolution. We develop a general theory of reserve design, introduce new concepts

such as cutoff equilibria and smart reserves, extend previously-known ones such as sequential

reserve matching, and relate these concepts to current debates.
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“If you fail to plan, you are planning to fail.”

— Benjamin Franklin

1 Introduction

Agencies responsible for public health, medical and emergency preparedness at the international,

national, regional, and hospital level all have proposed guidelines for allocating scarce medical

resources in crisis situations. These situations range from wartime triage medicine to public

health emergencies, such as influenza pandemics and COVID-19. In 2005, the World Health

Organization warned of a severe influenza pandemic and advised countries to develop pandemic

guidelines and triage protocols (WHO, 2005). While the nature of the resources in short supply

depends on the crisis situation, for influenza and COVID-19, they may include ventilators, anti-

viral medications, and potential vaccines.

How to implement a rationing system during a crisis situation presents a complicated ques-

tion rife with ethical concerns. Rationing guidelines typically start by articulating several dif-

ferent ethical principles. These principles include equity, which is fair distribution of benefits

and burdens; utilitarianism, which involves maximizing welfare; reciprocity, which is respecting

contributions others have made in the past; instrumental valuation, which is respecting con-

tributions others could make in the future; solidarity, which is fellowship with other members

of society; non-discrimination, which is requiring that certain individual characteristics such as

gender, race, and age play no role allocation. Rationing guidelines also emphasize procedural

values, such as accountability, reasonableness, and transparency (see, e.g., WHO (2007); Prehn

and Vawter (2008); Emanuel et al. (2020); Truog, Mitchell and Daley (2020)).

After articulating these values, regional or national guidelines propose a way to operationalize

them with an allocation mechanism. The most common system used in these guidelines is a

priority system which places patients into a single priority order, and allocates all units based

on this single priority. For example, 2018 US Centers for Disease Control Vaccine Allocation

guideline place patients into one of four tiers based on their role in providing homeland and

national security, providing health care and community support services, maintaining critical

infrastructure, and being a member of the general population (CDC, 2018). In some cases

priority orders are obtained through an objective scoring method, resulting in a priority point

system. This is especially common for rationing of ICU beds and ventilators. For example,

Piscitello et al. (2020) reports that 19 states have adopted priority point systems based on the

Sequential Organ Failure Assessments (SOFA) score, a scoring method that measures severity

of organ dysfunction in six organ systems where higher aggregate scores are associated with

elevated mortality risk.

The COVID-19 pandemic has spurred renewed interest in these guidelines and has revealed

several important limitations of the existing allocation mechanisms. Whether it is about ra-

tioning of ventilators, antiviral drugs or vaccines, a common theme in many of these debates is

that existing guidelines and allocation mechanisms have given up on various important ethical

values. For example, advocates for disadvantaged groups voice opposition to priority point sys-

tems which use survival probabilities based on various proxies such as the SOFA score. They
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argue that these criteria are discriminatory for they fail to acknowledge pre-existing discrimi-

nation in access to health care (Schmidt, 2020). From March-June 13, 2020, the age-adjusted

COVID-19 hospitalization rate of non-hispanic blacks is 178 per 100,000, which is more than

four times that of non-hispanic whites (CDC, 2020). Moreover, disparate access to testing for

disadvantaged groups have also increased COVID-19 prevalence in these communities, further

elevating their disadvantage. Similarly, disabilities’ advocates voice opposition to rationing plans

based solely on survival probabilities. Some of them reject a detailed triage protocol in favor of

random selection (Ne’eman, 2020). In their view, such criteria are inherently discriminatory for

certain types of disabled patients.

In this paper, we argue that several shortcomings of the existing rationing systems are a

direct consequence of restricting allocation mechanisms to priority systems. This restriction

imposes a single priority order of individuals for allocation of all units. This limiting feature

of a priority system compromises its ability to represent a variety of ethical considerations. A

remedy must therefore break this characteristic. We propose an alternative way to accommodate

multiple ethical principles through a reserve system. In a reserve system, units are divided into

multiple categories each representing an ethical value or a balance of multiple ethical values.

Rather than relying on a single priority order of individuals for allocation of all units, a distinct

priority order is used to prioritize individuals for units of each category. This heterogeneity

allows for accommodating the desired ethical values without the need to aggregate them into a

single metric or into a strict lexicographic hierarchy.

The flexibility of a reserve system over a priority system can help reach compromises for

several ongoing polarizing debates. For example, many argue that disadvantaged groups or

under-represented minorities should be given priority access for a COVID-19 vaccine. This is a

significant departure from the recommended priority tiers in the 2018 CDC Vaccine allocation

guideline. Others question whether prioritizing these groups would erode public trust in vacci-

nation. For more on this debate, see Ducharme (2020), McCaughey (2020), and Twohey (2020).

While there is no middle ground for compromise under a priority system, a compromise can be

reached through a reserve system by giving disadvantaged communities preferential treatment

for a fraction of vaccines. In Section 5, we present other examples of how a reserve system can

help reach compromises in other debates.

Reserve systems have an important precedent in medicine for deceased donor kidney allo-

cation. Until 2014, the U.S. Organ Procurement and Transplantation Network (OPTN) used a

priority system to allocate deceased donor kidneys (OPTN, 2014). After establishing medical

compatibility, patients were ordered by priority type, and then priority points, with ties broken

by waiting time. In 2014, the OPTN system changed to include a reserve (Israni et al., 2014).

In the reserve, 20% of the highest quality kidneys are reserved for adults with the highest 20%

expected post-transplant survival score (EPTS). A priority points system is used for the remain-

ing kidneys. Parallel to our motive for introducing reserve systems (i.e. better integration of

various ethical principles), OPTN added this reserve to better reflect the ethical principle of

utilitarianism, which was not as prominently captured in the prior system.1

1The New Kidney Allocation System (KAS) Frequently Asked Questions, Organ Procurement and Transplan-

tation Network. Available at https://optn.transplant.hrsa.gov/media/1235/kas_faqs.pdf (last accessed on
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In addition to formulating medical rationing as a new application of market design, our paper

also contributes to the theoretical matching literature by developing a general theory of reserve

systems. Beyond our primary application, our results have direct implications for a wide range

of applications such as affirmative action in allocation of public positions or public school seats

and assignment of immigration visas. In the remaining part of this section, we summarize our

contributions to the theory of reserve design.

In our formulation of medical rationing, there is a number of identical medical units to be

allocated to a set of patients. These units can be ICU beds, ventilators, anti-virals, vaccines, or

other scarce vital items. An allocation is a matching of patients either to a reserve category if

the patient receives a unit or the empty set if she does not. Hence, by formulating the medical

rationing problem as an application of reserve design, we do away with the restriction of mapping

all ethical considerations on to a single dimension. Under our formulation, units are placed into

one of a set of reserve categories, each with a distinct priority order of patients. A reserve system

is a generalization of a priority system because units in different reserve categories can prioritize

patients in different ways.

Our formal approach is axiomatic and lays the foundations of reserve systems by specifying

three basic principles any system has to satisfy. First, patients should only receive units for

which they are qualified. Second, no unit from any reserve category should stay idle as long as

there is an eligible patient for that category. Finally, for each category, units should be allocated

based on the priority order of individuals in the category. We see these principles as minimal

requirements, which can be justified on both normative and positive grounds.

In many real-life applications of reserve systems it is customary to announce the outcome of

a reserve system though a specification of the cutoff individual at each category , i.e., the lowest

priority individual who has gained admission through each category.2 The vector of cutoff

individuals identify the budget set for each individual in the sense that they can see through

which (if any) category they can receive a unit. Motivated by this observation, we formalize the

notion of a cutoff equilibrium, a notion akin to a competitive equilibrium. A cutoff equilibrium

is a vector of cutoff individuals together with a matching, where each patient is matched with a

category in her budget set, and any category that has not filled its quota has a cutoff of ∅ (the

counterpart of a price of zero in our model). Our first result not only rationalizes the prevalence

of the use of cutoffs in real-life applications but also the plausibility of our three axioms: A

matching satisfies these three properties if and only if it is supported at a cutoff equilibrium.

Although our first main result provides a full characterization of matchings that satisfy our

three properties, it leaves open the question of how to find matchings supported at cutoff equi-

libria. Just like computing all competitive equilibria often presents challenges except in special

cases, so does the computation of all cutoff equilibria. Our second main result is that matchings

that are supported at cutoff equilibria can be computed by constructing a hypothetical two-sided

matching market where each patient has strict preferences between categories. This construc-

tion is hypothetical because in the original problem the patient only cares about obtaining a

resource and is therefore indifferent between all units. We show that a matching satisfies our

7/20/2020).
2See, for example, Appendix Figure A1.
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three properties if and only if it can be computed as the outcome of the deferred acceptance

algorithm (Gale and Shapley, 1962) for this hypothetical market.

Our link to a hypothetical two-sided matching market provides a great deal of flexibility to

compute outcomes by changing the way patients rank categories under these artificial prefer-

ences. This flexibility has an important drawback: unless there is a systematic way to construct

preferences, practitioners may not value the ability to construct artificial preferences at this

level of generality. For instance, it may be difficult to explain if a patient i is considered first for

an unreserved category and then for an essential personnel category, whereas another patient j

with similar characteristics is considered for these categories in the reverse order. We therefore

focus on an intuitive subclass of matchings, known as sequential reserve matchings, in which

reserve categories are processed in sequence in a particular order. The set of sequential reserve

matchings is a refinement of the set of cutoff matchings. Within this class, we show that the

earlier a category is processed, the higher is the maximum cutoff. Intuitively this means that

the earlier a category is processed the more competitive it becomes.

We then turn to a special environment where there is a baseline priority order. This special

environment, which is the focus of much of the earlier literature on reserve systems, is widespread

in real-life applications where the baseline order may depend on scores on standardized exams,

results of random lotteries, or time of application. For medical rationing the baseline order may

depend on an objective measure of expected health outcome such as the SOFA score.3 There is

an unreserved category in which all patients are beneficiaries and the priority order is the same as

the baseline. Any other category is a preferential treatment category, with a set of beneficiaries,

and all beneficiaries of a category are prioritized over patients who are not, but otherwise their

relative priority order is the same as the baseline. If each patient is a beneficiary of at most one

preferential treatment category, and there are not more than five categories, every beneficiary

of the preferential treatment category who is matched when a category c is processed earlier is

also matched when it is processed later. This result substantially generalizes earlier results on

reserve processing to several categories, while also showing the limit of obtaining sharp formal

results for more than five categories.

Finally, we turn to one possible shortcoming of certain sequential reserve matchings: some

of the sequential reserve matchings can be Pareto dominated by others. This shortcoming

is a direct consequence of the mechanical allocation of patients into reserve categories under

sequential reserve matching when they clear the cutoffs for multiple categories. We therefore

introduce an additional principle requiring a “smart” allocation of reserves in these situations,

maximizing the accommodation of intended beneficiaries of reserves. This property together with

non-wastefulness imply Pareto efficiency. We conclude our theoretical analysis by introducing

an algorithm that produces a range of “smart” reserve matchings with the desired properties.

The rest of paper organized as follows. Section 2 presents some additional background on

widespread use of priority systems for emergency rationing of medical resources and identifies

3The European Society of Intensive Care Medicine devised the SOFA score at a consensus meeting in October

1994 in Paris, France (Vincent et al., 1996). Each of six organ systems – lungs, liver, brain, kidneys, blood

clotting, and blood pressure – is independently assigned a score of 1 to 4. The SOFA score sums these six scores,

and sicker patients are assigned higher scores. While not initially designed as a prognostic score, subsequent

research supports its use for that end (Jones, Trzeciak and Kline, 2009).
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several shortcomings of these systems. Section 3 presents our formal model of reserve systems,

states our main two characterization results, and introduces sequential reserve matchings. Sec-

tion 4 specializes the model to one with a baseline priority order, develops comparative static

results, and formulates and studies smart reserve matchings. It also relates our findings to earlier

literature on reserve systems. Section 5 discusses how a reserve system can help with several

medical rationing debates and some other practical aspects of medical rationing. The paper

concludes in Section 6. All proofs are relegated to the Appendix.

2 Priority versus Reserve Systems for Pandemic Rationing

2.1 Background on Priority Systems

The most common allocation mechanism for medical rationing is a priority system where units

are allocated to patients based on a single priority order. This priority order captures the ethical

values guiding the allocation of the scarce medical resource. An example is the 2005 US National

Vaccine Advisory Committee plan. This guideline places patients into the following tiers: Tier

1A: Health Care Workers, Tier 1B: Highest-Risk Groups, Tier 1C: Household contacts and

pregnancy, Tier 1D: Pandemic responders, Tier 2A: Other high-risk groups, Tier 2B: Critical

infrastructure groups, Tier 3: Other key government health care decision-makers, and Tier 4:

Healthy patients between 2 to 64 years without any high-risk conditions. Within each group,

all patients have equal priority. These guidelines were drafted following the 2004-05 influenza

vaccine shortage in the United States (Temte, 2006).

In some of the applications, most notably for allocation of ventilators and ICU beds, the

underlying priority order is obtained through a monotonic scoring function. Such a refinement

of a priority system is called a priority point system. Under this system, each ethical value

is represented with a monotonic function. Values are then integrated with an additive formula,

which produces an aggregate point score for each patient. The claims of patients over medical

resources are determined based on their point scores, with a lower score typically indicating a

higher claim. Often a priority score is coarsened into tiers, and all patients in the same tier have

the same claim. Tie-breaking within a tier is typically based on clinical criteria or lotteries.

A single-principle point system is a priority point system based on only one ethical value.

The 2015 New York State Ventilator Guideline is a prominent example. In the system, as a

first step certain patients are deemed ineligible. The remaining patients are ordered based on

estimated mortality risk, which is re-evaluated every 48 hours (Zucker et al., 2015). Mortality

risk is measured by the Sequential Organ Failure Assessment (SOFA) score which places patients

into priority tiers. In cases of excess demand among members of a given priority tier, New York

and other proposals recommend random allocation – a lottery – among equal-priority patients

(Zucker et al., 2015; Emanuel et al., 2020).

Several bioethicists and clinicians criticize single-principle priority point systems solely based

on SOFA for ignoring multiple ethical values. These critics emphasize the need to integrate a

variety of ethical values and advocate for a multi-principle approach, see, e.g., White et al.

(2009) and Daugherty-Biddison et al. (2017). White et al. (2009) describe a multi-principle

priority point system where several ethical values are placed on a numerical scale and summed
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up across ethical values to arrive at a single number. Variants of the system shown in Table 1

have become the leading multi-principle priority point system for ventilators.4

Table 1 shows how the ethical values of saving the most lives, saving the most years of life,

and the life-cycle principle are integrated through an additive formula. As an example, consider

a hypothetical patient with a SOFA score of seven. She obtains two points based on the ethical

value of saving the most lives. If the patient has no chronic diseases or comorbidities and is

between 61-74 years old, she obtains four more points based on the other two ethical values

yielding a total of six. A patient with a lower total point score has a higher priority for the

resource than a patient with a higher total point score.5 More than half of US states use either

a single- or multiple-principle priority point system (Whyte, 2020).

2.2 Challenges with Priority Systems

While practical, priority systems have a number of important limitations. A priority system may

fail to integrate different ethical values because of incommensurability.6 For example, the ethical

values of saving the most lives and the life-cycle principle in Table 1 are incommensurable values,

making it hard to interpret the role of these values under the priority point system in Table 1. In

addition, various ethical values have implications on group composition, and a priority system

lacks the flexibility to accommodate these considerations. In many cases, these challenges have

led to the exclusion of some of ethical values all together. For these reasons, priority systems are

4As of April 24, 2020, California, Colorado, Massachusetts, New Jersey, Oklahoma, and Pennsylvania have

adopted variants of this system. de Pu Kamp, Devine and Griffin (2020) reports that several hundred hospitals

around the country have adopted this system.
5Most protocols specifies a tie-breaker between patients with identical total points, although the South Carolina

protocol fails to provide one.
6In ethics, two values are incommensurable when they do not share a common standard of measurement.
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often ill-defined for medical rationing and not usable. We elaborate on several of these points

next, focusing on several debates on rationing of ventilators and ICU beds. Since virtually all

states with guidelines recommend priority point systems, we present the shortcomings of these

mechanisms.7 Many of these shortcomings are shared by priority systems in general.

2.2.1 Failure to Represent the Desired Ethical Values

A priority point system requires that ethical values be mapped to a single linear order. However,

there are some ethical principles where the claims of patients cannot be represented with a

monotonic function. One example is group-based policies, such as those related to regions or

gender. For example, the European Union has proposed balanced participation of women and

men in political and public decision making by requiring that at least 40% of public offices are

held by women and at least 40% are held by men (Dittmar, 2018; Rankin, 2020). For medical

rationing, it is possible that a future pandemic is so devastating that it threatens a significant

portion of the human race. In such a hypothetical crisis, a principle based on survival of the

species may suggest a similar constraint. A guideline may recommend to allocate at least 40%

of vital resources to female patients and at least 40% to male patients. Clearly, considerations

based on group composition cannot be represented with a function that relies only on individual

attributes. Similarly, a priority point system cannot accommodate a guideline that wishes to

allocate resources to disabled citizens in proportion to their representation in society.

When constructing priority points and incorporating multiple ethical values, a priority point

system norms or scales different and potentially incommensurable ethical principles into one

dimension. These challenges are like the usual ones associated with aggregating social alterna-

tives into a single ordering based on multiple inputs – a situation which involves “comparing

apples to oranges.” The debate on how rationing guidelines should compare claims of children

versus adults illustrates this issue. Massachusetts guidelines state that indicators that feed into

scores for adults are not reliable for children (Bateman et al., 2020). They explain that “scoring

systems that are meaningful for adult critical care patients do not apply to pediatric patients or

newborns.” As a result, the Massachusetts guidelines use a different scoring system for children.

However, their point system then uses a single priority point system to evaluate all patients

together. This decision ends up comparing the point scores of children with those of adults.

Third, the fact that all resources are ordered using a single uniform priority order can

result in the exclusion of certain ethical values. An example of this phenomenon appears in

the debate about prioritizing essential personnel. Many groups argue that essential personnel,

and especially frontline healthcare workers, should receive priority allocation of scarce resources

under triage scenarios. This view is also strongly endorsed by medical ethicists based on the

backward-looking principle of reciprocity and the forward-looking principle of instrumental value

(Emanuel et al., 2020). Nevertheless, states such as New York State and Minnesota had to give

up on this consideration, largely due to concerns about the extreme scenarios where no units

may remain for the rest of the society. One of the reasons offered in Vawter et al. (2010) by the

Minnesota Pandemic Working group is as follows:

7As of July 2020, the only exception is Michigan which recommends a priority system with a lexicographic

hierarchy between several tiers of patients.
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... it is possible that they [key workers] would use most, if not all, of the short supply of

ventilators; other groups systematically would be deprived access.

The New York State Task Force also struggled with this topic, recognizing the need to provide

“insurance” for frontline health workers (Zucker et al., 2015). However, they ultimately decided

against it, stating:

Expanding the category of privilege to include all the workers listed above may mean

that only health care workers obtain access to ventilators in certain communities. This

approach may leave no ventilators for community members, including children; this al-

ternative was unacceptable to the Task Force.

For both states, a limitation of priority systems resulted in completely giving up these ethical

values. It is important to emphasize that these concerns are direct consequences of the mechanics

of a priority system where providing preferential access to any group for any portion of the

resources means giving preferential treatment for all of them.

Fourth, a single priority order struggles to integrate the principle of non-exclusion. This

principle is the idea that every patient, no matter his or her circumstances, should have some

hope of obtaining a life-saving resource. In the March 2020 Alabama rationing plan, individuals

with severe or profound mental disabilities were considered “unlikely candidates for ventilator

support.”8 Washington state guidelines recommend that hospital patients with “loss of reserves

in energy, physical ability, cognition and general health” be switched to outpatient or palliative

care (Fink, 2020). In a priority system coupled with excess demand for available resources by

the higher-priority groups – even without any explicit exclusion of certain types of individuals

– there will be some patients in a lower-priority group who would never be treated during a

shortage.

