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Abstract

We introduce consumers with intrinsic privacy preferences into the monopolistic non-linear pricing

model. Next to classical consumers, there is a share of data-sensitive consumers who refrain from buying

if their purchase reveals information about their valuation to the monopolist. When the monopolist

observes consumers’ privacy preferences, data-sensitive consumers obtain a pooling schedule, while

classical consumers obtain the standard non-linear pricing schedule. Data-sensitive consumers with

a low valuation obtain a strictly higher utility than classical consumers with the same valuation. By

contrast, when privacy preferences are consumers’ private information, classical consumers obtain a

higher utility than data-sensitive consumers with the same valuation. Data-sensitive consumers and the

monopolist are worse off when privacy preferences are private information, whereas classical consumers

are better off. The results are relevant for policy measures that target the data-awareness of consumers,

such as the European GDPR.
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1 Introduction

As a result of privacy awareness initiatives and regulatory measures such as the European GDPR, con-

sumers have become more and more aware that firms store and use the data that they voluntary provide.1

While these initiatives have made consumers more data-sensitive, most consumers have however no inti-

mate knowledge about how their data is being used.2 In particular, consumers often do not know which

information worsens their dealings with a firm (and which the consumer had better withhold), and which

information improves a firm’s offer (and which the consumer had better reveal). Moreover, news stories of

data breaches and hackers have made consumers wary about providing information even to trustworthy

organizations, as they could be hacked and abused by third parties.3 Given the many and often unpre-

dictable ways in which the provided data affects consumers, consumers face stark ambiguities, leading to

a demand for privacy and a perceived utility loss associated with the act of revealing information.4

Classical economic models that analyze firms dealing with privately informed consumers abstract from

the presence of such data-sensitive consumers. The increasing importance of such consumers calls for

a reexamination of these models and their results. In particular, the question arises to what extent the

presence of data-sensitive consumers affects the insights of these models and how firms optimally respond

when facing such consumers.

In this paper, we consider how the presence of data-sensitive consumers affects a monopolist’s optimal

non-linear pricing policy in the seminal screening model of Mussa and Rosen (1978). To illustrate the

effect of such consumers most clearly, we consider two extreme classes of consumers: Classical consumers,

who have no preference for privacy at all, and data-sensitive consumers, who have a strong preference for

privacy. More precisely, data-sensitive consumers in our model incur a prohibitively large loss in utility

whenever they engage in an “informative purchase”, i.e., a purchase from which the monopolist deduces

something about their valuation. While extreme, this modeling of data-sensitivity yields a tractable setup

in which we can analytically identify the key effects of consumers’ privacy preferences. In particular, the

model allows us to fully characterize the optimal non-linear pricing policy in the natural case where privacy

concerns are private information, even though the resulting screening problem is multi-dimensional.

Our main insight is that the impact of consumers’ privacy preferences depends crucially on whether

privacy preferences are private information or not. If they are not, i.e., if the monopolist can distin-

guish between the two different classes of consumers, then the monopolist screens the classical privacy-

unconcerned consumers using a standard non-linear pricing schedule. By contrast, she offers data-sensitive

consumers a pooling contract consisting of a single quantity that matches the first-best quantity of the

lowest valuation type for a price at which the lowest valuation type is just willing to buy this quantity.

Hence, the optimal contract for classical consumers exhibits the usual feature of “no distortion at the top”,

whereas the optimal contract for data-sensitive consumers exhibits the opposite feature of “no distortion at

1EU (2018, p.105) reports from a EU-wide consumer survey that 67% of respondents said to be aware of targeted advertising,
62% were aware of personalized offers, and 44% were aware of personalized pricing by firms.

2In an experiment studying the ability of consumers to recognize the direction of price changes of personalised pricing, EU
(2018, p.119) reports “Relatively few participants in the price discrimination scenario correctly identified whether and how price
personalisation had occurred.”.

3See https://privacyrights.org/data-breaches and https://en.wikipedia.org/wiki/List_of_data_
breaches for a list of recent data breaches and the many different methods leading to such breaches.

4The crude tool of regularly deleting browser cookies as recommended by some privacy websites, e.g. https://www.
allaboutcookies.org/, is one expression of such general privacy concerns.
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the bottom”. Moreover, a data-sensitive consumer with a relatively low valuation gets a better deal than a

classical consumer with the same valuation. The intuition is that a data-sensitive consumer has a stronger

bargaining position, as he credibly rejects offers which a classical consumer would accept.

Our crucial insight is that this latter result is overturned if, by contrast, consumers’ privacy preferences

are their private information so that the monopolist cannot distinguish the two different classes of con-

sumers. In this case, a classical consumer gets a better deal than a data-sensitive with the same valuation.