2.2.2 Implementation Issues in Existing Guidelines

These conceptual challenges with a priority point system are reflected in actual design challenges

in several guidelines. We briefly describe three examples.

Massachusetts revised their critical care guidelines on April 7, 2020 for the COVID-19 pan-

demic. Like many guidelines, this document was the result of a committee consisting of medical

experts and ethicists. The guidelines provided an adaption of the system described in Table 1

without the life-cycle consideration. However, after precisely spelling out the priority order with

a table of numbers for each dimension, the document states:

Individuals who perform tasks that are vital to the public health response, including all

those whose work directly to support the provision of care to others, should be given

heightened priority.

This clause provides no further description on how heightened priority is to be implemented.

This lack of transparency contrasts with the level of precision regarding other ethical principles,

and may reflect their inability to arrive at consensus given the underlying priority point system.

8After widespread backlash, this plan was withdrawn on April 9, 2020. Carter (2020) warns that plans which

discriminate against the disabled may violate the Americans with Disabilities Act.
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Crisis standards of care guidelines initially developed in Pittsburgh use a similar adaptation

of the system described in Table 1. They offer a vague description of tie-breakers:

In the event that there are ties in priority scores between patients, life-cycle considerations

will be used as a tiebreaker, with priority going to younger patients, who have had less

opportunity to live through life’s stages. In addition, individuals who perform tasks that

are vital to the public health response – specifically, those whose work directly supports

the provision of acute care to others – will also be given heightened priority (e.g., as a

tiebreaker between identical priority scores)

In their adaptation of Table 1, the designers saw saving the most lives as more justified than

either the life-cycle principle or the instrumental value principle. However, the guidelines did

not choose between these two latter ethical values in the event of tie-breaking.

The third example is from Arizona’s June 6, 2020 update to their allocation framework

(DHS, 2020). This document also offers a table prioritizing patients based on SOFA scores and

whether a patient is expected to live or die within one or five years despite successful treatment

of illness. It then warns that “a situation could arise where limited resources are needed by

two or more patients with the same triage priority scores” in which case “additional factors

may be considered as priorities.” Among the list of additional factors are whether patients

are pediatric patients, first responders or health care workers, single caretakers for minors or

dependent adults, pregnant, or have not had an opportunity to experience life stages. There is

no further detail on how multiple tie-breakers would be implemented.

Beyond these specific updates to guidelines during the COVID-19 pandemic, there are also

concerns that incomplete descriptions have rendered such guidelines ineffective in other settings.

During the 2004 shortage of the influenza vaccine, Schoch-Spana et al. (2005) state that CDC

guidelines were too general and broad. Specifically,

Local providers thus faced gaps in the local supply of inactivated vaccine as well as the

absence of a priori prioritization standards relevant to initial and evolving local conditions.

Practitioners and local and state health authorities throughout the U.S. faced a similar

predicament.

Despite these vagaries, some state departments of health penalized clinicians if protocols are not

followed. For example, Lee (2004) describes that the Massachusetts threatened a fine or prison

time for whoever violates the CDC order on distribution during the 2004 flu-shot shortage. The

requirement to follow an incompletely specified system places clinicians in a difficult position.

2.3 Reserve Systems

Many of the challenges presented in Section 2.2 stem from one simple but limiting feature of a

priority point system: it relies on a single priority ranking of patients that is identical for all units.

A reserve system eliminates this feature of the mechanism because it allows for heterogeneity of

patient claims over different units.

A reserve system has three main parameters. They are:
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1. a division of all units into multiple segments referred to as reserve categories,9

2. number of units in each of these categories, and

3. specification of a priority order of the patients in each of these categories.

If reserve categories are processed sequentially, as in the case in several real-life applications of

reserve systems, processing order of reserve categories can also be an additional parameter. For

some (or all) of the reserve categories, there can also be exclusion criteria, based on the nature

of the medical resource that is being rationed along with the patient’s clinical assessment. The

priority order of patients for each category also incorporates this information. Reserve categories

can differ either based on the groups to receive higher priority or the combination of ethical

principles to be invoked. The main idea is to use the associated priority order – which embeds

ethical principles – when allocating units in each reserve category. Importantly, the priority

order need not be the same between reserve categories.

A reserve system provides a natural resolution to the representation and implementation

issues discussed in Sections 2.2. However, adoption of a reserve system without a clear un-

derstanding of one important aspect of its implementation can have unintended distributional

consequences.10 When a patient qualifies for a unit through multiple reserve categories, she does

not care through which one she receives a unit. And yet this choice influences the outcome for

other patients. We therefore next present a general theory of reserve systems.

3 A General Theory of Reserve Systems

While our primary application is rationing of scarce medical resources, in this section we provide

a general model of reserve systems which has several other applications including affirmative

action in school choice (Pathak and Sönmez, 2013; Dur et al., 2018; Correa et al., 2019), college

admissions (Aygün and Bo, 2020; Baswana et al., 2019), assignment of government positions

(Sönmez and Yenmez, 2019a,b), and skill diversity in immigration visa allocation (Pathak, Rees-

Jones and Sönmez, 2020). Despite this generality, the terminology is tailored to our main

application.

There is a set of patients I and q identical medical units to allocate. There is a set of

reserve categories C. For every category c ∈ C, rc units are reserved so that
∑

c∈C rc = q.

It is important to emphasize that individual units are not associated with the categories in

our model. The phrase “rc units are reserved” does not mean specific units are set aside for

category c. Rather, it means that for the purposes of accounting, a total of unspecified rc units

are attached to category c.

For every category c ∈ C, there is a linear priority order πc over the set of patients I and

∅. This priority order represents the relative claims of the patients on units in category c as

well as their eligibility for those units. For every category c ∈ C and patient i ∈ I, we say that

9This division is for accounting purposes only, and it does not attach a specific unit to a category.
10See Dur et al. (2018) and Pathak, Rees-Jones and Sönmez (2020) for real-life examples of this phenomenon

from school choice and H1-B visa allocation.
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patient i is eligible for category c if

i πc ∅.

Given priority order πc, we represent its weak order by πc. That is, for any x, y ∈ I ∪ {∅},

x πc y ⇐⇒ x = y or x πc y.

For our main application of pandemic rationing, πc orders patients based on the balance of

ethical principles guiding the allocation of units in category c.

A matching µ : I → C ∪ {∅} is a function that maps each patient either to a category or

to ∅ such that
∣∣µ−1(c)∣∣ ≤ rc for every category c ∈ C. For any patient i ∈ I, µ(i) = ∅ means

that the patient does not receive a unit and µ(i) = c ∈ C means that the patient receives a unit

reserved for category c. Let M denote the set of matchings.

For any matching µ ∈ M and any subset of patients I ′ ⊆ I, let µ(I ′) denote the set of

patients in I ′ who are matched with a category under matching µ. More formally,

µ(I ′) =
{
i ∈ I ′ : µ(i) ∈ C

}
.

These are the patients in I ′ who are matched (or equivalently who are assigned units) under

matching µ.

In real-life applications of our model, it is important to allocate the units to qualified in-

dividuals without wasting any and abiding by the priorities governing the allocation of these

units. We next formulate this idea through three axioms:

Definition 1. A matching µ ∈ M complies with eligibility requirements if, for any i ∈ I
and c ∈ C,

µ(i) = c =⇒ i πc ∅.

Our first axiom formulates the idea that units should be awarded only to eligible individuals.

For rationing of vital medical resources, any patient who is eligible for one category must also

be eligible for any category. And if a patient is ineligible for all categories, then this patient

can be dropped from the set of patients. Hence, compliance with eligibility requirements always

holds for our main application.

Definition 2. A matching µ ∈M is non-wasteful if, for any i ∈ I and c ∈ C,

i πc ∅ and µ(i) = ∅ =⇒
∣∣µ−1(c)∣∣ = rc.

Our second axiom formulates the idea that no unit should be wasted. That is, if a unit

remains idle, then there should not be any unmatched individual who is eligible for the unit.

For rationing vital resources, each patient is eligible for all units, and therefore non-wastefulness

in this context corresponds to either matching all the units or all the patients.

Definition 3. A matching µ ∈M respects priorities if, for any i, i′ ∈ I and c ∈ C,

µ(i) = c and µ(i′) = ∅ =⇒ i πc i
′.
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Our last axiom formulates the idea that for each category, the units should be allocated

based on the priority order of individuals in this category.

As far as we know, in every real-life application of a reserve system each of these three

axioms are either explicitly or implicitly required. Hence, we see these three axioms as a minimal

requirement for reserve systems. In the next two sections we present two characterizations of

matchings that satisfy these axioms, one through a notion akin to competitive equilibria and

the second based on the celebrated deferred acceptance algorithm of Gale and Shapley (1962).

3.1 Cutoff Equilibria

In many real-life applications of reserve systems, the outcome is often publicized through a

system that identifies the lowest priority individual that qualifies for admission for each category.

This representation makes it straightforward to verify that an allocation was computed following

the announced policy because an individual can compare her priority to the announced cutoffs.

Often a cardinal representation of the priority order, such as a merit score or a lottery number,

is used to identify these “cutoff” individuals. (See, for example, Appendix Figure A1.) This

observation motivates the following equilibrium notion.

For any category c ∈ C, a cutoff fc is an element of I ∪ {∅} such that fc πc ∅. Cutoffs

in our model play the role of prices for exchange or production economies, where the last

condition corresponds to prices being non-negative in those economies. We refer to a list of

cutoffs f = (fc)c∈C as a cutoff vector. Let F be the set of cutoff vectors.

Given a cutoff vector f ∈ F , for any patient i ∈ I, define the budget set of patient i at

cutoff vector f as

Bi(f) = {c ∈ C : i πc fc} .

A cutoff equilibrium is a pair consisting of a cutoff vector and a matching (f, µ) ∈ F ×M
such that

1. For every patient i ∈ I,

(a) µ(i) ∈ Bi(f) ∪ {∅}, and

(b) Bi(f) 6= ∅ =⇒ µ(i) ∈ Bi(f).

2. For every category c ∈ C,

|µ−1(c)| < rc =⇒ fc = ∅.

A cutoff equilibrium is an analogue of a competitive equilibrium for a reserve system. A cutoff

vector-matching pair is a cutoff equilibrium if

1. each patient who has a non-empty budget set is matched with a category in her budget

set, and each patient who has an empty budget set remains unmatched, and

2. each category which has not filled its quota under this matching has cutoff ∅.
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The first condition corresponds to “preference maximization within budget set” and the second

condition corresponds to the “market clearing condition.”

Our first characterization result gives an equivalence between cutoff equilibrium matchings

and matchings that satisfy our basic axioms.

Theorem 1. For any matching µ ∈ M that complies with eligibility requirements, is non-

wasteful, and respects priorities, there exists a cutoff vector f ∈ F that supports the pair (f, µ)

as a cutoff equilibrium. Conversely, for any cutoff equilibrium (f, µ) ∈ F ×M, matching µ

complies with eligibility requirements, is non-wasteful, and respects priorities.

There can be multiple equilibrium cutoff vectors that supports a matching at cutoff equilibria.

Next, we explore the structure of equilibrium cutoff vectors.

For any matching µ ∈M and category c ∈ C, define

f
µ
c =

{
minπc µ

−1(c) if |µ−1(c)| = rc
∅ otherwise

and, (1)

fµ
c

=

{
minπc

{
i ∈ µ(I) : i πc maxπc

(
I \ µ(I)

)
∪ {∅}

}
if maxπc

(
I \ µ(I)

)
∪ {∅} 6= ∅

∅ otherwise
. (2)

Here,

• fµc identifies

– the lowest πc-priority patient who is matched with category c if all category-c units

are exhausted under µ, and

– ∅ if there are some idle category-c units under µ,

whereas

• fµ
c

identifies

– the lowest πc-priority patient with the property that every weakly higher πc-priority

patient than her is matched under µ if some category-c eligible patient is unmatched

under µ, and

– ∅ if all category-c eligible patients are matched under µ.

Let µ be any matching that respect priorities. By construction,

f
µ
c πc f

µ
c

for any c ∈ C.

Our next result characterizes the set of cutoff vectors.

Lemma 1. Let µ ∈M be a matching that complies with eligibility requirements, is non-wasteful,

and respects priorities. Then the pair (g, µ) is a cutoff equilibrium if, and only if,

f
µ
c πc gc πc f

µ
c

for any c ∈ C.
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An immediate corollary to Lemma 1 is that for each cutoff equilibrium matching µ, f
µ

=

(f
µ
c )c∈C is a maximum equilibrium cutoff vector and fµ = (fµ

c
)c∈C is a minimum equi-

librium cutoff vector.

Of these equilibrium cutoff vectors, the first one has a clear economic interpretation. The

maximum equilibrium cutoff of a category indicates the selectivity of this particular category.

The higher the maximum cutoff is the more competitive it becomes to receive a unit through this

category. This is also the cutoff that is typically announced in real-life applications of reserve

systems due to its clear interpretation. The interpretation of the minimum equilibrium cutoff

of a category is more about the entire matching than the category itself, and in some sense it is

artificially lower than the maximum equilibrium cutoff due to individuals who are matched with

other categories. All other equilibrium cutoffs between the two are also artificial in a similar

sense. Therefore, for much of our analysis we focus on the maximum equilibrium cutoff vector.

3.2 Characterization via Deferred Acceptance Algorithm

Although Theorem 1 gives a full characterization of matchings that satisfy our three axioms, it

leaves the question of how to find such a matching open. In this section, we present a procedure

to construct all such matchings utilizing the celebrated deferred-acceptance algorithm by Gale

and Shapley (1962).

Consider the following hypothetical many-to-one matching market. The two sides of the

market are the set of patients I and the set of categories C. Each patient i ∈ I can be matched

with at most one category, whereas each category c ∈ C can be matched with as many as rc
patients. Category c is endowed with the linear order πc that is specified in the primitives of

the original rationing problem.

Observe that in our hypothetical market, all the primitives introduced so far naturally follows

from the primitives of the original problem. The only primitive of the hypothetical market that

is somewhat “artificial” is the next one:

Each patient i ∈ I has a strict preference relation �i over the set C ∪{∅}, such that, for each

patient i ∈ I,

c �i ∅ ⇐⇒ patient i is eligible for category c.

While in the original problem a patient is indifferent between all units (and therefore all cat-

egories as well), in the hypothetical market she has strict preferences between the categories.

This “flexibility” in the construction of the hypothetical market is the basis of our main char-

acterization.

For each patient i ∈ I, let Pi be the set of all preferences constructed in this way, and let

P = ×i∈IPi.
Given a preference profile �= (�i)i∈I , the individual-proposing deferred-acceptance algo-

rithm (DA) produces a matching as follows.

Individual Proposing Deferred Acceptance Algorithm (DA)

Step 1: Each patient in I applies to her most preferred category among categories

for which she is eligible. Suppose that I1c is the set of patients who apply to category
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c. Category c tentatively assigns applicants with the highest priority according to

πc until all patients in I1c are chosen or all rc units are allocated, whichever comes

first, and permanently rejects the rest. If there are no rejections, then stop.

Step k: Each patient who was rejected in Step k-1 applies to her next preferred

category among categories for which she is eligible, if such a category exists. Suppose

that Ikc is the union of the set of patients who were tentatively assigned to category

c in Step k-1 and the set of patients who just proposed to category c. Category c

tentatively assigns patients in Ikc with the highest priority according to πc until all

patients in Ikc are chosen or all rc units are allocated, whichever comes first, and

permanently rejects the rest. If there are no rejections, then stop.

The algorithm terminates when there are no rejections, at which point all tentative

assignments are finalized.

A matching µ ∈ M is called DA-induced if it is the outcome of DA for some preference

profile �∈ P.

We are ready to present our next result:

Theorem 2. A matching complies with eligibility requirements, is non-wasteful, and it respects

priorities if, and only if, it is DA-induced.

Not only is this result a second characterization of matchings that satisfy our three basic

axioms, it also provides a concrete procedure to calculate all such matchings. Equivalently,

Theorem 2 provides us with a procedure to derive all cutoff equilibria. This latter interpretation

of our characterization leads us to a refinement of cutoff equilibrium matchings explored in our

next section.

3.3 Sequential Reserve Matching

An interpretation of the DA-induced matchings is helpful to motivate in focusing a subset of these

matchings. Recall that the hypothetical two-sided matching market constructed above relies on

an artificial preference profile (�i)i∈I of patients over categories. What this corresponds to

under the DA algorithm is that any patient i is considered for categories that deem her eligible

in sequence, following the ranking of these categories under her artificial preferences �i. Unless

there is a systematic way to construct these preferences, it may be difficult to motivate adopting

this methodology for real-life applications. For example, if a patient i is considered first for

an unreserved category and then for an essential personnel category, whereas another patient

j with similar characteristics is considered for them in the reverse order, it may be difficult to

justify this practice. That is, while there is a potentially large set of matchings that satisfy

our three axioms, not all are necessarily obtained through an intuitive procedure. This may be

a challenge especially in the context of medical rationing, since procedural fairness is also an

important ethical consideration in this context. Procedural fairness is the main motivation for

our focus in a subset of these matchings.
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In many real-life applications of reserve systems, institutions process reserve categories se-

quentially and allocate units associated with each category one at a time using its category-

specific priority order. We next formulate matchings obtained in this way and relate them to

our characterization in Theorem 2.

An order of precedence . is a linear order over the set of categories C. For any two

categories c, c′ ∈ C,
c . c′

means that category-c units are to be allocated before category-c′ units. In this case, we say

category c has higher precedence than category c′. Let ∆ be the set of all orders of precedence.

For a given order of precedence . ∈ ∆, the induced sequential reserve matching ϕ., is a

matching that is constructed as follows:

Suppose categories are ordered under . as

c1 . c2 . . . . . c|C|.

Matching ϕ. is found sequentially in |C| steps:

Step 1: Following their priority order under πc1 , the highest priority rc1 category-c1-

eligible patients in I are matched with category c1. If there are less than rc1 eligible

patients in I than all of these eligible patients are matched with category c1. Let I1

be the set of patients matched in Step 1.

Step k: Following their priority order under πck , the highest priority rck category-

ck-eligible patients in I \ ∪k−1k′=1I
k′ are matched with category ck. If there are less

than rck eligible patients in I \∪k−1k′=1I
k′ then all of these eligible patients are matched

with category ck. Let Ik be the set of patients matched in Step k.

Given an order of precedence . ∈ ∆, the induced sequential reserve matching complies with

eligibility requirements, is non-wasteful, and it respect priorities. Thus, it is DA-induced by

Theorem 2. Indeed it corresponds to a very specific DA-induced matching.

Proposition 1. Fix an order of precedence . ∈ ∆. Let the preference profile �.∈ P be such

that, for each patient i ∈ I and pair of categories c, c′ ∈ C,

c �.i c′ ⇐⇒ c . c′.

Then the sequential reserve matching ϕ. is DA-induced from the preference profile �..

We conclude this section with a comparative static result regarding the maximum equilibrium

cutoff vectors supporting sequential reserve matchings:

Proposition 2. Fix a preferential treatment category c ∈ C, another category c′ ∈ C \ {c}, and

a pair of orders of precedence ., .′ ∈ ∆ such that:

• c′ . c,

• c .′ c′, and
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• for any ĉ ∈ C and c∗ ∈ C \ {c, c′}

ĉ . c∗ ⇐⇒ ĉ .′ c∗.

That is, .′ is obtained from . by only changing the order of c with its immediate predecessor c′.

Then,

f
ϕ.′
c πc f

ϕ.

c .

Recall that the maximum equilibrium cutoff for a category is indicative of how selective the

category is. Therefore, the earlier a category is processed under a sequential reserve matching

the more selective it becomes by Proposition 2. This result is intuitive because the earlier a

category is processed, the larger is the set of patients who compete for these units in a setwise

inclusion sense.

4 Reserve Systems under a Baseline Priority Order

In many real-life applications of reserve systems, there is a baseline priority order π of individuals.

Starting with Hafalir, Yenmez and Yildirim (2013), the earlier market design literature on

reserve systems exclusively considered this environment.11 This priority order may depend on

scores in a standardized exam, a random lottery, or arrival time of application. In our main

application of pandemic resource allocation, it may depend on SOFA scores described in Section

2.1. This baseline priority order is used to construct the priority order for each of the reserve

categories, although each category except one gives preferential treatment to a specific subset of

individuals. For example, in our main application these could be essential personnel or persons

from disadvantaged communities. In this section, we focus on this subclass of reserve systems

and present an analysis of reserve matching on this class.

To formulate this subclass, we designate a beneficiary group Ic ⊆ I for each category

c ∈ C. It is assumed that all patients in its beneficiary group are eligible for a category. That

is, for any c ∈ C and i ∈ Ic,
i πc ∅.

There is an all-inclusive category u ∈ C, called the unreserved category, which has all

patients as its set of beneficiaries and endowed with the baseline priority order. That is,

Iu = I and πu = π.

Any other category c ∈ C \ {u}, referred to as a preferential treatment category, has a

more exclusive set Ic ⊂ I of beneficiaries and it is endowed with a priority order πc with the

following structure: for any pair of patients i, i′ ∈ I,

i ∈ Ic and i′ ∈ I \ Ic =⇒ i πc i
′,

i, i′ ∈ Ic and i π i′ =⇒ i πc i
′, and

i, i′ ∈ I \ Ic and i π i′ =⇒ i πc i
′.

11Including Hafalir, Yenmez and Yildirim (2013), several prior studies consider the allocation of heterogeneous

objects and the baseline priority often depends on the object.
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Under πc, beneficiaries of category c are prioritized over patients who are not, but otherwise

their relative priority order is induced by the baseline priority order π.

Let Ig, referred to as the set of general-community patients, be the set of patients who

are each a beneficiary of the unreserved category only:

Ig = I \ ∪c∈C\{u}Ic.

In particular two types of such problems have widespread applications.

We say that a priority profile (πc)c∈C has soft reserves if, for any category c ∈ C and any

patient i ∈ I,

i πc ∅.

Under a soft reserve system all individuals are eligible for all categories. This is the case, for

example, in our main application of pandemic resource allocation.

We say that a priority profile (πc)c∈C has hard reserves if, for any preferential treatment

category c ∈ C \ {u},

1. i πc ∅ for any of its beneficiaries i ∈ Ic, whereas

2. ∅ πc i for any patient i ∈ I \ Ic who is not a beneficiary.

Under a hard reserve system, only the beneficiaries of a preferred treatment category are eligible

for units in this category. This is the case, for example, in H1-B visa allocation in the US.

4.1 Comparative Statics

Allocation rules based on sequential reserve matching are used in a wide range of practical

applications. While an aspect that is often ignored in practical applications, it is important to

pay attention to the choice of the order of precedence in these problems, for it has potentially

significant distributional implications. In this subsection we focus on sequential reserve matching

under soft reserves, as that is the relevant case for our main application of pandemic rationing.

We already know from Proposition 2 that the later a category is processed, the less compet-

itive it becomes. A natural follow up question is whether this also means that the beneficiaries

of this category necessarily benefits from this comparative static exercise. The answer would be

of course straightforward, if each patient was a beneficiary of a single category. But this is not

the case in our model, because even if each patient is a beneficiary of at most one preferential

treatment category, they are also each a beneficiary of the unreserved category. Indeed, even if

that was not the case, unless the reserves are hard non-beneficiaries may still be matched with

units from preferential treatment categories. So the answer to this question is not an immediate

implication of Proposition 2. Under some assumptions such as when there is only one preferen-

tial treatment category (Dur et al., 2018), this question is already answered in the affirmative.

However, as we present in the next example, this is not always the case.

Example 1. Suppose there are q = 6 medical units to be allocated in total. There are six

categories: the unreserved category u and five preferential treatment categories c, c′, c∗, ĉ, c̃ and

each category has a single unit capacity.
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Suppose there are seven patients. All patients are beneficiaries of the unreserved category u:

Iu = {i1, i2, i3, i4, i5, i6, i7}.

The beneficiaries of preferential treatment categories c, c∗, and c̃ are given as

Ic = {i1, i3, i6}, Ic∗ = {i2, i5}, Ic̃ = {i4, i7},

while there are no beneficiaries of preferential treatment categories c′ and ĉ: Ic′ = ∅ and Iĉ = ∅.
There are also no general-community patients: Ig = ∅. Suppose π, the baseline priority order of

patients, is given as

i1 π i2 π i3 π i4 π i5 π i6 π i7.

Also assume that all patients are eligible for all preferential treatment categories besides the

unreserved category u.

We consider two sequential reserve matchings based on the following two orders of precedence:

. : c′ . c . c∗ . ĉ . c̃ . u,

and

.′ : c .′ c′ .′ c∗ .′ ĉ .′ c̃ .′ u.

In the following table, we demonstrate the construction of the two induced sequential reserve

matchings by processing their mechanics in parallel:

Order of Precedence . Order of Precedence .′

Step Category Patient Category Patient

1 c′ i1 c i1
2 c i3 c′ i2
3 c∗ i2 c∗ i5
4 ĉ i4 ĉ i3
5 c̃ i7 c̃ i4
6 u i5 u i6

Thus the two sequential reserve matchings match the patients

ϕ. = {i1, i2, i3, i4, i5, i7} and ϕ.′ = {i1, i2, i3, i4, i5, i6}.

In this problem category-c′ and ĉ units are treated as if they are of unreserved category u, as

these two categories do not have any beneficiaries in the problem. We use the baseline priority

order π to match them.

Under the first order of precedence ., the highest π-priority patient i1, who is also a category-

c beneficiary, receives the first unit, which is reserved for category c′. As a result, i3, who is the

next category-c beneficiary, receives the only category-c unit. In the end, units associated with

categories c∗ and c̃ are matched with their highest and lowest priority beneficiaries i2 and i7,

respectively. The highest priority beneficiary of c̃, patient i4, receives the category-ĉ unit, which

is processed like the unreserved category and before c̃. Hence, the lowest priority beneficiary of
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category c, i6 remains unmatched as the last unit, which is reserved for the unreserved category,

goes to i5. Thus,

ϕ.(Ic) = {i1, i3}

is the set of matched category-c beneficiaries.

Under the second order of precedence .′ that switches the order of c and c′, the selectivity of

category c increases as it is processed earlier: the highest priority category-c patient i1 receives

its unit instead of i3. This leads to the units associated with categories c∗ and c̃ being matched

with their lowest and highest priority beneficiaries i5 and i4, respectively – this is a switch of

roles for these categories with respect to .. This is because the highest-priority beneficiary of c∗,

patient i2, is now matched with category c′, which is processed like the unreserved category before

c∗. This enables the lowest priority beneficiary of category c, patient i6, to be matched with the

unreserved category as she is prioritized higher than i7 under the baseline priority order. Hence,

ϕ.′(Ic) = {i1, i3, i6}

is the set of matched category-c beneficiaries.

Thus,

ϕ.(Ic) ( ϕ.′(Ic)

although category c is processed earlier under .′ than under ..

Observe that our negative example holds even though each patient is a beneficiary of at

most one preferential treatment category. Nevertheless, a positive result holds for our main

application of soft reserves provided that there are at most five categories and each patient is a

beneficiary of at most one preferential treatment category.

Proposition 3. Assuming

1. there are at most five categories, and

2. each patient is a beneficiary of at most one preferential treatment category,

consider a soft reserve system induced by a baseline priority order. Fix a preferential treatment

category c ∈ C \ {u}, another category c′ ∈ C \ {c}, and a pair of orders of precedence ., .′ ∈ ∆

such that:

• c′ . c,

• c .′ c′, and

• for any ĉ ∈ C and c∗ ∈ C \ {c, c′},

ĉ . c∗ ⇐⇒ ĉ .′ c∗.

That is, .′ is obtained from . by only changing the order of c with its immediate predecessor c′.

Then,

ϕ.′(Ic) ⊆ ϕ.(Ic).
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4.2 Smart Reserve Matching

Although virtually all practical applications of reserve systems are implemented through sequen-

tial reserve matching, this class of mechanisms may suffer from one important shortcoming: they

may lead to Pareto inefficient outcomes, due to myopic processing of reserves. The following

example illustrates both how this may happen, and also motivates a possible refinement based

on smart processing of reserves.

Example 2. Consider a hard reserve system induced by baseline priority order π. There are

two patients I = {i1, i2} who are priority ordered as

i1 π i2

under the baseline priority order π. There are two categories; an unreserved category u with

an all-inclusive beneficiary set of I = {i1, i2}, and a preferential treatment category c with

a beneficiary set Ic = {i1} of a single preferential treatment patient. Both categories have a

capacity of one unit each (i.e., rc = ru = 1). Since the reserves are hard, the resulting category-

specific priority orders are given as follows:

i1 πu i2 πu ∅ and i1 πc ∅ πc i2.

Consider the sequential reserve matching ϕ. induced by the order of precedence ., where

u . c.

Under matching ϕ., first patient i1 is matched with the unreserved category u and subsequently

the category-c unit is left idle since no remaining patient is eligible for this preferential treatment

category. Therefore,

ϕ. =

(
i1 i2
u ∅

)
,

resulting in the set of matched patients ϕ.(I) = {i1}.
Next consider the sequential reserve matching ϕ.′ induced by the order of precedence .′, where

c .′ u.

Under matching ϕ.′, first patient i1 is matched with the preferential treatment category c and

subsequently patient i2 is matched with the unreserved category u. Therefore,

ϕ.′ =

(
i1 i2
c u

)
,

resulting in the set of matched patients ϕ.′(I) = {i1, i2}. Since ϕ.(I) ( ϕ.′(I), matching ϕ. is

Pareto dominated by matching ϕ.′.

Observe that Example 2 also illustrates that the cause of Pareto inefficiency is the myopic

allocation of categories under sequential reserve matchings. Under matching ϕ., the more flexible

unreserved unit is allocated to patient i1 who is the only beneficiary of category-c. This results
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in a suboptimal utilizations of reserves, which can be avoided with the concept of “smart reserve

matching” we introduce below.

To this end, we first introduce a new axiom, which together with non-wastefulness imply

Pareto efficiency.

Definition 4. A matching µ ∈M is maximal in beneficiary assignment if

µ ∈ arg max
ν∈M

∣∣ ∪c∈C\{u} (ν−1(c) ∩ Ic)
∣∣.

This axiom simply requires that the reserves should be maximally assigned to target bene-

ficiaries to the extent it is feasible. It precludes the myopic assignment of categories to patients

since the desirability of a matching depends on the structure of the matching as a whole rather

than the individual assignments it prescribes for each category.

It is worth noting that the inefficiency observed in Example 2 is specific to the case of hard

reserves and cannot happen for soft reserves, as in our main application of pandemic rationing.

Nonetheless, maximality in beneficiary assignment is a desirable axiom for soft reserves because

sub-optimal utilization of reserves may receive heightened scrutiny. For example, consider a

scenario with two preferential treatment categories, essential personnel and disadvantaged, each

with one reserve. Suppose patient A is both essential personnel and disadvantaged, patient

B is disadvantaged, and there are several other patients who are neither. One possible way

to use these reserves is to assign patient A to the disadvantaged reserve, leaving no other

preferential treatment patients available for the essential personnel reserve. In this case, the

essential personnel reserve would be opened up to patients who are neither essential personnel

nor disadvantaged. This could in turn mean only one of the reserves is assigned to members of the

target beneficiary groups. This outcome could be seen problematic since an alternative, which

assigns patient A to the essential personnel reserve (instead of the disadvantaged reserve) and

patient B to the disadvantaged reserve, accommodates both reserves. By imposing maximality

in beneficiary assignment, we avoid this shortcoming through a “smart” utilization of reserves.

Building on this insight, we next present an algorithm that generates smart cutoff matchings:

Smart Reserve Matching Algorithm

Fix a parameter n ∈ {0, 1, . . . , ru} that represents the number of unreserved units to

be processed in the beginning of the algorithm.12 The remaining unreserved units

are to be processed at the end of the algorithm.

Fix a baseline priority order π, and for the ease of description relabel patients so

that

i1 π i2 π . . . π i|I|.

Proceed in two steps.

Step 1: Iteratively construct two sequences of patient sets Ju0 ⊆ Ju1 ⊆ . . . ⊆ Ju|I|,

which determine patients to be matched with the unreserved category u in this

step, and J0 ⊆ J1 ⊆ . . . ⊆ J|I|, which determine the patients to be matched with

12For n = 0, this algorithm is equivalent to the horizontal envelope algorithm in Sönmez and Yenmez (2020).
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preferential treatment categories in C \ {u} that they are beneficiaries of, and a

sequence of sets of matchings M0 ⊇M1 ⊇ . . . ⊇M|I| in |I| substeps.

Define Step 1.(k) for any k ∈ {1, 2, . . . , |I|} as follows:

If k = 1, let

Ju0 = ∅, J0 = ∅,

andM0 be the set of all matchings that are maximal in beneficiary assignment; that

is

M0 = arg max
ν∈M

∣∣ ∪c∈C\{u} (ν−1(c) ∩ Ic)
∣∣.

If k > 1, then sets of patients Juk−1 and Jk−1 and set of matchings Mk−1 are con-

structed in the previous substep, Step 1.(k − 1).

Step 1.(k): Process patient ik. Three cases are possible:

• If |Juk−1| < n and there exists a matching in Mk−1 that matches

patient ik with the unreserved category u, then define

Juk = Juk−1∪{ik}, Jk = Jk−1, and Mk =
{
µ ∈Mk−1 : µ(ik) = u

}
.

• Otherwise, if there exists a matching in Mk−1 that matches patient

ik with a preferential treatment category c ∈ C \ {u} that she is a

beneficiary of, that is ik ∈ Ic, then define

Juk = Juk−1, Jk = Jk−1 ∪ {ik}, and

Mk =
{
µ ∈Mk−1 : µ(ik) 6∈ {∅, u} and ik ∈ Iµ(ik)

}
.

• Otherwise, define

Juk = Juk−1, Jk = Jk−1, and Mk =Mk−1.

Step 2: For any matching µ ∈M|I|, construct a matching σ ∈M as follows:

• Assign µ(i) to every patient i ∈ J|I| ∪ Ju|I|.
• One at a time iteratively assign the remaining units to the remaining highest

priority patient in I \ (Ju|I| ∪J|I|) who is eligible for the category of the assigned

unit in the following order:

1. the remaining units of the preferential treatment categories in an arbitrary

order, and

2. the remaining units of the unreserved category u.

Every matching σ constructed in this manner is referred to as a smart reserve matching

induced by assigning n unreserved units subsequently at the beginning of the algorithm. Let

Mn
S be the set of all reserve matchings for a given n.

We have the following result about the sets of patients matched under smart reserve match-

ings:
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Lemma 2. Consider either a soft reserve system or a hard reserve system induced by a baseline

priority order π. For any n ∈ {0, 1, . . . , ru} and any two smart reserve matchings σ, ν ∈Mn
S,

σ−1(u) = ν−1(u), and ∪c∈C\{u} (σ−1(c) ∩ Ic) = ∪c∈C\{u}(ν−1(c) ∩ Ic),

and moreover,

σ(I) = ν(I).

Lemma 2 states that every smart reserve matching for a given n matches the same set of

patients with the unreserved category u, the same set of patients with preferential treatment

categories in C \ {u} that they are beneficiaries of, and the same set of patients overall.

In a soft reserve system or a hard reserve system, for a given n, we denote the set patients

matched in every smart reserve matching with n unreserved units processed first as InS .13 By

Lemma 2, for any σ ∈Mn
S ,

InS = σ(I).

Our second result on smart reserve matchings is as follows:

Proposition 4. Consider either a soft reserve system or a hard reserve system induced by a

baseline priority order π. For any n ∈ {0, 1, . . . , ru}, any smart reserve matching inMn
S complies

with eligibility requirements, is non-wasteful, respects priorities, and is maximal in beneficiary

assignment.

The choice of parameter n is not without a consequence. In particular, matchings produced

by the algorithm with the lowest parameter n = 0 and the highest parameter n = ru both have

distinctive distributional consequences.

Theorem 3. Consider either a soft reserve system or a hard reserve system induced by a baseline

priority order π. Let σru ∈ Mru
S be a smart reserve matching when all unreserved units are

assigned first (i.e., n = ru) and σ0 ∈ M0
S be a smart reserve matching when all unreserved

units are assigned last (i.e., n = 0). Then, for any cutoff equilibrium matching µ ∈ M that is

maximal in beneficiary assignment,

f
σru
u π f

µ
u π f

σ0
u .

Theorem 3 states that among all maximum equilibrium cutoff vectors that support maximal

matchings in beneficiary assignment, the selectivity of the unreserved category is

• the most competitive for smart reserve matchings with n = ru, that is, when all unreserved

category units are assigned in the beginning of the algorithm, and

• the least competitive for smart reserve matchings with n = 0, that is, when all unreserved

category units are assigned at the end of the algorithm.

13We describe a polynomial-time algorithm to construct InS and a smart reserve matching in Appendix A.4.
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Theorem 3 is silent about the qualifications of maximum equilibrium cutoffs of preferen-

tial treatment categories supporting smart reserve matchings. While keeping the maximality

in beneficiary assignment, the patients who are matched with preferential treatment categories

are uniquely determined under the two extreme smart reserve matchings (and for any given n),

respectively. However, there can be multiple ways of assigning these patients to different pref-

erential treatment categories. Thus, the maximum equilibrium cutoffs of preferential treatment

categories are not uniquely determined for these matchings.

4.3 Related Theoretical Literature

Our study of reserve systems contributes to literature in matching market design focused on

distributional issues. Our main results of Theorems 1-3 as well as Propositions 1 and 2 have no

antecedents in the literature, and they are novel to this paper. In contrast, Propositions 3 and

4 extend previously known ideas to our model.

While Theorem 1 is novel and our paper is the first one to formally introduce the notion

of cutoff equilibrium for reserve systems, due to its intuitive appeal the use of this notion is

widespread in real-life applications of reserve systems. In particular, the outcomes of reserve

systems are often announced together with the cutoffs that support them. Examples include

admission to exam high schools in Chicago (Dur, Pathak and Sönmez, 2020), assignment of gov-

ernment positions in India (Sönmez and Yenmez, 2019a,b), college admissions in Brazil (Aygün

and Bo, 2020), and H1-B visa allocation in the US for years 2006-2008 (Pathak, Rees-Jones and

Sönmez, 2020). For the first three of these applications the cutoffs are given in terms of exam

or merit scores, whereas for the last application the cutoffs are given in terms of the date of

visa application receipt. While the concept of cutoff equilibrium for reserve systems is novel to

our paper, cutoffs are used in simpler matching environments in the absence of distributional

considerations (see, e.g., Balinski and Sönmez (1999), Azevedo and Leshno (2016), and Leshno

and Lo (2020)).

In addition to presenting a characterization of outcomes that satisfy three basic axioms,

Theorem 2 also provides a procedure to calculate all cutoff matchings. While our characterization

itself is novel, the use of the deferred acceptance algorithm to derive a specific cutoff matching

is not. This technique to obtain cutoff levels for reserve systems has been employed in various

real-life applications, including in school choice algorithms of Boston Public Schools (Dur et al.,

2018) and Chile (Correa et al., 2019), and college admissions algorithm for Engineering Colleges

in India (Baswana et al., 2019).