The reason is that a classical consumer can costlessly mimic, and thus obtain at least the same utility as a

data-sensitive consumer. In contrast, the reverse incentive constraint, dissuading data-sensitive consumers

from mimicking a classical consumer, is non-binding, because the monopolist can simply require classical

consumers to provide information about their valuation when signing the contract. As a consequence,

when privacy preferences are private information the monopolist faces the additional incentive constraint

that she has to prevent classical consumers from mimicking data-sensitive consumers. The monopolist

meets this constraint by improving her offer to classical consumers, while worsening it to data-sensitive

consumers.

Hence, when privacy preferences are private information, classical consumers benefit from the presence

of data-sensitive consumers at the expense of the monopolist. In this case, the monopolist’s optimal contract

pools classical consumers with valuations below a cutoff valuation with data-sensitive consumers who, for

all valuations, are offered the same single quantity. Classical consumers with a valuation above the cutoff

obtain the same quantity as with the standard non-linear schedule but at a reduced price; they are therefore

strictly better off than in the absence of data-sensitive consumers. Moreover, a classical consumer with a

high valuation is also strictly better off than a data-sensitive consumer with the same valuation.

Directly comparing the cases with observable and unobservable privacy preferences reveals that data-

sensitive consumers gain when privacy preferences become publicly observable, whereas classical con-

sumers lose. Unsurprisingly, the monopolist does better when privacy preferences are publicly observable.

2 Related Literature

Spurred by the rise of online markets and Big Data, the literature on privacy has in recent years become vast

and extensive. Athey (2014) and Acquisti et al. (2016) provide surveys highlighting the main economic

perspectives on privacy in these markets. Our specific contribution to this literature is the study of optimal

pricing when some consumers have intrinsic preferences for privacy.

While already Becker (1980) makes the point that consumers may value privacy intrinsically, the eco-

nomics literature that studies consumers with such intrinsic preferences is small but growing. There is an

empirical literature that points to the existence of an intrinsic value of privacy and seeks to quantify it (see

Tsai (2011), and more recently, Lin (2020) and Tang (2020)). On the theoretical side, Choi et al (2019)

and Acemoglu et al. (2020) model consumers with intrinsic privacy concerns in order to study the role

of data externalities. While these papers model privacy concerns as a fixed cost that a consumer incurs

when he discloses sensitive data, in our model, this cost occurs if the seller’s belief about the consumer is

affected by the transaction. In this respect, our approach is related to Eilat et al. (2021) who capture pri-

vacy losses as the (Kullback-Leibler) divergence of the seller’s beliefs about the consumer before and after

the sale. These authors, however, model privacy restrictions as an explicit constraint that the privacy loss
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associated with the monopolist’s selling mechanism must not exceed a certain level. In contrast, we follow

the literature on intrinsic privacy preferences, where privacy concerns affect consumers’ utility functions

directly. This enables us to address the question how the seller optimally screens between consumers with

and without privacy concerns and to analyze the resulting welfare implications. To the extent that the

seller in our model has to take into account how much information her selling contract reveals to her, our

paper is also related to Dworczak (2020) who considers the optimal design of an auction when bidders

care about the information the auction reveals about the winner. In contrast to us, in Dworczak (2020) it

is a third party’s, not the seller’s, beliefs that bidders care about, and the seller can explicitly design the

information released by the auction.

A different strand of the literature studies privacy concerns that emerge for instrumental, rather than

intrinsic, reasons in contexts in which sellers can engage in behavior-based price discrimination (see, e.g,

Taylor (2004), Fudenberg and Villas-Boas (2006), Calzolari and Pavan (2006), Ishihashi (2020)). Con-

sumers may then fear that, due to potential ratchet effects, a lack of privacy will harm them in future

interactions with the same or other sellers, but they may also benefit, as more data allows a seller to better

tailor the offer to consumers’ needs. Linking the two strands of the literature, the intrinsic privacy pref-

erences that we consider in this paper can be broadly seen as a reduced form for an instrumental privacy

preference of an ambiguity averse consumer who adopts a worst-case scenario towards evaluating the costs

and benefits of releasing information to the seller.

Finally, our paper also makes a conceptual contribution to the screening literature which is of inde-

pendent interest. Formally, the presence of data-sensitive consumers renders the monopolist’s non-linear

pricing problem into a screening problem with a type-dependent outside option (Lewis and Sappington

(1989), Jullien (2000)). The reason is that the outside option for consumers without privacy concerns is

effectively given by the terms of trade offered to data-sensitive consumers as the former can mimic the

latter. Thus, the novelty that emerges in our setting is that outside option for consumers without privacy

concerns is endogenous because the terms offered to data-sensitive consumers are chosen by the monop-

olist.