Our characterizations in Theorems 1 and 2 use three simple axioms. As such, the resulting

matchings can fail to be Pareto efficient in some applications. This failure has to do with rather

mechanical and inflexible assignment of agents to categories as presented by Example 2. This

can be mitigated by filling reserves in a “smart” way. In Section 4.2 we introduce a class of

smart reserve matching algorithms which does precisely this and through maximal utilization of

reserves always generates a Pareto efficient matching. The smart reserve matching algorithm is

a generalization of the horizontal envelope algorithm introduced by Sönmez and Yenmez (2020).

under exclusively “minimum guarantee” type reserves. Moreover, for n = 0 the smart reserve

matching algorithm becomes equivalent to the horizontal envelope algorithm.
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Of the two analytical results that extend previously known ideas in the literature, Proposition

3 extends the comparative static results of Dur et al. (2018); Dur, Pathak and Sönmez (2020);

Pathak, Rees-Jones and Sönmez (2020). What is perhaps more novel is Example 1, which shows

that the comparative static exercise in Proposition 3 fails to hold once there are more than five

categories. Another implication of this situation is that the proof of Proposition 3 is considerably

more involved than its predecessors. Proposition 4, on the other hand, extends the analysis on

horizontal envelope algorithm in Sönmez and Yenmez (2020) to the more general smart reserve

matching algorithm.

In addition to above described papers which directly relate to our analysis, there are also

several others that have examined allocation in the presence of various distributional constraints

such as minimum-guarantee reserves (or lower quotas), upper quotas, and regional quotas. Some

of the most related ones include Abdulkadiroğlu (2005), Biro et al. (2010), Kojima (2012),

Budish et al. (2013), Hafalir, Yenmez and Yildirim (2013), Westkamp (2013), Ehlers et al.

(2014), Echenique and Yenmez (2015), Kamada and Kojima (2015), Kamada and Kojima (2017)

Kamada and Kojima (2018), Aygün and Turhan (2020), Bo (2016), Dogan (2016), Kominers

and Sönmez (2016), and Fragiadakis and Troyan (2017).

Our paper also introduces the medical rationing into the market design literature. By con-

sidering a real-world resource allocation problem, we contribute to the study of formal properties

of specific allocation processes in the field and the study of alternative mechanisms. Studies in

this vein include those on entry-level labor markets (Roth, 1984; Roth and Peranson, 1999),

school choice (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003), spectrum auc-

tions (Milgrom, 2000), kidney exchange (Roth, Sönmez and Ünver, 2004), internet auctions

(Edelman, Ostrovsky and Schwarz, 2007; Varian, 2007), course allocation (Sönmez and Ünver,

2010; Budish, 2011), cadet-branch matching (Sönmez and Switzer, 2013; Sönmez, 2013), assign-

ment of airport arrival slots (Schummer and Vohra, 2013; Schummer and Abizada, 2017), and

refugee resettlement (Jones and Teytelboym, 2017; Delacrétaz, Kominers and Teytelboym, 2019;

Andersson, 2019).

5 Additional Design Considerations for Pandemic Rationing

5.1 Dynamics of Allocation

In Sections 3 and 4, we model pandemic rationing as a one-shot static reserve system. Several

vital resources, however, must be rationed during a pandemic as patients in need present. Hence,

it is important to formulate how our static model can be operationalized in an application where

patient arrival and allocation are both dynamic. The adequate formulation depends on the

specific characteristics of the rationed resource. Most notably, answers to the following two

questions factor in the implementation details:

1. Is the resource fully consumed upon allocation or is it durable, utilized over a period, and

can it be re-allocated?

2. Is there immediate urgency for allocation?
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Since most guidelines are on rationing of vaccines, ventilators, ICU beds, and anti-viral drugs

or treatments, we focus our discussion on these four cases.

5.1.1 Vaccine Allocation

A unit of a vaccine is consumed upon allocation and reallocation of the unit is not possible.

Moreover, there is no immediate urgency to allocate a vaccine. Hence, a large number of units

can be allocated simultaneously. Therefore, vaccine allocation is an application of our model

where our proposed reserve system can be implemented on a static basis as vaccines become

available.

This is, however, not the only reasonable way a reserve system can be operationalized for

vaccine allocation. In the United States, there is a tradition of distributing influenza vaccines

at local pharmacies or healthcare providers on a first-come-first-serve basis. This practice can

be interpreted as a single-category special case of a reserve system where the priorities are

based on the time of arrival. This practice can easily be extended to any sequential reserve

matching system with multiple categories where the baseline priorities are determined by the

time of arrival. Under this dynamic implementation of a reserve system, as a patient arrives

to a healthcare provider she is allocated a vaccine as long as there is availability in a category

for which she is a beneficiary. If there are multiple such categories, the patient is assigned a

unit from the category that has the highest precedence under the sequential reserve matching.

While many have criticized first-come-first-serve allocation because of biases it induces based

on access to health care (e.g., Kinlaw and Levine (2007)), reserve categories can be designed to

mitigate these biases, even if priority is first-come-first-serve within each category. For example,

there can be a reserve category for patients from rural areas. There is an important precedent

for using a reserve system in this dynamic form. Between 2005-2008, H-1B immigration visas

in the US were allocated through a reserve system with general and advanced-degree reserve

categories where priority for each category was based on the application arrival time (Pathak,

Rees-Jones and Sönmez, 2020).

5.1.2 Ventilator/ICU Bed Allocation

Since the relevant characteristics of ventilators and ICU beds are identical in relation to our

model, the implementation of reserve systems for these resources will be similar. Therefore, we

present the details of their implementation together. For simplicity in this subsection, we refer

the resource in short supply as a ventilator.

A ventilator is durable and can be reassigned once its use by its former occupant is com-

pleted. Moreover, there is always urgency in allocation of this vital resource. These two features

make direct static implementation of a reserve system impractical; implementation always has

to be dynamic. One important observation on ventilator allocation is key to formulate the im-

plementation: since a ventilator is durable and assigned to a patient for a period, it can be

interpreted as a good which is allocated at each instant. During the course of using a ventilator,

a patient’s clinical situation and her priority for one or more categories may change. Therefore,

with the arrival of each new patient, the allocation of all units has to be reevaluated. As such,
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the following additional ethical and legal consideration has an important bearing on the design

of a reserve system:

3. Can a patient be removed from a ventilator once she is assigned?

There is widespread debate on this issue in the United States. Piscitello et al. (2020) describes

25 states with protocols that discuss the ethical basis of re-assigning ventilators. As of June

2020, the majority of guidelines support ventilator withdrawal. If a ventilator can be withdrawn,

the design is simpler (and effectively identical to static implementation with each new arrival).

While patient data needs to be updated through the duration of ventilator use, no fundamental

adjustment is needed for the design of the main parameters of the reserve system. Of course in

this scenario, it is possible that the category of the unit occupied by the patient may change

over time. For example, a patient may initially be assigned a unit from the general category

even though she has sufficiently high priority for multiple categories such as the general category

and essential personnel category. At a later time, she may only have high enough priority for

the latter category. In this case, the patient will continue using the ventilator although for

accounting purposes she will start consuming a unit from a different category.

If a ventilator cannot be withdrawn, a reserve system can still be applied with a grandfa-

thering structure to reflect the property rights of patients who are already assigned. In this

case, the priority system has to give highest priority to occupants of the units from any category

for as long as they can hold these units despite a change in their clinical situation or arrival of

patients who otherwise would have higher priority for these units.

5.1.3 Anti-viral Drugs or Treatments

For anti-virals drugs and treatments, the vital resource is consumed upon allocation (as in

vaccine allocation) but there is typically urgency and allocation decisions will need to be made

as patients arrive (as in ventilator allocation). One possible dynamic implementation is based

on first-come-first-serve arrival within reserve categories. This would be akin to the dynamic

allocation scenario for ventilators with a baseline priority structure that depends on patient

arrival time as described in Section 5.1.1. Alternatively, drug assignment can be batched within

pre-specified time-windows. Drugs can then be assigned based on expectations of the number

of patients in each category over this time window. Since drugs would be administered by a

clinician, the relationship between a reserve system and cutoffs can be particularly valuable. A

clinician can simply assign the treatment to a patient if she clears the cutoff for any reserve

for which she is eligible. In fact, after the first version of our paper was circulated, some of

the authors assisted with the design of the system used at the University of Pittsburgh Medical

Center to allocate the anti-viral drug remdesivir in May 2020 with this implementation. The

system had special provisions for hardest hit and essential personnel and used lotteries for

prioritization (see White et al. (2020) for more details on this system.)

5.2 Procedural Dimensions of a Reserve System

A common theme of several medical rationing guidelines is the importance of the following

procedural dimensions: transparency and community engagement; accountability and responsi-
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bility; and adaptability and flexibility (WHO, 2007; Prehn and Vawter, 2008). We next briefly

describe some virtues of a reserve system along these dimensions.

Task forces which may include medical personnel, ethicists, and lawyers often decide on

prioritization. There is a widespread consensus about the need to accommodate these different

perspectives. For example, a John Hopkins study on community perceptions of medical rationing

states (Biddison et al., 2013):

Both groups felt strongly that no single principle could adequately balance the competing

aims and values triggered by allocation decisions. Some felt that a combination of

principles should be used.

We think that a clear link between a reserve category and a particular ethical principle may

help with community engagement and facilitate compromises between different stakeholders.

For example, suppose that a task force values reciprocity and instrumental value, but several

other goals as well. Then they could establish a reserve category for essential personnel for a

fraction of resources and use other reserve categories to balance these other goals.

The transparency associated with reserve categories may be one reason systems are often used

in settings that involve community engagement. For example, following debates between the pro-

neighborhood and pro-choice factions, Boston’s school assignment system established a reserve

where half of each school’s seats prioritize applicants from the walk zone in 1999. Likewise,

reserves were developed as part of India’s affirmative action system after more than a decade of

community involvement summarized in the 1979 Mandal Commission Report and formulated in

the landmark 1992 Indra Sahwney Supreme Court case. Similarly, after widespread community

outreach, OPTN introduced a reserve category for kidney allocation in 2014. This category

gives preferential treatment to patients with the highest expected benefit for 20% of the highest

quality deceased-donor kidneys. These reserve-system precedents suggest that stakeholders find

reserve categories easy to interpret.

The salience of reserve categories also helps with accountability and fostering public trust.

In a priority point system, by contrast, it may be more difficult to explain exactly how an

allocation rule reflects a particular value when points are aggregated across several dimensions.

Moreover, our result relating reserve systems to cutoff equilibrium also simplify the process of

explanation in situations where a patient is denied a resource. For example, if a patient is denied

an anti-viral, a clinician can show that the patient’s score was below the cutoffs for any category

in which the patient is eligible.

Reserve systems also allow for adaptability and flexibility because of the way the alloca-

tion problem is divided into smaller pieces. Within each piece, a prioritization decision can

be adjusted without the need to alter the categories. Emanuel et al. (2020) emphasizes that

“prioritization guidelines should differ by intervention and should respond to changing scientific

evidence.” In particular, vaccines and anti-viral drugs may rely on different ethical principles

than ventilators and ICU beds. We see this dimension of flexibility as particularly valuable given

the need for guidelines to evolve during different stages of a public health emergency. Moreover,

for certain resources, criteria may evolve as clinical information becomes available. For example,

when there is no information on clinical effectiveness of an anti-viral, it will be difficult chose a
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priority to maximize expected health outcomes because those are unknown; this may motivate

a lottery within the category. As clinical data emerge, however, these priorities can change,

without requiring a change in the category.14

5.3 Potential Reserve Categories in Current Debates

We next briefly describe some possible reserve categories and their relationship to some current

debates.

5.3.1 Essential Personnel Category

As we discussed in Section 2.2.1, there is widespread agreement on the desirability of prioritizing

essential personnel. Yet, Michigan is the only state to provide clear priority for essential person-

nel. Several states struggled to find a way to prioritize essential personnel, which led some to

completely abandon it, others to be vague, and still others to use essential personnel status only

as a tie-breaker. Adoption of a reserve system that includes a category giving preferential treat-

ment to essential personnel provides a tool to accommodate the underlying ethical principles of

reciprocity and instrumental value.

5.3.2 Disadvantaged Reserve Category

Public health emergencies can have differential impact across communities, and there are calls

for rationing guidelines to respond to differential incidence. For example, growing evidence

suggests that COVID-19 is hitting communities of color harder than other groups (see, e.g.,

Price-Haywood et al. (2020) and Sequist (2020)). These concerns have motivated criticisms of

existing rationing guidelines. Indeed, shortly after Massachusetts released their revised crisis

standards of care in April 2020, Manchanda, Couillard and Sivashanker (2020) criticize them

for exacerbating biases in expected health outcomes driven by discrimination in access to health

care or other social inequalities. For vaccines, Schmidt (2020) argues that rationing guidelines

should give priority to groups that have been structurally and historically disadvantaged.15 In

fact, Melinda Gates, a major benefactor of the Global Alliance for Vaccines and Immunization,

emphasized that after health care workers, there should be tiered vaccine allocation to “black

people next, quite honestly, and many other people of color” (Ducharme, 2020). A reserve

system offers flexibility to accommodate these concerns. A portion of scarce resources could

be set aside in the form of a disadvantaged category based on legally-permissible measures of

disadvantage.

14With either lottery or non-lottery based prioritization, it is also possible to use a reserve system to measure

the effectiveness of the rationed medical resource (see Abdulkadiroglu et al. (2017) and Abdulkadiroglu et al.

(2019)).
15In fact, following circulation of the first draft of this paper, Schmidt (2020) advocated for a reserve system

for vaccines.
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5.3.3 Disabled Reserve Categories

Disabilities rights advocates have opposed rationing plans based on expected health outcomes

using survival probabilities because such criteria are inherently discriminatory. Ne’eman (2020)

argues that provisions that exclude certain groups can undermine overall trust in the medical

system “based on a well-founded fear of being sacrificed for the greater good.”16 Persad (2020)

recounts that several prefer either random selection or minimal triage that completely ignores

any differences in likelihood or magnitude of benefit, or the likely quantity of resources required

for benefit. A reserve system allows for a resolution of this dispute. In particular, a disabled

category can be established for disabled patients reserving some of the units for these groups. If

the representatives of these groups reach a decision to implement random lottery within disabled

patients for these units, this can be implemented under a reserve system without interfering with

the priority order for units in other categories.

5.3.4 Good Samaritan Reciprocity Category

Another possible category is a Good Samaritan reciprocity category, which reserves a fraction of

resources for those who have verified Good Samaritan acts. In such a category, a small fraction

of resources are reserved for those who have saved lives through their past Good Samaritan acts.

These could be participants for clinical trials on vaccine or treatment development (Emanuel

et al., 2020), altruistic donors who have donated their kidneys to a stranger, or people who

have donated large quantities of blood over the years. Good Samaritan status can also be

provided for compatible patient-donor pairs who voluntarily participate in kidney exchange

even though they do not have to, and save another patient’s life who was incompatible with

his/her donor. This type of incentive could save a large number of lives. Sönmez, Ünver and

Yenmez (2020) estimate 180 additional kidney patients could receive living donor transplants for

every 10 percent of compatible pairs who can be incentivized to participate in kidney exchange.

Community engagement exercises can determine which acts “deserve” a Good Samaritan status.

In addition to the ethical value of reciprocity, this category can also be motivated from incentives.

The mere existence of a modest reserve of this nature may mitigate more persistent and ongoing

crises in other healthcare domains through these incentives.

5.3.5 Expanding Supply through a Reserve System

While our analysis pertains to the rationing problem of a single entity, like a hospital system, it

can be extended to multiple entities. This extension would allow for considerations that can also

reduce waste in the system. For example, hospitals in the system can “loan” their unused units

to the system, say to a virtual hospital that consists of excess units loaned to the system, and

they can earn credit from the system for future use of the units at the virtual hospital when they

have a shortage. Hospitals can be incentivized to loan their unused units to the virtual hospital,

16The Disability Rights Education and Defense Fund argues that the probability of survival should not be

considered as long as it is positive (DREDF, 2020). That is, they claim that the “use of a disability to deny

or limit an individual’s access to health care or to provide them a lower priority in accessing scarce resources or

supplies constitutes a clear violation of disability nondiscrimination law.”
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if their patients receive some priority for some of the units in the virtual hospital. There can

be a specific reserve category where priorities may depend on credits earned by the hospitals,

while for another category priorities may be determined by clinical criteria only.

6 Conclusion

Because of the anticipated and ongoing shortage of key medical resources during public health

emergencies, several leaders in the medical ethics community have made important recommenda-

tions regarding medical rationing. These recommendations reflect compromises between several

ethical principles – maximizing lives, maximizing life-years, life-cycle considerations, instrumen-

tal values, reciprocity, protecting to the sickest, and non-exclusion. We have argued that a

reserve system offers additional flexibility to balance competing objectives.

The theory of reserve systems we develop is based on three simple criteria. Our formal

results relate these abstract principles to a cutoff equilibrium concept, and we provide a complete

characterization of all cutoff equilibria through a hypothetical two-sided matching market. We

then focus on an intuitive class of reserve matchings and analyze comparative static properties

within this class. Finally, we develop several formal results for scenarios where there is a baseline

priority order.

Aside from our main motivation of pandemic rationing, our results can be directly applied to

several other resource allocation problems with reserves. These include immigration visa alloca-

tion in the United States (Pathak, Rees-Jones and Sönmez, 2020), affirmative action in school

choice systems in Boston, Chicago, New York City and Chile (Dur et al., 2018; Dur, Pathak and

Sönmez, 2020; Correa et al., 2019), affirmative action for public school and government positions

in India (Aygün and Turhan, 2017; Baswana et al., 2019; Sönmez and Yenmez, 2019a,b), and

diversity plans for college admissions in Brazil (Aygün and Bo, 2020). We leave explorations of

these connections to future research.

We hope that the reserve system we have analyzed will rarely be deployed. However, even

if rationing guidelines are rarely applied, their mere existence reflects a statement of values.

Several aspects of the design, including those related to essential personnel, disadvantaged and

disabled communities, adults and children run the risk of upsetting social harmony. For example,

Fink (2020) describes a risk with poorly designed systems excluding certain principles: “at the

end you have got a society at war with itself. Some people are going to be told they don’t matter

enough.” We have shown that a reserve system provides policy makers with an additional tool

to navigate these complex challenges. Although confronting scarcity in life-and-death situations

is dire, we also hope some of our ideas, such as creating a Good Samaritan category, hold the

potential to make progress on longstanding medical problems beyond immediate public health

emergencies.
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Appendix A Proofs (Online Appendix)

A.1 Proofs of Results in Section 3

Proof of Theorem 1.

Part 1. Suppose matching µ ∈ M complies with eligibility requirements, is non-wasteful, and

respects priorities. We construct a cutoff vector f ∈ F as follows: For each category c ∈ C,
define

fc =

{
minπc µ

−1(c) if |µ−1(c)| = rc,

∅ otherwise.

Fix a category c ∈ C. If |µ−1(c)| = rc then fc ∈ µ−1(c) by construction. Since µ complies

with eligibility requirements, then fc πc ∅. On the other hand, if |µ−1(c)| < rc, then fc = ∅.
Therefore, in either case fc πc ∅. We showed that f ∈ F , i.e., it is a well-defined cutoff vector.

Next, we show that (f, µ) is a cutoff equilibrium. Condition 2 in cutoff equilibrium definition

is immediately satisfied because if for any c ∈ C, |µ−1(c)| < rc, then fc = ∅ by construction.

We next show that Condition 1 in cutoff equilibrium definition is also satisfied in two parts.

Let i ∈ I.

(a) We show that µ(i) ∈ Bi(f)∪{∅}. If µ(i) = ∅ then we are done. Therefore, suppose µ(i) = c

for some c ∈ C. Two cases are possible:

– If |µ−1(c)| = rc, then fc = minπc µ
−1(c), and hence i πc fc. Thus, c ∈ Bi(f).

– If |µ−1(c)| < rc, then fc = ∅ by construction. Since µ complies with eligibility

requirements, i πc fc = ∅. Thus, µ(i) ∈ Bi(f).

(b) We show that Bi(f) 6= ∅ =⇒ µ(i) ∈ Bi(f). Suppose Bi(f) 6= ∅; but to the contrary

of the claim, suppose that µ(i) 6∈ Bi(f). By Condition 1(a) in the definition of a cutoff

equilibrium, µ(i) = ∅. Let c ∈ Bi(f). Since µ respects priorities, then for every j ∈ µ−1(c)
we have j πc i. If |µ−1(c)| = rc, then by construction, fc ∈ µ−1(c), and hence, fc πc i,

contradicting c ∈ Bi(f). We conclude that |µ−1(c)| < rc. Then by construction, fc = ∅.
Since c ∈ Bi(f), i πc fc = ∅. These two statements together with µ(i) = ∅ contradict

non-wastefulness of µ. Thus, µ(i) ∈ Bi(f).

Hence, we showed that (f, µ) is a cutoff equilibrium.

Part 2. Conversely, suppose pair (f, µ) ∈ F ×M is a cutoff equilibrium. We will show that

matching µ complies with eligibility requirements, is non-wastefulness, and respects priorities.

Compliance with eligibility requirements: Consider a patient i ∈ I. Since by Condition 1(a) of

cutoff equilibrium definition µ(i) 6= ∅ implies µ(i) ∈ Bi(f), we have i πc fc. Since the cutoff

satisfies fc πc ∅, by transitivity of πc, i πc ∅. Therefore, µ complies with eligibility requirements.

Non-wastefulness: Let i ∈ I be such that µ(i) = ∅ and i πc ∅ for some c ∈ C. We show that

|µ−1(c)| = rc. Then by Condition 1(a) of the definition of a cutoff equilibrium for (f, µ), we have
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Bi(f) = ∅. In particular c /∈ Bi(f). Then fc πc i, implying that fc πc ∅ and hence |µ−1(c)| = rc.

Thus, µ is non-wasteful.

Respect of Priorities: Let patient i ∈ I be such that for some category c ∈ C, µ(i) = c while

for some patient j ∈ I, µ(j) = ∅. We show that i πc j, which will conclude that matching µ

respects priorities. By Condition 1(b) of cutoff equilibrium definition, Bj(f) = ∅. In particular,

fc πc j. Since µ(i) = c, by Condition 1(a) of cutoff equilibrium definition, c ∈ Bi(f), implying

that i πc fc. By transitivity of πc, i πc j.

Proof of Lemma 1. We prove the lemma in three claims. Let matching µ ∈M comply with

eligibility requirement, be non-wasteful, and respect priorities.

Claim 1. f
µ

is the maximum equilibrium cutoff vector supporting µ, i.e., (f
µ
, µ) is a cutoff

equilibrium and for every cutoff equilibrium (f, µ), f
µ
c πc fc for every c ∈ C.

Proof. We prove the claim in two parts.

Part 1.We show that (f
µ
, µ) is a cutoff equilibrium:

We restate the definition of f
µ

given in Equation (1) in the main text: For every c ∈ C,

f
µ
c =

{
minπc µ

−1(c) if |µ−1(c)| = rc
∅ otherwise

.

By this definition f
µ ∈ F . Moreover, Condition 2 in the definition of a cutoff equilibrium is

trivially satisfied.

We show that Condition 1(a) holds next. Let i ∈ I. If µ(i) = ∅ then Condition 1(a) is

satisfied for i. Suppose µ(i) = c for some c ∈ C. We have i πc minπc µ
−1(c). Moreover i πc ∅,

as µ complies with eligibility requirements. Thus, i πc f
µ
c ∈ {∅,minπc µ

−1(c)}, and hence,

µ(i) ∈ Bi(f
µ
), showing Condition 1(a) is satisfied.

Finally, we show that Condition 1(b) is satisfied. We prove its contrapositive. Let i ∈ I be

such that µ(i) 6∈ Bi(f
µ
). Thus, µ(i) = ∅ by Condition 1(a). Let c ∈ C. If |µ−1(c)| < rc, then

f
µ
c = ∅ πc i by non-wastefulness of µ. If |µ−1(c)| = rc, then j πc i for every j ∈ µ−1(c) as µ

respects priorities; thus, f
µ
c = minπc µ

−1(c) πc i. In either case, we have c 6∈ Bi(f
µ
). Thus, we

get Bi(f
µ
) = ∅, showing that Condition 1(b) also holds for (f

µ
, µ), and hence, completing the

proof that (f
µ
, µ) is a cutoff equilibrium.

Part 2. Let (f, µ) be a cutoff equilibrium. We prove that f
µ
c πc fc for every c ∈ C:

Suppose, for contradiction, that there exists some category c ∈ C such that fc πc f
µ
c . Then

|µ−1(c)| = rc as (f, µ) is a cutoff equilibrium and fc πc ∅, which follows from the fact that f
µ
c πc ∅.

Thus, f
µ
c = minπc µ

−1(c) πc ∅ by definition and µ complying with eligibility requirements. Then

for the patient i = f
µ
c , µ(i) = c 6∈ Bi(f) contradicting that (f, µ) is a cutoff equilibrium.

Thus, such a category c does not exist, and hence, f
µ

is the maximum cutoff equilibrium vector

supporting matching µ. �

Claim 2. fµ is the minimum equilibrium cutoff vector supporting µ, i.e., (fµ, µ) is a cutoff

equilibrium and for every cutoff equilibrium (f, µ), fc πc f
µ
c

for every c ∈ C.

Proof. We prove the claim in two parts.
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Part 1. We show that (fµ, µ) is a cutoff equilibrium:

We restate fµ using its definition in Equation (2): for every c ∈ C,

fµ
c

=

{
minπc

{
i ∈ µ(I) : i πc xc

}
if xc 6= ∅

∅ otherwise

where xc is defined as

xc = max
πc

(
I \ µ(I)

)
∪ {∅}.

For every c ∈ C, since xc πc ∅, we have minπc
{
i ∈ µ(I) : i πc xc

}
πc ∅, if xc 6= ∅. Hence, fµ

c
πc ∅

showing that fµ ∈ F .

We show that the conditions in the definition of a cutoff equilibrium are satisfied by (fµ, µ).

Condition 2. Suppose |µ−1(c)| < rc for some c ∈ C. For any i ∈ I \ µ(I) we have ∅ πc i by

non-wastefulness of µ. Thus, xc = ∅. This implies fµ
c

= ∅ by its definition. Hence, Condition 2

is satisfied.

Condition 1(a). Let i ∈ I. If µ(i) = ∅ then Condition 1(a) is satisfied for i. Suppose µ(i) = c

for some c ∈ C. We have i πc f
µ
c , since we showed in Claim 1 that (f

µ
, µ) is a cutoff equilibrium.

Two cases are possible about µ−1(c):

• If |µ−1(c)| < rc: we showed in proving Condition 2 that xc = ∅, thus, f
µ
c = fµ

c
= ∅. Since

i πc ∅, c = µ(i) ∈ Bi(fµ) showing that Condition 1(a) holds for i.

• If |µ−1(c)| = rc: Then f
µ
c = minπc µ

−1(c) πc xc: as otherwise

– if xc ∈ I, then µ(xc) = ∅ (by definition of xc) and yet c ∈ Bxc(f
µ
), a contradiction to

(f
µ
, µ) being a cutoff equilibrium;

– if xc = ∅, then (i) xc πc f
µ
c ∈ I contradicts f

µ
being a cutoff vector, and (ii) xc = f

µ
c

contradicts |µ−1(c)| = rc. Thus we cannot have xc πc f
µ
c in this case either.

Thus,

f
µ
c πc min

πc
{i ∈ I : i πc xc} = fµ

c
.

Then

i πc f
µ
c πc f

µ
c
,

implying c = µ(i) ∈ Bi(fµ) and showing that Condition 1(a) holds for i.

Condition 1(b). Let i ∈ I be such that Bi(fµ) 6= ∅. Let c ∈ Bi(fµ).

• if xc = ∅: Then i πc ∅ = fµ
c
. By definition of xc, i ∈ µ(I), i.e., µ(i) 6= ∅.

• if xc 6= ∅: Then i πc f
µ
c
πc xc, which in turn implies that µ(i) 6= ∅ by definition of fµ

c
and

xc.
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In either case, by Condition 1(a), µ(i) ∈ Bi(fµ). Thus, Condition 1(b) is satisfied for i.

These conclude proving that (fµ, µ) is a cutoff equilibrium.

Part 2. Let (f, µ) be a cutoff equilibrium. We prove that fc πc f
µ
c

for every c ∈ C:
Suppose to the contrary of the claim fµ

c
πc fc for some c ∈ C. Now, fµ

c
is a patient,

because fc πc ∅ by the definition of a cutoff vector. By definition of fµ
c
, xc 6= ∅ and fµ

c
πc xc.

We cannot have xc πc fc, as otherwise, we have c ∈ Bxc(f); however, by definition of xc,

µ(xc) = ∅, contradicting (f, µ) is a cutoff equilibrium. Thus fc πc xc. Since xc is eligible for c,

fc ∈ I. Furthermore, fc ∈ µ(I), since c ∈ Bfc(f) and (f, µ) is a cutoff equilibrium. Therefore,

fc ∈ {j ∈ µ(I) : j πc xc}. Since fµ
c

= minπc{j ∈ µ(I) : j πc xc}, we have fc πc f
µ
c
, contradicting

fµ
c
πc fc. Therefore, such a category c cannot exist, and hence, fµ is the minimum equilibrium

cutoff vector supporting µ. �

Claim 3. For any given two cutoff equilibria (f, µ) and (g, µ) such that fc πc gc for every c ∈ C,
the pair (h, µ) is also a cutoff equilibrium where h ∈ F satisfies for every c ∈ C, fc πc hc πc gc.

Proof. We can obtain cutoff vector h from g after a sequence of repeated applications of the

following operation: Change the cutoffs of one of the categories c ∈ C of an input vector f ′ ∈ F
so that its cutoff increases by one patient and gets closer to hc than f ′c. We start with f ′ = g to

the sequence. We show that each iteration of this operation results with a new equilibrium cutoff

vector g′ supporting µ and we use this g′ as the input of the next iteration of the operation.

Since the outcome vector gets closer to h at each step, the last cutoff vector of the sequence is

h by finiteness of the patient set, and thus, (h, µ) is a cutoff equilibrium:

Suppose c′ ∈ C is such that hc′ πc′ gc′ . We prove that for cutoff vector g′ ∈ F such that

g′c = gc for every c ∈ C \ {c′} and g′c′ = minπc′{i ∈ I : i πc′ gc′}, (g′, µ) is a cutoff equilibrium. It

is straightforward to show that g′ ∈ F . Observe also that Bi(g′) = Bi(g) for every i ∈ I \ {j}
where j = gc′ . Three cases are possible regarding j:

• If j 6∈ I: j = ∅.

• If j ∈ I and µ(j) = c′: Category c′ ∈ Bj(f) as (f, µ) is a cutoff equilibrium. However,

fc′ πc′ hc′ πc′ j = gc′ , contradicting that c′ ∈ Bj(f). Therefore, this case cannot happen.

• If j ∈ I and µ(j) 6= c′: Observe that µ(j) 6= ∅, as c′ ∈ Bj(g) and (g, µ) is a cutoff

equilibrium. Moreover, we have µ(j) ∈ Bj(g), in turn together with µ(j) 6= c′ implying

that µ(j) ∈ Bj(g′) as g′µ(j) = gµ(j).

These and the fact that (g, µ) is a cutoff equilibrium (specifically its Condition 1(b)) show that

µ(i) ∈ Bi(g′) for every i ∈ I such that Bi(g′) 6= ∅, proving Condition 1(b) holds in the definition

of cutoff equilibrium for (g′, µ).

Since (g, µ) is a cutoff equilibrium (specifically Conditions 1(a) and 1(b) of the definition)

imply that for every i ∈ I, µ(i) = ∅ ⇐⇒ Bi(g) = ∅. Therefore, we have µ(i) = ∅ for every

i ∈ I such that Bi(g′) = ∅, because Bi(g′) ⊆ Bi(g) = ∅, where the set inclusion follows from the

fact that the cutoffs have weakly increased for each category under g′. This and Condition 1(b)

that we showed above imply that for all i ∈ I, µ(i) ∈ Bi(g′) ∪ {∅}. Thus, Condition 1(a) in the

definition of a cutoff equilibrium is also satisfied by (g′, µ).
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We show Condition 2 is also satisfied proving that for every c ∈ C, g′c = ∅ if |µ−1(c)| < rc to

conclude that (g′, µ) is a cutoff equilibrium. Suppose |µ−1(c)| < rc for some c ∈ C. If c 6= c′, then

g′c = gc = ∅, where the latter equality follows from (g, µ) being a cutoff equilibrium (specifically

its Condition 2). If c = c′, fc′ = ∅ πc′ gc′ , where the first equality follows from (f, µ) being a

cutoff equilibrium (specifically its Condition 2). This contradicts. g ∈ F . So c 6= c′, completing

the proof. �

Proof of Theorem 2.

Sufficiency : We first prove that any DA-induced matching complies with eligibility require-

ments, is non-wasteful, and respects priorities. Let �∈ P be a preference profile of patients over

categories and ∅. Suppose µ ∈M is DA-induced from this preference profile.

Compliance with eligibility requirements: Suppose that µ(i) = c for some c ∈ C. Then i must

apply to c in a step of the DA algorithm, and hence, c �i ∅. By construction of �i, this means

i πc ∅. Therefore, matching µ complies with eligibility requirements.

Non-wastefulness: Suppose that i πc ∅ and µ(i) = ∅ for some category c ∈ C and patient i ∈ I.

By construction of �i, c �i ∅ because i is eligible for c. As patient i is unmatched in µ, she

applies to c in some step of the DA algorithm. However, c rejects i at this or a later step. This

means, c should have been holding at least rc offers from eligible patients at this step. From

this step on, c always holds rc offers and eventually all of its units are assigned:
∣∣µ−1(c)∣∣ = rc.

Hence, matching µ is non-wasteful.

Respecting priorities: Suppose that µ(i) = c and µ(i′) = ∅ for two patients i, i′ ∈ I and a

category c ∈ C. For every category c′ ∈ C, πc′ is used to choose eligible patients at every step

of the DA algorithm. Therefore, µ(i) = c implies i πc ∅. Since µ(i′) = ∅, then it must be either

because ∅ πc i′ or because i πc i
′. In the first case, we get i πc i

′ as well because πc is transitive.

Therefore, matching µ respects priorities.

Necessity: We now prove that any matching µ ∈ M with the three stated properties is DA-

induced from some preference profile. We construct a candidate preference profile �∈ P as

follows:

• Consider a patient i ∈ µ−1(c) where c ∈ C. Since µ complies with eligibility requirements,

i must be eligible for category c. Let i rank category c first in �i. The rest of the ranking

in �i is arbitrary as long as all eligible categories are ranked above the empty set.

• Consider an unmatched patient i ∈ µ−1(∅). Let i rank categories in any order in �i such

that only eligible categories are ranked above the empty set.

We now show that µ is DA-induced from preference profile �. In the induced DA algorithm

under�, for every category c′ ∈ C, patients in µ−1(c′) apply to category c′ first. Every unmatched

patient j ∈ µ−1(∅) applies to her first-ranked eligible category according to �j , if there is any.

Suppose c ∈ C is this category. Since µ respects priorities, j has a lower priority than any patient

in µ−1(c), who also applied to c in Step 1. Furthermore, since µ is non-wasteful,
∣∣µ−1(c)∣∣ = rc (as

there are unmatched eligible patients for this category, for example j). Therefore, all unmatched
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patients in µ are rejected at the first step of the DA algorithm. Moreover, for every category

c′ ∈ C, all patients in µ−1(c′) are tentatively accepted by category c′ at the end of Step 1.

Each unmatched patient in j ∈ µ−1(∅) continues to apply according to �j to the other

categories at which she is eligible. Since µ respects priorities and is non-wasteful, she is rejected

from all categories for which she is eligible one at a time, because each of these categories c ∈ C
continues to tentatively hold patients µ−1(c) from Step 1 who all have higher priority than j

according to πc, as µ respects priorities. Moreover, by non-wastefulness of µ,
∣∣µ−1(c)∣∣ = rc, as

there are unmatched eligible patients (for example j) under µ.

As a result, when the algorithm stops, the outcome is such that, for every category c′ ∈ C, all

patients in µ−1(c′) are matched with c′. Moreover, every patient in µ−1(∅) remains unmatched

at the end. Therefore, µ is DA-induced from the constructed patient preferences �.

Proof of Proposition 1. Let . ∈ ∆ be a precedence order and ϕ. be the associated sequential

reserve matching. We show that ϕ. is DA-induced from preference profile �.= (�.i )i∈I .
For every patient i ∈ I, consider another strict preference relation �′i such that all categories

are ranked above the empty set and, furthermore, for any c, c′ ∈ C,

c �′i c′ ⇐⇒ c . c′.

Note that the relative ranking of two categories for which i is eligible is the same between

�.i and �′i.
We use an equivalent version of the DA algorithm as the one given in the text. Consider a

Step k: Each patient i who is not tentatively accepted currently by a category applies to the

best category that has not rejected her yet according to �′i. Suppose that Ikc is the union of the

set of patients who were tentatively assigned to category c in Step k− 1 and the set of patients

who just proposed to category c. Category c tentatively assigns eligible patients in Ikc with the

highest priority according to πc until all patients in Ikc are chosen or all rc units are allocated,

whichever comes first, and permanently rejects the rest.

Since for any category c ∈ C and any patient i ∈ I who is ineligible for category c, ∅ πc c, the

outcome of the DA algorithm when the preference profile is �. and �′= (�′i)i∈I are the same.

Furthermore, when the preference profile is �′, the DA algorithm works exactly like the

sequential reserve procedure that is used to construct ϕ.. We show this by induction. Suppose

. orders categories as c1 . c2 . . . . . c|C|. As the inductive assumption, for k > 0, suppose

for categories c1, . . . , ck−1, the tentative matches at the end of Step k − 1 and final matches at

the end under the DA algorithm from �′ are identical to their matches in sequential reserve

matching ϕ..

We next consider Step k of the DA algorithm from �′. Only patients who are rejected from

category ck−1 apply in Step k of the DA algorithm and they all apply to category ck. Then ck
uses its priority order πck to tentatively accept the rck highest-priority eligible applicants (and

if there are less than rck eligible applicants, all eligible applicants), and rejects the rest. Observe

that since every patient who is not tentatively accepted by a category c1, . . . , ck−1 applied to

this category in Step k, none of these patients will ever apply to it again; and by the inductive

assumption no patient who is tentatively accepted in categories c1, . . . , ck−1 will ever be rejected,
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and thus, they will never apply to ck, either. Thus, the tentative acceptances by ck will become

permanent at the end of the DA algorithm. Moreover, this step is identical to Step k of the

sequential reserve procedure under precedence order . and the same patients are matched with

category ck in ϕ.. This ends the induction.

Therefore, we conclude that ϕ. is DA-induced from patient preference profile �..

Proof of Proposition 2. Let J., J.
′ ⊆ I be the sets of patients remaining just before category

c is processed under the sequential reserve matching procedure induced by . and .′, respectively.

Since c is processed earlier under .′ and every other category preceding c and c′ under . and .′

are ordered in the same manner order, J. ⊆ J.′ . Two cases are possible:

1. If |ϕ−1.′ (c)| < rc: Then J. ⊆ J.
′

implies |ϕ−1. (c)| < rc. Therefore, by Equation (1),

f
ϕ.′
c = ∅ = f

ϕ.

c .

2. If |ϕ−1.′ (c)| = rc: Then J. ⊆ J.′ implies,

f
ϕ.′
c = min

πc
ϕ−1.′ (c) πc min

πc
ϕ−1. (c),

where the first equality follows by Equation (1). By the same equation, f
ϕ.

c ∈ {∅,minπc ϕ
−1
. (c)}

and by the definition of a cutoff vector, f
ϕ.′
c πc ∅. Thus,

f
ϕ.′
c πc f

ϕ.

c .

A.2 Proofs of Lemma 2, Proposition 4, and Theorem 3 in Section 4

Proof of Lemma 2. By the definition of the smart reserve matching algorithm induced

by assigning n unreserved units subsequently at the beginning, in Step 1.(k) for every k ∈
{0, 1, . . . , |I|}, and for every every matching µ ∈Mk,

• µ(i) = u for every i ∈ Juk , and

• µ(i) 6∈ {u, ∅} and i ∈ Iµ(i) for every i ∈ Jk.

We show that for any i ∈ I \ (Ju|I| ∪ J|I|) there is no matching µ ∈ M|I| such that µ(i) 6∈ {u, ∅}
and i ∈ Iµ(i). Suppose contrary to the claim that such a patient i and matching µ exist. Patient

i is processed in some Step 1.(k). We have i /∈ Juk ∪ Jk ⊆ Ju|I| ∪ J|I|. We have µ ∈ Mk−1 as

Mk−1 ⊇ M|I|. Then |Juk−1| = n, as otherwise we can always match i with u even if we cannot

match her with a preferential treatment category that she is a beneficiary of when she is processed

under a matching that is maximal in beneficiary assignment, contradicting i /∈ Ju|I| ∪ J|I|. But

then as µ(i) 6∈ {u, ∅} and i ∈ Iµ(i), we have µ ∈Mk and i ∈ Jk, contradicting again i /∈ Ju|I|∪J|I|.
Thus, in Step 2 no patient is matched with a preferential treatment categories that she is

a beneficiary of. These prove ∪c∈C\{u}(σ−1(c) ∩ Ic) is the same set regardless of the matching

σ ∈Mn
S we choose.

To prove that σ−1(u) is the same for every σ ∈Mn
S , we consider two cases (for Step 2):
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• If we have a soft reserve system: Then all patients are eligible for the remaining max{0, q−
|Ju|I|∪J|I||} units. Since we assign the patients in I \(Ju|I|∪J|I|) based on priority according

to π to the remaining units, we have σ(I) is the same patient set regardless of the matching

σ ∈Mn
S we choose. Since the remaining ru−n unreserved units are assigned to the lowest

priority patients that are matched in any σ ∈ Mn
S , if any, and µ−1(u) is a fixed set

regardless of which matching µ ∈ M|I| we choose (as we proved above), then σ−1(u) is

the same set regardless of which σ ∈Mn
S we choose.

• If we have a hard reserve system: Then in Step 2 no patient is matched with a unit of a

category that she is not a beneficiary of. Thus, the ru− n remaining unmatched units are

assigned to the highest π-priority patients in I \ (Ju|I| ∪ J|I|). This concludes proving that

each of σ(I) and σ−1(u) is the same patient set regardless of which σ ∈Mn
S we choose.

Proof of Proposition 4. For any n ∈ {0, 1, . . . , ru}, we prove that every smart reserve

matching in Mn
S complies with eligibility requirements, is non-wasteful, respects priorities, and

is maximal in beneficiary assignment.

Compliance with eligibility requirements: By construction, no patient is ever matched with a

category for which she is not eligible during the procedure.

Non-wastefulness: Suppose to the contrary of the claim that there exists some σ ∈ Mn
S that is

wasteful. Thus, there exists some category c ∈ C and a patient i ∈ I such that σ(i) = ∅, i πc ∅,
and |µ−1(c)| < rc. Then in Step 2 patient i or another patient should have been matched with

c as we assign all remaining units to eligible patients, which is a contradiction.

Respect for Priorities: Let σ ∈ Mn
S be a smart reserve matching. Suppose patients i, j ∈ I are

such that i π j and σ(i) = ∅. We need to show either (i) σ(j) = ∅ or (ii) i 6∈ Iσ(j) and j ∈ Iσ(j),
which is equivalent to j πσ(j) i. Suppose σ(j) 6= ∅. Suppose to the contrary that i ∈ Iσ(j)
and j ∈ Iσ(j). Consider the smart reserve matching procedure with n. Two cases are possible:

j ∈ Ju|I| ∪ J|I| or not. We show that either case leads to a contradiction, showing that σ respects

priorities.

• If j ∈ Ju|I|∪J|I|: Consider the matching σ̂ obtained from σ as follows: σ̂(i) = σ(j), σ̂(j) = ∅,
and σ̂(i′) = σ(i′) for every i′ ∈ I \ {i, j}. Since i, j ∈ Iσ(j), and we match i instead of j

with σ(j), σ̂ is a matching that is maximal in beneficiary assignment as well. Since i π j,

i is processed before j in Step 1. Let i be processed in some Step 1.(k). Since σ(i) = ∅,
i 6∈ Jk ∪ Juk . Then σ̂ ∈Mk−1 as σ ∈Mk−1. Two cases are possible:

– if σ(j) = u: As j is matched with an unreserved unit in Step 1, then an unreserved

unit is still to be allocated in the procedure when i is to be processed in Step 1.(k)

before j. We try to match i with an unreserved unit first. Since σ̂ ∈ Mk−1 and

σ̂(i) = u this implies i ∈ Juk . This contradicts i 6∈ Juk ∪ Jk.
– if σ(j) 6= u: Then when i is to be processed in Step 1.(k), we are trying to match

her (i) if it is possible, with unreserved category u first and if not, with a preferential
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treatment category that she is a beneficiary of, or (ii) directly with a preferential

treatment category that she is a beneficiary of without sacrificing the maximality in

beneficiary assignment. However, as σ(i) = ∅ we failed in doing either. Since i ∈ Iσ̂(i)
and σ̂(i) 6= u, at least there exists a matching in Mk−1 that would match i with a

preferential treatment category that she is a beneficiary of. Hence, this contradicts

i 6∈ Juk ∪ Jk.

• If j 6∈ Ju|I|∪J|I|: Therefore, j is matched in Step 2 of the smart reserve matching algorithm

with n unreserved units processed first. Since we match patients in Step 2 either with the

preferential treatment categories that they are eligible but not beneficiary of or with the

unreserved category u, and we assumed j ∈ Iσ(j) then σ(j) = u. Since i is also available

when j is matched, and i π j, patient i or another patient who has higher π-priority than

j should have been matched instead of j, which is a contradiction.

Maximality in Beneficiary Assignment: By construction Mn
S ⊆M0, which is the set of match-

ings that are maximal in beneficiary assignment in the smart reserve matching procedure with

n.

The following lemma and concepts from graph theory will be useful in our next proof. We

state the lemma as follows:

Lemma 3 (Mendelsohn and Dulmage Theorem, 1958). Let Mb be the set of matchings that

match patients with only preferential treatment categories that they are beneficiaries of and

otherwise leave them unmatched. If there is a matching in Mb that matches patients in some

J ⊆ I and there is another matching ν ∈ Mb then there exists a matching in Mb that matches

all patients in J and at least |ν−1(c)| units of each category c ∈ C \ {u}.

See for example page 266 of Schrijver (2003) for a proof of this result.

Let us define I∅ = ∅ for notational convenience.

We define a beneficiary alternating path from µ to ν for two matchings in µ, ν ∈M as

a non-empty list A = (i1, . . . , im) of patients such that[
i1 6∈ Iµ(i1) or µ(i1) = u

]
&

[
i1 ∈ Iν(i1) and ν(i1) 6= u

]
,[

im ∈ Iµ(im) and µ(im) = ν(im−1)
]

&
[
im ∈ Iν(im) and ν(im) 6= u

]
for every m ∈ {2, 3, . . . ,m− 1},[

im ∈ Iµ(im) and µ(im) = ν(im−1)
]

&
[
im 6∈ Iν(im) or ν(im) = u

]
.

A beneficiary alternating path begins with a patient i1 who is not matched with a preferential

treatment category that she is a beneficiary of under µ and ends with a patient im who is not

matched with a preferential treatment category that she is a beneficiary of under ν. Everybody

else in the path is matched under both matchings with a preferential treatment category that she

is a beneficiary of. We state the following observation, which directly follows from the finiteness

of categories and patients.
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Observation 1. If µ and ν ∈M are two matchings such that for every c ∈ C\{u}, |µ−1(c)∩Ic| =
|ν−1(c)∩ Ic| and there exists some i ∈

(
∪c∈C\{u} ν−1(c)∩ Ic

)
\
(
∪c∈C\{u} µ−1(c)∩ Ic

)
, then there

exists a beneficiary alternating path from µ to ν beginning with patient i.

We are ready to prove our last theorem:

Proof of Theorem 3. By Proposition 4 and Theorem 1, any σ0 ∈ M0
S and σru ∈ Mru

S

are cutoff equilibrium matchings. Let µ ∈ M be any other cutoff equilibrium matching that is

maximal in beneficiary assignment.

We extend the definitions of our concepts to smaller economies: given any I∗ ⊆ I and

r∗ = (r∗c )c∈C such that r∗c ≤ rc for every c ∈ C, all properties and algorithms are redefined for

this smaller economy (I∗, r∗) by taking the restriction of the baseline priority order π on I∗, and

denoted using the argument (I∗, r∗) at the end of the notation. For example M(I∗, r∗) denotes

the set of matchings for (I∗, r∗).

Proof of f
σru
u π f

µ
u:

We prove the following claim first.

Claim 1. For any set of patients I∗ ⊆ I and any capacity vector r∗ ≤ r, suppose matching

ν ∈M(I∗, r∗) is maximal in beneficiary assignment for (I∗, r∗). Let σ ∈Mr∗u
S (I∗, r∗) be a smart

reserve matching with all unreserved units processed first. Then

|σ−1(u)| ≥ |ν−1(u)|.

Moreover, according to the baseline priority order π, for any k ∈
{

1, . . . ,
∣∣ν−1(u) \ σ−1(u)

∣∣},

let jk be the kth highest priority patient in σ−1(u) \ ν−1(u) and j′k be the kth highest priority

patient in ν−1(u) \ σ−1(u), then

jk π j
′
k.

Proof. Suppose to the contrary of the first statement |σ−1(u)| < |ν−1(u)|. Since both σ and ν

are maximal in beneficiary assignment for (I∗, r∗), then the exists some patient i ∈ (∪c∈Cν−1(c)∩
Ic) \ (∪c∈Cσ−1(c) ∩ Ic). This patient is not committed to be matched in Step 1 of the smart

reserve matching algorithm with all unreserved units first, despite the fact that there exists at

least one available unreserved unit when she was processed, which is a contradiction. Thus,

|σ−1(u)| ≥ |ν−1(u)|.
For the rest of the proof, we use induction on the cardinality of I∗ and on the magnitude of

vector of category capacity vector r∗:

• For the base case when I∗ = ∅ and r∗c = 0 for every c ∈ C, the claim holds trivially.

• As the inductive assumption, suppose that for all capacity vectors of categories bounded

above by vector r∗ and all subsets of I bounded above by cardinality k∗, the claim holds.
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• Consider a set of patients I∗ ⊆ I such that |I∗| = k∗ and capacity vector of categories

r∗ = (r∗c )c∈C . Let σ ∈ Mr∗u
S (I∗, r∗) be a smart reserve matching for (I∗, r∗) with all

unreserved units processed first and ν ∈ M(I∗, r∗) be maximal in beneficiary assignment

for (I∗, r∗). If σ−1(u) ⊇ ν−1(u) then the claim for (I∗, r∗) is trivially true. Thus, suppose

not. Then, there exists j ∈ ν−1(u) \ σ−1(u). Moreover, let j be the highest π-priority

patient in ν−1(u) \ σ−1(u). We have two cases that we consider separately:

Case 1. There is no patient i ∈ I∗ such that i π j and i ∈ σ−1(u) \ ν−1(u):

We show that this case leads to a contradiction, and hence, it cannot hold.

When j is processed in Step 1 of the smart reserve matching algorithm with all

unreserved units processed first, since σ(j) 6= u, either

(i) all units of the unreserved category are assigned under σ to patients with higher

π-priority than j, or

(ii) some unreserved category units are still available when j is processed.

Observe that (i) cannot hold, because it contradicts Case 1. Thus, (ii) holds.

Since j is the highest π-priority patient in ν−1(u) \ σ−1(u) and since we are in Case

1, for every i ∈ I∗ such that i π j, we have

ν(i) = u ⇐⇒ σ(i) = u. (3)

We construct a new matching ν̂ ∈M(I∗, r∗) from ν and fix a patient i ∈ I∗ as follows.

We check whether there exists a patient i ∈ I∗ such that

i π j, σ(i) 6= u, and i 6∈ Iν(i), (4)

(a) If such a patient i does not exist, then let ν̂ = ν and i = j.

(b) If such a patient i exists, then let her be the highest π-priority patient with the

property in Equation 4.

We show that i ∈ Iσ(i). Consider the smart reserve matching algorithm. Since

ν(j) = u and i π j, just before i is processed in Step 1, there is still at least one

unreserved unit available by Equation 3. Since we are processing all unreserved

units first and since σ(i) 6= u, it should be the case that we had to match i with

a preferential treatment category that she is a beneficiary of. Thus, i ∈ Iσ(i).
We create a new matching for (I∗, r∗) from ν, which we refer to as ν̂, such that

ν̂ matches every patient in I∗ exactly as under ν except that ν̂ leaves patient

j unmatched and matches i with category u instead. Since ν is maximal in

beneficiary assignment for (I∗, r∗), so is ν̂.

So far, we have for every i′ ∈ I∗ such that i′ π i,

1. σ(i′) = u ⇐⇒ ν(i′) = u (by Equation 3 and i π j),

2. σ(i′) ∈ Iσ(i′) (an unreserved unit is available before i is processed in Step 1 of

the smart reserve matching algorithm with all unreserved units processed first;

thus, every patient processed before i is matched if possible, with u, and if not

possible, with a preferential treatment category that she is a beneficiary of under

the restriction of maximality in beneficiary assignment), and
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3. ν̂(i′) ∈ Iν̂(i′) (by definition of i as the highest π-priority patient satisfying Equa-

tion 4).

We also have ν̂(i) = u and σ(i) 6= u.

Patient i is processed in some Step 1.(k) in the smart reserve matching algorithm

with all unreserved units processed first. As σ(i) 6= u we have i /∈ Juk (I∗, r∗). On

the other hand, since σ ∈ Mk−1(I
∗, r∗), by Statements 1, 2, and 3 above, we have

ν̂ ∈ Mk−1(I
∗, r∗) as well and it matches i with u, contradicting i /∈ Juk (I∗, r∗).

Therefore, Case 1 (ii) cannot hold either.

Case 2. There is some i ∈ σ−1(u) \ ν−1(u) such that i π j:

Construct a matching σ̂ from σ that it leaves every patient who is matched in Step

2 of the smart reserve matching algorithm with all unreserved units processed first:

for every i∗ ∈ I∗, σ̂(i∗) = σ(i∗) if i∗ ∈ Iσ(i∗) and σ̂(i∗) = ∅ otherwise. Clearly

σ̂ ∈ M(I∗, r∗) and is maximal in beneficiary assignment for (I∗, r∗), since σ is. By

Lemma 3, there exists a matching ν̃ ∈Mb(I∗, r∗)17 such that under ν̃ all patients in

∪c∈C\{u}ν̃−1(c)∩ Ic are matched with the preferential treatment categories in C \ {u}
that they are beneficiaries of, and for every c ∈ C \ {u}, |ν̃−1(c) ∩ Ic| = |σ̂−1(c) ∩ Ic|
(equality follows rather than ≥ as dictated by the lemma, because σ̂ is maximal

in beneficiary assignment for (I∗, r∗)). For every i∗ ∈ I∗, we have ν(i∗) = u =⇒
ν̃(i∗) = ∅ as ν̂ ∈Mb(I∗, r∗). We modify ν̃ to obtain ν̂: For every i∗ ∈ ν−1(u), we set

ν̂(i∗) = u and for every i∗ ∈ I∗ \ ν−1(u), we set ν̂(i∗) = ν̃(i∗). Clearly, ν̂ ∈M(I∗, r∗)

and is maximal in beneficiary assignment for (I∗, r∗), since ν is. We will work with

σ̂ and ν̂ instead of σ and ν from now on.

Recall that σ̂(i) = u and ν̂(i) 6= u. Two cases are possible: i ∈ Iν̂(i) or ν̂(i) = ∅.

1. If i ∈ Iν̂(i): Then by Observation 1, there exists a beneficiary alternating path

A from σ̂ to ν̂ beginning with i and ending with some i′ ∈ I∗ such that (i)

σ̂(i′) ∈ Iσ̂(i′) and σ̂(i′) 6= u, and (ii) ν̂(i′) = u or ν̂(i′) = ∅.
By the existence of the beneficiary alternating path, it is possible to match either

i or i′ with a preferential treatment category that she is a beneficiary of and

match the other one with u without changing the type of match of any other

patient i∗ ∈ I∗ \{i, i′} has, i.e., either i∗ is matched with a preferential treatment

category under both matchings or not. Yet, when i is processed in Step 1 of the

smart reserve matching algorithm with all unreserved units processed first, we

chose i to be matched with u and i′ with a preferential treatment category. This

means

i π i′.

Let ĉ 6= u be the category that i is matched with under ν̂.

If σ̂(i′) 6= u, then modify ν̂ by assigning an unreserved unit to i′ instead of j:

ν̂(j) = ∅ and ν̂(i′) = u. Otherwise, do not modify ν̂ any further.

17As defined in the hypothesis of the lemma, ν̃ ∈ Mb(I∗, r∗) means that for every i∗ ∈ I∗ and c ∈ C, i∗ ∈ ν̃−1(c)

implies c 6= u and i∗ ∈ Ic.

45



Consider the smaller economy (I ′, r′) such that I ′ = I∗ \ {i, i′} and for every

c ∈ C, r′c = r∗c − 1 if c ∈ {ĉ, u} and r′c = r∗c , otherwise.

We show that a smart reserve matching σ′ ∈Mr′u
S (I ′, r′) can be obtained from the

original smart reserve matching σ ∈Mr∗u
S (I∗, r∗) and ν̂. Consider the beneficiary

alternating path A we discovered above starting with patient i and ending with

patient i′ from σ̂ to ν̂: Suppose A = (i, i2, . . . , im−1, i
′). Define

σ′(i∗) = σ(i∗) for every i∗ ∈ I ′ \ {i2, . . . , im−1} and

σ′(i∗) = ν̂(i∗) for every i∗ ∈ {i2, . . . , im−1}.

Observe that σ′ ∈M(I ′, r′). The existence of σ′ shows that it is feasible to match

every patient in Ju|I∗|(I
∗, r∗)\{i} with u and it is feasible to match every patient in

J|I∗|(I
∗, r∗) \ {i′} with a preferential treatment category that she is a beneficiary

of in (I ′, r′). Thus, the smart reserve matching algorithm with all unreserved

units processed first proceeds exactly in the same manner as it does for (I∗, r∗)

with the exception that it skips patients i and i′ in the smaller economy (I ′, r′).

Hence, σ′ ∈Mr′u
S (I ′, r′).

Let the restriction of matching ν̂ to (I ′, r′) be ν ′. Observe that ν ′ is a matching

for (I ′, r′). Moreover, it is maximal in beneficiary assignment for (I ′, r′), since ν̂

is maximal in beneficiary assignment for (I∗, r∗).

Now one of the two following cases holds for ν:

(a) If ν(i′) 6= u: Recall that while ν(j) = u, we updated ν̂ so that ν̂(i′) = u

and ν̂(j) = ∅. Thus, ν ′(j) = ∅ as well. Since i π j, this together with the

inductive assumption that the claim holds for (I ′, r′) imply that the claim

also holds for (I∗, r∗), completing the induction.

(b) If ν(i′) = u: Since i π i′, this together with the inductive assumption that the

claim holds for (I ′, r′) imply that the claim also holds for (I∗, r∗), completing

the induction.

2. If ν̂(i) = ∅: Recall that ν̂(j) = u. We modify ν̂ further that ν̂(i) = u and

ν̂(j) = ∅. Consider the smaller economy (I ′, r′) where I ′ = I∗ \ {i}, r′u = r∗u − 1,

and r′c = r∗c for every c ∈ C \ {u}.
Let σ′ and ν ′ be the restrictions of σ and ν̂ to (I ′, r′), respectively. Since, σ(i) =

ν̂(i) = u both σ′ and ν ′ are matchings for (I ′, r′). Since the capacity of category

u is decreased by one, σ′ is a smart reserve matching with all unreserved units

processed first for (I ′, r′). To see this observe that the algorithm proceeds as it

does for (I∗, r∗) with the exception that it skips i. Matching ν ′ is maximal in

beneficiary assignment for (I ′, r′). Therefore, by the inductive assumption, the

claim holds for (I ′, r′). This together with the fact that i π j imply the claim

holds for (I∗, r∗), completing the induction. �

If |µ−1(u)| < ru then f
σru
u π f

µ
u = ∅. On the other hand, if |µ−1(u)| = ru, Claim 1 implies

that f
σru
u = minπ σ

−1
ru (u) π f

µ
u = minπ µ

−1(u).
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Proof of f
µ
u π f

σ0
u :

We prove the following claim first.

Claim 2. For any set of patients I∗ ⊆ I and any capacity vector r∗ ≤ r, suppose ν ∈M(I∗, r∗)

is a matching that is maximal in beneficiary assignment for (I∗, r∗). Let σ ∈ M0
S(I∗, r∗) be a

smart reserve matching with all unreserved units processed last,

J = ∪c∈C\{u}(σ−1(c) ∩ Ic), and J ′ = ∪c∈C\{u}(ν−1(c) ∩ Ic).

According to the baseline priority order π, for any k ∈ {1, . . . , |J ′ \ J |}, let jk be the kth highest

priority patient in J \ J ′ and j′k be the kth highest priority patient in J ′ \ J , then

jk π j
′
k.

Proof.18 We use induction on the cardinality of I∗ and on the magnitude of vector of capacities

of categories r∗:

• For the base case when I∗ = ∅ and r∗c = 0 for every c ∈ C, the claim holds trivially.

• In the inductive step, suppose for every capacity of categories bounded above by vector r∗

and subsets of patients in I bounded above by cardinality k∗ the claim holds.

• Consider set of patients I∗ ⊆ I such that |I∗| = k∗ and capacity vector for categories

r∗ = (r∗c )c∈C . If J \J ′ = ∅ then the claim holds trivially. Suppose J \J ′ 6= ∅. Let i ∈ J \J ′

be the highest priority patient in J \ J ′ according to π.

We have |J | = |J ′| by maximality of σ and ν in beneficiary assignment for I∗. Thus,

|J \ J ′| = |J ′ \ J |, which implies J ′ \ J 6= ∅.

By Lemma, 3 there exists a matching ν̂ ∈ Mb(I∗, r∗) that matches patients only with

preferential treatment categories that they are beneficiaries of such that ν̂ matches patients

in J ′ and |σ−1(c)∩Ic| units reserved for every preferential treatment category c ∈ C\{u}.19

Since both ν and σ are maximal in beneficiary assignment for (I∗, r∗), then only patients

in J ′ should be matched under ν̂ and no other patients (as otherwise ν would not be

maximal in beneficiary assignment for (I∗, r∗)).

Since ν̂(i) = ∅, i ∈ Iσ(i), and σ(i) 6= u, by Observation 1, there exists a beneficiary

alternating path A starting with i from ν̂ to σ and ending with a patient i′ ∈ Iν̂(i′) (and

ν̂(i′) 6= u by its construction), and yet i′ /∈ Iσ(i) or σ(i′) = u.

Existence of the beneficiary alternating path shows that it is possible to match i or i′

(but not both) with preferential treatment categories that they are beneficiaries of without

affecting anybody else’s status as committed or uncommitted in Step 1 of the smart reserve

18This claim’s proof is similar to the proof of Proposition 1 Part 2 in Sönmez and Yenmez (2020).
19Although both σ and ν may be matching some patients with categories that they are not beneficiaries of or

with the unreserved category, we can simply leave those patients unmatched in σ and ν and apply Lemma 3 to

see such a matching ν̂ exists.
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matching algorithm with all unreserved units processed last. Since σ matches i with a

preferential treatment category that she is a beneficiary of at the cost of patient i′, we

have

i π i′.

Next consider the smaller economy (I ′, r′) in which we remove (i) i and i′ and set I ′ =

I∗ \ {i, i′}, (ii) one of the units associated with preferential treatment category ĉ = ν̂(i′)

and set r′ĉ = r∗ĉ −1, and (iii) keep the capacity of every other category c ∈ C \{ĉ} the same

and set r′c = r∗c .

Let ν ′ be the restriction of ν̂ to (I ′, r′). As ν̂(i) = ∅, ν̂(i′) = ĉ 6= u such that i ∈ Iĉ and

the capacity of ĉ is reduced by 1 in the smaller economy, ν ′ ∈M(I ′, r′), and furthermore,

it is maximal in beneficiary assignment for (I ′, r′).

We form a matching σ′ ∈M(I ′, r′) by modifying σ and ν̂ using the beneficiary alternating

path A we found before. Recall that A is the beneficiary alternating path from ν̂ to σ

beginning with i and ending with i′. Suppose A = (i, i2, . . . , im−1, i
′). Define

σ′(i∗) = σ(i∗) for every i∗ ∈ I ′ \ {i2, . . . , im−1} and

σ′(i∗) = ν̂(i∗) for every i∗ ∈ {i2, . . . , im−1}.

Observe that σ′ ∈ M(I ′, r′). The existence of σ′ shows that it is possible to match every

patient in J|I∗|(I
∗, r∗)\{i} with a preferential treatment category that she is a beneficiary of

in (I ′, r′). Thus, the smart reserve matching algorithm with all unreserved units processed

last proceeds as it does for (I∗, r∗) with the exception that it skips patients i and i′.

Therefore, σ′ ∈M0
S(I ′, r′).

By the inductive assumption, the claim holds for σ′ and ν ′ for (I ′, r′). This completes the

induction, as we already showed i π i′. �

Thus, we showed that at the end of Step 1 of the smart matching algorithm with all un-

reserved units processed last, weakly lower priority patients have remained uncommitted in

J∗ = I \ J|I| = I \ ∪c∈C\{u}(σ−10 (c) ∩ Ic) than in Ĵ = I \ ∪c∈C\{u}(µ−1(c) ∩ Ic).
Two cases are possible:

• If we have a soft reserves system: As both σ0 and µ are maximal in beneficiary assignment,

an equal number of units are assigned to the highest π-priority patients in Ĵ (by Step 2 of

the smart reserve matching algorithm) and J∗ (as by Theorem 1, µ respects priorities and

is non-wasteful). Under σ0, the unreserved units are assigned last in order in Step 2 of

the algorithm. On the other hand, the remainder of µ, i.e., the units assigned to the non-

beneficiaries of preferential treatment categories and beneficiaries of u, can be constructed

by assigning the rest of the units sequentially to the highest priority patients in J∗ one by

one when unreserved units are not necessarily processed last.

Therefore, if |µ−1(u)| < ru then |σ−10 (u)| < ru, in turn implying f
µ
u = f

σ0
u = ∅. If

|µ−1(u)| = ru then |σ−10 (u)| ≤ ru and f
µ
u = minπ µ

−1(u) π f
σ0
u ∈ {∅,minπ σ

−1
0 (u)}.
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• If we have a hard reserves system: The proof is identical as the above case with the

exception that now only unreserved units are assigned as both σ0 and µ comply with

eligibility requirements.

A.3 Proof of Proposition 3 in Section 4

In this subsection, we first show some lemmas that we will use in the proof of Proposition 3.

Fix a soft reserve system induced by the baseline priority order π. Suppose each patient is

a beneficiary of at most one preferential treatment category.

First, we introduce some concepts.

We introduce function τ : I → (C \ {u}) ∪ {∅} to denote the preferential treatment category

that a patient is beneficiary of, if there is such a category. That is, for any patient i ∈ I, if i ∈ Ic
for some c ∈ C \ {u}, then τ(i) = c, and if i ∈ Ig, i.e., i is a general-community patient, then

τ(i) = ∅.
For a category c∗ ∈ C, a set of patients Ĩ ⊆ I, and a patient i ∈ Ĩ, let rank(i; Ĩ , πc∗) denote

the rank of i among patients in Ĩ according to πc∗ .

We consider incomplete orders of precedence. For a given subset of categories C∗ ⊆ C, we

define an order of precedence on C∗ as a linear order on C∗. Let ∆(C∗) be the set of orders

of precedence on C∗.
We extend the definition of sequential reserve matchings to cover incomplete precedence

orders and match a subset of patients Ĩ ⊆ I as follows: A sequential reserve matching

induced by . ∈ ∆(C∗) over Ĩ is the outcome of the sequential reserve procedure which

processes only the categories in C∗ in the order of . to match only the patients in Ĩ and leaves

all categories in C \C∗ unmatched and patients in I \ Ĩ unmatched. Let ϕĨ. denote this matching.

Lemma 4. Suppose that Ĩ ⊆ I, c ∈ C \ {u}, and ., .′ ∈ ∆({u, c}) are such that

• . is given as u . c,

• .′ is given as c .′ u,

• I(2) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(2) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(2) \ I ′(2)| = |I ′(2) \ I(2)|,

2. I ′(2) \ I(2) ⊆ Ĩc,

3. I(2) \ I ′(2) ⊆ Ĩ \ Ĩc,
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4. if i ∈ I(2) \ I ′(2) and i′ ∈ I ′(2), then i π i′, and

5. if i′ ∈ I ′(2) \ I(2) and i ∈ I(2) ∩ Ic, then i′ π i.

Proof of Lemma 4. The first statement in Lemma 4 holds because under soft reserves

every patient is eligible for every category, which implies that |µ(Ĩ)| = |µ′(Ĩ)|. As a result,

|µ(Ĩ)\µ′(Ĩ)| = |µ′(Ĩ)\µ(Ĩ)|, which is equivalent to |I ′(2)\I(2)| = |I(2)\I ′(2)| since µ(Ĩ)\µ′(Ĩ) =

I ′(2) \ I(2) and µ′(Ĩ) \ µ(Ĩ) = I(2) \ I ′(2).

The second statement in Lemma 4 holds because if i ∈ µ−1(u), then rank(i; Ĩ , π) ≤ ru.

Therefore, i ∈ µ′(Ĩ). Furthermore, every i ∈ µ−1(c) is a category-c patient since there exists

j ∈ Ĩc such that j /∈ µ(Ĩ). As a result, we get

Ĩc ⊇ µ−1(c) ⊇ µ(Ĩ) \ µ′(Ĩ) = I ′(2) \ I(2).

To prove the third statement in Lemma 4, suppose for contradiction that there exists i ∈
I(2) \ I ′(2) such that i ∈ Ĩc. Therefore, i ∈ µ′(Ĩ) \ µ(Ĩ) = I(2) \ I ′(2). By the first statement

in Lemma 4, |I ′(2) \ I(2)| = |I(2) \ I ′(2)| ≥ 1 because I(2) \ I ′(2) has at least one patient. By

the second statement in Lemma 4, I ′(2) \ I(2) ⊆ Ĩc. Therefore, there exists i′ ∈ I ′(2) \ I(2) =

µ(Ĩ) \ µ′(Ĩ) such that i′ ∈ Ĩc. Since i ∈ µ′(Ĩ), i′ /∈ µ′(Ĩ), and τ(i) = τ(i′), we get

i π i′.

Likewise, i′ ∈ µ(Ĩ), i /∈ µ(Ĩ), and τ(i) = τ(i′) imply

i′ π i.

The two displayed relations above contradict each other.

The fourth statement in Lemma 4 is true because for every i ∈ I(2) \ I ′(2) = µ′(Ĩ) \ µ(Ĩ)

we know that i /∈ Ĩc by the third statement in Lemma 4. Since µ(Ĩc) ( Ĩc, there are at least

rc patients in Ĩc. Therefore, µ′−1(c) ⊆ Ĩc, which implies that i ∈ µ′−1(u). Since i′ ∈ I ′(2) is

equivalent to i′ /∈ µ′(Ĩ), we get i π i′.

The fifth statement in Lemma 4 follows from i, i′ ∈ Ĩc, i′ ∈ µ(Ĩ), and i /∈ µ(Ĩ).

Lemma 5. Suppose that c, c′ ∈ C \ {u} are different categories. Let Ĩ ⊆ I and ., .′ ∈ ∆({c, c′})
be such that

• . is given as c′ . c,

• .′ is given as c .′ c′,

• I(2) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(2) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(2) \ I ′(2)| = |I ′(2) \ I(2)|,
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2. I ′(2) \ I(2) ⊆ Ĩc,

3. I(2) \ I ′(2) ⊆ Ĩ \ Ĩc,

4. if i ∈ I(2) \ I ′(2) and i′ ∈ I ′(2), then i π i′, and

5. if i′ ∈ I ′(2) \ I(2) and i ∈ I(2) ∩ Ĩc, then i′ π i.

Proof of Lemma 5. If |Ĩc′ | ≥ rc′ , then µ(Ĩ) = µ′(Ĩ) and, therefore, I(2) = I ′(2). Then all

the statements in Lemma 5 hold trivially. Suppose that |Ĩc′ | < rc′ for the rest of the proof.

The first statement in Lemma 5 follows as in the proof of the first statement in Lemma 4.

The second statement in Lemma 5 holds because if i ∈ µ−1(c′) and i ∈ Ĩc′ , then i ∈ µ′(Ĩ)

since |Ĩc′ | < rc′ . If i ∈ µ−1(c′) and i /∈ Ĩc′ , then rank(i; Ĩ \ Ĩc′ , π) ≤ rc′ − |Ĩc′ |. As a result

i ∈ µ′(Ĩ). These two statements imply that µ−1(c′) ⊆ µ′(Ĩ). Furthermore, every i ∈ µ−1(c) is a

category-c patient since there exists i ∈ Ĩc such that i /∈ µ(Ĩ). As a result, we get that

I ′(2) \ I(2) = µ(Ĩ) \ µ′(Ĩ) = µ−1(c) \ µ′(Ĩ) ⊆ µ−1(c) ⊆ Ĩc.

The proof of the third statement in Lemma 5 is the same as the proof of the third statement

in Lemma 4.

The fourth statement in Lemma 5 is true because for every i ∈ I(2) \ I ′(2) = µ′(Ĩ) \µ(Ĩ) we

know that i /∈ Ĩc by the third statement in Lemma 5. Moreover, µ′−1(c) ⊆ Ĩc, as there exists

j ∈ Ĩc such that j 6∈ µ(Ĩ), which implies that there are at least rc category-c patients. This

implies i ∈ µ′−1(c′). Furthermore, i /∈ Ĩc′ because Ĩc′ ⊆ µ(Ĩ), which follows from |Ĩc′ | < rc′ .

Consider i′ ∈ I ′(2). Then i′ /∈ µ′(Ĩ), which implies that i π i′ because µ′(i) = c′, τ(i) 6= c′, and

µ′(i′) = ∅.
The proof of the fifth statement in Lemma 5 is the same as the proof of the fifth statement

in Lemma 4.

Lemma 6. Suppose that c ∈ C \ {u} and c′, c∗ ∈ C \ {c} are different categories. Let Ĩ ⊆ I and

., .′ ∈ ∆({c, c′, c∗}) be such that

• . is given as c′ . c . c∗,

• .′ is given as c .′ c′ .′ c∗,

• I(3) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(3) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(3) \ I ′(3)| = |I ′(3) \ I(3)|,

2. I ′(3) \ I(3) ⊆ Ĩc,

3. I(3) \ I ′(3) ⊆ Ĩ \ Ĩc, and
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4. If i′ ∈ I ′(3) \ I(3) and i ∈ I(3) ∩ Ĩc, then i′ π i.

Proof of Lemma 6. The first statement in Lemma 6 follows as in the proof of the first

statement in Lemma 4. Likewise, the fourth statement in Lemma 6 follows as in the proof of

the fifth statement in Lemma 4.

To show the other two statements, we use Lemma 4 and Lemma 5. Let .̂, .̂′ ∈ ∆({c, c′}) be

such that

.̂ : c′ .̂ c and .̂′ : c .̂′ c′.

Let I(2) = Ĩ\ϕĨ.̂(Ĩ) and I ′(2) = Ĩ\ϕĨ
.̂′

(Ĩ). Then I(3) = I(2)\µ−1(c∗) and I ′(3) = I ′(2)\µ′−1(c∗).
For both precedence orders . and .′ under the sequential reserve matching procedure, con-

sider the beginning of the third step, at which category c∗ is processed. For ., the set of

available patients is I(2). For .′, the set of available patients is I ′(2). If I(2) = I ′(2), then all

the statements hold trivially because in this case we get I(3) = I ′(3). Therefore, assume that

I(2) 6= I ′(2). For every precedence order, rc∗ patients with the highest priority with respect to

πc∗ are chosen.

We consider each patient chosen under . and .′ for category c∗ one at a time in sequence

with respect to the priority order πc∗ . For both precedence orders there are rc∗ patients matched

with c∗ because µ(Ĩc) ( Ĩc. Let ik be the kth patient chosen under . for c∗ and i′k be the kth

patient chosen under .′ for c∗ where k = 1, . . . , rc∗ . Let Jk be the set of patients available when

we process . for the kth patient and J ′k be the set of patients available when we process .′ for

the kth patient where k = 1, . . . , rc∗ . For k = 1, Jk = I(2) and J ′k = I ′(2). By definition,

Jk+1 = Jk \ {ik} and J ′k+1 = J ′k \ {i′k}. We show that

(a) J ′k \ Jk ⊆ Ĩc,

(b) Jk \ J ′k ⊆ Ĩ \ Ĩc, and

(c) if i ∈ Jk \ J ′k and i′ ∈ (Jk ∩ J ′k) \ Ĩc∗ , then i πc∗ i
′.

by mathematical induction on k. These three claims trivially hold for k = 1 by Statements 2,

3, and 4 in Claims 1 and 2.

Fix k. In the inductive step, assume that Statements (a), (b), and (c) hold for k. Consider

k + 1. If Jk+1 = J ′k+1, then the statements trivially hold. Assume that Jk+1 6= J ′k+1 which

implies that J` 6= J ′` for ` = 1, . . . , k. There are four cases depending on which sets ik and i′k
belong to. We consider each case separately.

Case 1: ik ∈ Jk \ J ′k and i′k ∈ J ′k ∩ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) =
(
(Jk \ J ′k) \ {ik}

)
∪ {i′k}.

By Statement (a) of the inductive assumption for k, J ′k+1 \ Jk+1 = J ′k \ Jk ⊆ Ĩc. Therefore,

Statement (a) holds for k + 1.
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As J ′k 6= Jk and |Jk| = |J ′k| because of the soft-reserves condition, J ′k \ Jk has at least one

category-c patient. Moreover, this patient has higher priority with respect to πc∗ than any other

category-c patient in J ′k ∩ Jk because the former is chosen under . while the later is not chosen

under .. Therefore, i′k cannot be a category-c patient. As a result, Jk+1 \ J ′k+1 ⊆ Ĩ \ Ĩc, so

Statement (b) holds for k + 1.

To show Statement (c) for k + 1, observe that Jk+1 \ J ′k+1 = ((Jk \ J ′k) \ {ik}) ∪ {i′k} and

Jk+1 ∩ J ′k+1 = (Jk ∩ J ′k) \ {i′k}). Therefore, Statement (c) for k + 1 follows from Statement (c)

for k and the fact that i′k πc∗ i for any i ∈ Jk+1 ∩ J ′k+1.

Case 2: ik ∈ Jk \ J ′k and i′k ∈ J ′k \ Jk. Then,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = (J ′k \ Jk) \ {i′k}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = (Jk \ J ′k) \ {ik}.

Therefore, J ′k+1\Jk+1 ⊆ Ĩc and Jk+1\J ′k+1 ⊆ Ĩ \ Ĩc by Statements (a) and (b) for k, respectively,

implying Statements (a) and (b) for k + 1.

To show Statement (c) for k+1, observe that Jk+1 \J ′k+1 = (Jk \J ′k)\{ik} and Jk+1∩J ′k+1 =

Jk ∩ J ′k. Therefore, Statement (c) for k + 1 follows from Statement (c) for k trivially.

Case 3: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k ∩ Jk. In this case, ik = i′k, then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

Therefore, Statements (a) and (b) for k + 1 follows from the respective statements for k.

To show Statement (c) for k + 1, observe that Jk+1 \ J ′k+1 = Jk \ J ′k and Jk+1 ∩ J ′k+1 =

(Jk ∩ J ′k) \ {ik}. Therefore, Statement (c) for k + 1 follows from Statement (c) for k trivially.

Case 4: ik ∈ Jk∩J ′k and i′k ∈ J ′k \Jk. We argue that this case is not possible. Since i′k ∈ J ′k \Jk,
i′k must be a category-c patient by Statement (a) for k. If c∗ = u, then every patient in Jk \ J ′k
has a higher priority with respect to π than every patient in Jk ∩J ′k, which cannot happen since

ik ∈ Jk ∩J ′k. Therefore, c∗ 6= u. Since i′k is a category-c patient, there must not be a category-c∗

patient in J ′k. By Statement (c) for k, we know that every patient in Jk \J ′k has a higher priority

with respect to πc∗ than every patient in (Jk ∩ J ′k) \ Ic∗ = Jk ∩ J ′k. This is a contradiction to

ik ∈ Jk ∩ J ′k. Therefore, Case 4 is not possible.

Since I(3) = Jrc∗ and I ′(3) = J ′rc∗ , Statements 2 and 3 in Lemma 6 follow from Statements

(a) and (b) above, respectively.

Lemma 7. Suppose that c ∈ C \ {u} and c′, c∗, c̃ ∈ C \ {c} are different categories. Let Ĩ ⊆ I

and ., .′ ∈ ∆({c, c′, c∗, c̃}) be such that

• . is given as c′ . c . c∗ . c̃,

• .′ is given as c .′ c′ .′ c∗ .′ c̃,
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• I(4) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(4) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(4) \ I ′(4)| = |I ′(4) \ I(4)|,

2. I(4) \ I ′(4) ⊆ Ĩ \ Ĩc,

3. if i′ ∈ I ′(4) \ I(4), i′ /∈ Ĩc, and i ∈ I(4), then i′ π i, and

4. if i′ ∈ I ′(4) \ I(4), i′ ∈ Ĩc, and i ∈ I(4) ∩ Ĩc, then i′ π i.

Proof of Lemma 7. The first statement in Lemma 7 follows as in the proof of the first

statement in Lemma 4. Likewise, the fourth statement in Lemma 7 follows as in the proof of

the fifth statement in Lemma 4.

To prove the other two statements, we use Lemma 6. Let .̂, .̂′ ∈ ∆({c, c′, c∗}) be such that

.̂ : c′ .̂ c .̂ c∗ and .̂′ : c .̂′ c′ .̂′ c∗.

Let I(3) = Ĩ \ϕĨ.̂(Ĩ) and I ′(3) = Ĩ \ϕĨ
.̂′

(Ĩ). Then I(4) = I(3)\µ−1(c̃) and I ′(4) = I ′(3)\µ′−1(c̃).
For both precedence orders . and .′ under the sequential reserve matching procedure, con-

sider the beginning of the fourth step, at which category c̃ is processed. For ., the set of available

patients is I(3). For .′, the set of available patients is I ′(3). If I(3) = I ′(3), then I(4) = I ′(4)

which implies all the statements in Lemma 7. Therefore, assume that I(3) 6= I ′(3). For every

precedence order, rc̃ patients with the highest priority with respect to πc̃ are chosen.

We consider each patient chosen under . and .′ for category c̃ one at a time in sequence with

respect to the priority order πc̃. Since µ(Ĩc) ( Ĩc, rc̃ patients are matched with c̃ under both

precedence orders. Let ik be the kth patient chosen under . for c̃ and i′k be the kth patient chosen

under .′ for c̃ where k = 1, . . . , rc̃. Let Jk be the set of patients available when we process . for

the kth patient and J ′k be the set of patients available when we process .′ for the kth patient

where k = 1, . . . , rc̃. For k = 1, Jk = I(3) and J ′k = I ′(3). By definition, Jk+1 = Jk \ {ik} and

J ′k+1 = J ′k \ {i′k}.
We show that

(a) Jk \ J ′k ⊆ Ĩ \ Ĩc,

(b) if c̃ = u, i′ ∈ J ′k \ Jk, τ(i′) 6= c, and i ∈ Jk, then i′ π i,

(c) if c̃ 6= u, i′ ∈ J ′k \ Jk, τ(i′) 6= c, and i ∈ Jk, then (Jk ∪ J ′k) ∩ Ic̃ = ∅ and i′ π i

(d) if c̃ 6= u, then (J ′k \ Jk) ∩ Ic̃ = ∅.
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by mathematical induction on k. These three claims trivially hold for k = 1 by Statements 2

and 3 in Lemma 6.

Fix k. In the inductive step, assume that Statements (a), (b), (c), and (d) hold for k.

Consider k + 1. If Jk+1 = J ′k+1, then the statements trivially hold. Assume that Jk+1 6= J ′k+1

which implies that J` 6= J ′` for ` = 1, . . . , k. There are four cases depending on which sets ik and

i′k belong to. We consider each case separately.

Case 1: ik ∈ Jk \ J ′k and i′k ∈ J ′k ∩ Jk. When |{i′ ∈ J ′k \ Jk : τ(i′) 6= c}| ≥ 1, i′k ∈ J ′k \ Jk by

Statements (b) and (c) for k. Therefore, |{i′ ∈ J ′k \ Jk : τ(i′) 6= c}| = 0. Furthermore,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = ((Jk \ J ′k) \ {ik}) ∪ {i′k}.

Since |J ′k| = |Jk| and J ′k 6= Jk, we get |J ′k \ Jk| ≥ 1. Therefore, J ′k \ Jk has at least one

category-c patient because |{i′ ∈ J ′k \ Jk : τ(i′) 6= c}| = 0. Moreover, this patient has higher

priority with respect to πc̃ than any other category-c patient in J ′k ∩ Jk because the former

patient is chosen under . and the latter is not, so i′k cannot be category c. Therefore, Statement

(a) for k+ 1 follows from Statement (a) for k. Statements (b) and (c) trivially hold for k+ 1 as

well because

{i′ ∈ J ′k+1 \ Jk+1 : τ(i′) 6= c} = {i′ ∈ J ′k \ Jk : τ(i′) 6= c} = ∅.

Statement (d) for k + 1 follows from Statement (d) for k.

Case 2: ik ∈ Jk \ J ′k and i′k ∈ J ′k \ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = (J ′k \ Jk) \ {i′k}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = (Jk \ J ′k) \ {ik}.

Since Jk+1 \ J ′k+1 ⊆ Jk \ J ′k, Statement (a) for k+ 1 follows from Statement (a) for k. Likewise,

Statements (b), (c), and (d) for k + 1 follow from the corresponding statements for k because

J ′k+1 \ Jk+1 ⊆ J ′k \ Jk, J ′k+1 ∪ Jk+1 ⊆ J ′k ∪ Jk, and Jk+1 ⊆ Jk.

Case 3: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k ∩ Jk. In this case, ik = i′k, then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

In this case, Statements (a), (b), (c), and (d) for k + 1 follow from their respective statements

for k.

Case 4: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k \ Jk. In this case,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = ((J ′k \ Jk) \ {i′k}) ∪ {ik}

55



and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

Statement (a) for k + 1 follows from Statement (a) for k trivially.

Statement (b) for k + 1 follows from ik π i for any i ∈ Jk+1 and also from Statement (b) for

k.

To show Statement (d) for k + 1, suppose that c̃ 6= u. Then by Statement (d) for k, J ′k \ Jk
does not have a category-c̃ patient. Since i′k ∈ J ′k \ Jk, this implies that there are no category-

c̃ patients in J ′k. Therefore, ik does not have category c̃. We conclude that J ′k+1 \ Jk+1 =

((J ′k \ Jk) \ {i′k})∪{ik} does not have a category c̃ patient, which is the Statement (d) for k+ 1.

To show Statement (c) for k + 1, suppose that c̃ 6= u, i′ ∈ J ′k+1 \ Jk+1, τ(i′) 6= c, and

i ∈ Jk+1. If i′ 6= ik, then i′ ∈ J ′k \ Jk since J ′k+1 \ Jk+1 = ((J ′k \ Jk) \ {i′k}) ∪ {ik} and Statement

(c) for k + 1 follows from Statement (c) for k because i ∈ Jk+1 ⊆ Jk. Otherwise, suppose

that i′ = ik. By Statement (d) for k + 1, i′ does not have category c̃, which implies that there

are no category-c̃ patients in Jk; this in turn implies there are no category-c̃ patients in Jk+1

since Jk+1 ⊆ Jk. Furthermore, by Statement (d) for k + 1, there are no category-c̃ patients in

J ′k+1 \ Jk+1. We conclude that there are no category-c̃ patients in J ′k+1 ∪ Jk+1. Finally, i′ πc̃ i

for any i ∈ Jk+1 = Jk \ {i′} and since there are no category-c̃ patients in J ′k+1 ∪ Jk+1 we get

i′ π i.

Since I(4) = Jrc̃ and I ′(4) = J ′rc̃ , Statement 2 in Lemma 7 follows from Statement (a) and

Statement 3 in Lemma 7 follows from Statements (b) and (c).

Lemma 8. Suppose that c ∈ C \ {u} and c′, c∗, c̃, ĉ ∈ C \ {c} are different categories. Let Ĩ ⊆ I

and ., .′ ∈ ∆({c, c′, c∗, c̃, ĉ}) be such that

• . be such that c′ . c . c∗ . c̃ . ĉ,

• .′ be such that c .′ c′ .′ c∗ .′ c̃ .′ ĉ,

• I(5) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(5) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(5) \ I ′(5)| = |I ′(5) \ I(5)| and

2. I(5) \ I ′(5) ⊆ Ĩ \ Ĩc.

Proof. The first statement in Lemma 8 follows as in the proof of the first statement in Lemma

4.

To prove the second statement, we use Lemma 7. Let .̂, .̂′ ∈ ∆({c, c′, c∗, c̃}) be such that

.̂ : c′ .̂ c .̂ c∗ .̂ c̃ and .̂′ : c .̂′ c′ .̂′ c∗ .̂ c̃.

Let I(4) = Ĩ \ϕĨ.̂(Ĩ) and I ′(4) = Ĩ \ϕĨ
.̂′

(Ĩ). Then I(5) = I(4)\µ−1(c̃) and I ′(5) = I ′(4)\µ′−1(c̃).
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For both precedence orders . and .′ under the sequential reserve matching procedure, con-

sider the beginning of the fifth step, at which category ĉ is processed. For ., the set of available

patients is I(4). For .′, the set of available patients is I ′(4). If I(4) = I ′(4), then we get

I(5) = I ′(5), which implies all the statements. Therefore, assume that I(4) 6= I ′(4). For every

precedence order, rĉ patients with the highest priority with respect to πĉ are chosen.

We consider each patient chosen under . and .′ for category ĉ one at a time in sequence with

respect to the priority order πĉ. Since µ(Ĩc) ( Ĩc, rĉ patients are matched with ĉ under both

precedence orders. Let ik be the kth patient chosen under . for ĉ and i′k be the kth patient chosen

under .′ for ĉ where k = 1, . . . , rĉ. Let Jk be the set of patients available when we process . for

the kth patient and J ′k be the set of patients available when we process .′ for the kth patient

where k = 1, . . . , rĉ. For k = 1, Jk = I(4) and J ′k = I ′(4). By definition, Jk+1 = Jk \ {ik} and

J ′k+1 = J ′k \ {i′k}.

We show that

(a) Jk \ J ′k ⊆ Ĩ \ Ĩc and

(b) if i′ ∈ J ′k \ Jk and i ∈ Jk ∩ Ĩc, then i′ πĉ i

by mathematical induction on k. These results trivially hold for k = 1 by Statements 2, 3, and

4 in Lemma 7.

Fix k. In the inductive step, assume that Statements (a) and (b) hold for k. Consider k+ 1.

If Jk+1 = J ′k+1, then the statements trivially hold. Assume that Jk+1 6= J ′k+1 which implies that

J` 6= J ′` for ` = 1, . . . , k. There are four cases depending on which sets ik and i′k belong to. We

consider each case separately.

Case 1: ik ∈ Jk \ J ′k and i′k ∈ J ′k ∩ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) =
(
(Jk \ J ′k) \ {ik}

)
∪ {i′k}.

If i′k ∈ Ĩc, then we get a contradiction to Statement (b) for k. Therefore, i′k /∈ Ĩc, which implies

that Statement (a) holds for k + 1 by Statement (a) for k and the second displayed equation.

Statement (b) for k + 1 follows trivially from Statement (b) for k, the first displayed equation,

and Jk ⊇ Jk+1.

Case 2: ik ∈ Jk \ J ′k and i′k ∈ J ′k \ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = (J ′k \ Jk) \ {i′k}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = (Jk \ J ′k) \ {ik}.

In this case, Statements (a) and (b) for k+ 1 follow trivially from the corresponding statements

for k.
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Case 3: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k ∩ Jk. In this case, ik = i′k, then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

In this case, Statements (a) and (b) for k + 1 follow trivially from the corresponding statement

for k.

Case 4: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k \ Jk. In this case,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = ((J ′k \ Jk) \ {i′k}) ∪ {ik}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

Then Statement (a) for k + 1 follows from Statement (a) for k. Furthermore, ik πĉ i for any

i ∈ Jk+1, which together with Statement (b) for k imply Statement (b) for k + 1.

Since I(5) = Jrĉ and I ′(5) = J ′rĉ , Statement 2 in Lemma 8 follows from Statement (a).

Proof of Proposition 3. Let |C| ≤ 5. Let C∗ = {c∗ ∈ C : c∗ . c′} be the set of categories

processed before c′ under . and before c under .′. The orders of categories in C∗ are the same

with respect to . and .′. Thus, just before category c′ is processed under . and c is processed

under .′, the same patients are matched in both sequential reserve matching procedures. Let Ĩ

be the set of patients that are available at this point in either procedure.

Let .̂ be the incomplete precedence order on C\C∗ that processes categories in the same order

as in .. Likewise, let .̂′ be the incomplete precedence order on C \ C∗ that processes categories

in the same order as in .′.

If ϕĨ.̂(Ĩc) = Ĩc then the result is proven. Therefore, assume that ϕĨ.̂(Ĩc) ( Ĩc in the rest of

the proof. Let k = |C \ C∗| be the number of remaining categories.

• If k = 2, then by Lemmas 4 and 5, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

• If k = 3, then by Lemma 6, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

• If k = 4, then by Lemma 7, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

• If k = 5, then by Lemma 8, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

These imply that

ϕ.′(Ic) ⊆ ϕ.(Ic)

completing the proof.
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A.4 A Polynomial Time Method for Smart Reserve Matching Procedure

Consider the following algorithm for any n:

Step 0. Find a matching that is maximal and complies with eligibility requirements by temporarily

deeming that a patient i ∈ I is eligible for a category c ∈ C \ {u} if and only if i ∈
Ic, and no patient is eligible for unreserved category u. This is known as a bipartite

maximum cardinality matching problem in graph theory and many augmenting alternating

path algorithms (such as those by Hopcroft and Karp, 1973; Karzanov, 1973) can solve

it in polynomial time. The solution finds the maximum number of patients who can be

matched with a preferential treatment category that they are a beneficiaries of. Denote

the number of patients matched by this matching as nb.

Step 1. Let Ju0 = ∅, J0 = ∅. Fix parameters κ � ε > 0 such that ε < 1 and κ > |I| would work.

For k = 1, . . . , |I| we repeat the following substep given Juk−1, Jk−1:

Step 1.(k). Suppose ik is the patient who is prioritized kth in I according to π.

i. if |Juk−1| < n continue with (i.A) and otherwise continue with (ii).

A. Temporarily deem all patients in Juk−1 ∪ {ik} eligible only for category u and

all other patients eligible only for the categories in C \ {u} that they are

beneficiaries of.

B. for every pair (i, x) ∈ I × C ∪ {∅} define a weight Wi,c ∈ R as follows:

• If x ∈ C and i is temporarily eligible for x as explained in (i.A),

– if i ∈ Juk−1 ∪ Jk−1, then define Wi,x := κ,

– otherwise, define Wi,x := ε.

• If x ∈ C and i is not temporarily eligible for x as explained in (i.A), define

Wi,x := −ε.
• If x = ∅, define Wi,x := 0.

C. Solve the following assignment problem to find a matching

σ ∈ arg max
µ∈M

∑
i∈I

Wi,µ(i)

using a polynomial algorithm such as the Hungarian algorithm (Kuhn, 1955).

D. If |σ(I)| = nb + |Juk−1|+ 1 then define

Juk := Juk−1 ∪ {ik} and Jk := Jk−1,

and go to Step 1.(k + 1) if k < |I| and Step 2 if k = |I|.
E. Otherwise, go to (ii).

ii. Repeat (i) with the exception that ik is temporarily deemed eligible only for the

categories in C \ {u} that she is a beneficiary of in Part (ii.A). Parts (ii.B) and

(ii.C) are the same as Parts (i.B) and (i.C), respectively, with the exception that

weights are constructed with respect to the eligibility construction in (ii.A). Parts

(ii.D) and (ii.E) are as follows:
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D. If |σ(I)| = nb + |Juk−1| and σ(i) 6= ∅ for all i ∈ Jk−1 ∪ {ik}, then define

Juk := Juk−1 and Jk := Jk−1 ∪ {ik},

and go to Step 1.(k + 1) if k < |I| and Step 2 if k = |I|.
E. Otherwise,

Juk := Juk−1 and Jk := Jk−1,

and go to Step 1.(k + 1) if k < |I| and Step 2 if k = |I|.

Step 2. (a) Find a matching σ as follows:

i. Temporarily deem all patients in Ju|I| eligible only for category u, all patients in

J|I| eligible only for the categories in C \ {u} that they are beneficiaries of, and

all other patients ineligible for all categories.

ii. Find a maximal matching σ among all matchings that comply with the temporary

eligibility requirements defined in (i) using a polynomial augmenting alternating

paths algorithm (for example see Hopcroft and Karp, 1973; Karzanov, 1973).

(b) Modify σ as follows:

One at a time assign the remaining units unmatched in σ to the remaining highest

priority patient in I \ (Ju|I| ∪ J|I|) who is eligible for the category of the assigned unit

in the real problem in the following order:

i. the remaining units of the preferential treatment categories in C \ {u} in an

arbitrary order, and

ii. the remaining units of the unreserved category u.

Step 3. Define

InS := σ(I).

Matching σ is a smart reserve matching with n unreserved category units processed first.

The difference between this algorithm and the procedure we gave in the text is that we do not

have to construct the matching sets Mk in every Step 1(k), as this is an NP-complete problem

to solve. Instead, we solve appropriately constructed polynomial-time optimization problems in

|I| in each step to see whether desired matching exists in each step. As there are polynomial

number of steps in |I|, the resulting algorithm becomes polynomial.
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Appendix B Cutoffs in Real-life Applications

 
 
 

Figure A1.  Examples of Cutoffs in Reserve Systems from Chicago’s Affirmative Action System in 2020  
and Indian Civil Service Assignment in 2012 
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