3 The Model

We consider a monopolist who can produce a quantity q ∈ [0, q̄] at a cost c(q), where c(·) exhibits

c′(·), c′′(·) > 0 and satisfies the Inada conditions c(0) = c′(0) = 0 and limq→q̄ c(q) = limq→q̄ c′(q) =∞.

The monopolist’s profit is p− c(q), when she sells a quantity q at price a p. She receives an outside option

of 0 if no sale takes place.

There is a unit mass of consumers indexed by their (marginal) valuation of consumption θ which is

distributed on the support [θ ,θ] with cdf F and pdf f , where 0 ≤ θ < θ . While θ is a consumer’s private

information, the monopolist only knows its distribution. We impose the regularity conditions that

α(θ )≡ θ +
F(θ )
f (θ )

and β(θ )≡ θ −
1− F(θ )

f (θ )
(1)

are well-defined, differentiable, and strictly increasing: α′(θ ),β ′(θ )> 0 for all θ ∈ [θ ,θ].
Hence, the surplus maximizing quantity for a consumer with valuation θ equals q∗(θ ), implicitly de-
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fined by c′(q∗(θ )) = θ . For future reference, we also define the schedules qα(θ ) and qβ(θ ) implicitly as

the maximizers of α(θ )q− c(q) and β(θ )q− c(q) respectively:

c′(qα(θ )) = α(θ ) and c′(qβ(θ )) =max{β(θ ), 0}. (2)

We also note that there is a unique θ0 ∈ (θ ,θ ) so that β(θ0) = 0 if and only if β(θ ) < 0. Hence, only for

the case β(θ ) < 0, the maximum-operator in (2) has relevance. Given our assumptions, schedules qα(θ )
and qβ(θ ) are well-defined, increasing in θ , and exhibit

qβ(θ )≤ q∗(θ )≤ qα(θ ), (3)

for all θ ∈ [θ ,θ]. That is, qβ(·) exhibits a downward distortion, whereas qα(·) exhibits an upward distor-

tion.

The novelty of our framework is that we assume a share µ of consumers to be “data-sensitive” and they

care about the information that their purchasing decision reveals to the monopolist, as described below.

The remaining share, 1−µ, of consumers is “classical”. We index a classical consumer by the privacy type

ρ = 0. Such a consumer obtains a utility of

u0(q, p|θ )≡ θq− p, (4)

when he buys a quantity q at a price p and his valuation is θ .

We index consumers who are data-sensitive by the privacy typeρ = 1. As motivated in the introduction,

we capture the preferences of such a consumer by the reduced form assumption that he incurs a utility

loss, K , when the monopolist learns something about his valuation from a sale. Denoting F p as the cdf

that represents the principal’s belief after a transaction has taken place, a data-sensitive consumer with

valuation θ obtains the utility

u1(q, p, F p|θ )≡

¨

u0(q, p|θ ) if F p = F

u0(q, p|θ )− K otherwise,
(5)

where K > 0.5

Finally, we assume that a consumer’s privacy type ρ and his valuation θ are stochastically independent.

This means that the monopolist would learn nothing about a consumer’s valuation if he learnt that a

consumer was classical or data-sensitive.

Considering the benchmark where valuations are public information so that privacy plays no role, the

surplus maximizing quantity for a consumer with valuation θ equals q∗(θ ). Our objective is to identify a

profit-maximizing selling mechanism and to identify the distortions relative to the benchmark, given the

following timing:

t=0: Consumers observe their types (θ ,ρ) ∈ Θ× {0,1}.
5Hence, our assumption that all consumers’ outside options are zero implicitly means that if a consumer does not buy, he

is unconcerned about whether the principal learns anything about his valuation from not buying. While this assumption is
appropriate for some but not all economic environments, it guarantees that the consumer’s outside option is independent of
both his valuation type θ and his privacy type ρ.
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t=1: Monopolist chooses a message set M and a mechanism γ= (q, p) : M → R+×R, specifying terms of

trade γ(m) = (q(m), p(m)) contingent on a message m ∈ M .

t=2: Consumer accepts or rejects the mechanism.

t=3: Upon acceptance, a consumer chooses a message m.

t=4: Observing a message m, the monopolist updates her beliefs to F p(m).

t=5: Payoffs accrue.

Given a mechanism γ, a strategy σ = (a, s) for a consumer specifies for each type (θ ,ρ) an acceptance

decision a(θ ,ρ) ∈ {0, 1} whether to accept (a = 1) or reject (a = 0) the mechanism, together with a

reporting decision, s(θ ,ρ) ∈ M , which message to send.6 If the consumer accepts and sends a message m,

the monopolist updates her beliefs from F to F p(m). We call the monopolist’s collection of updated beliefs,

F p = {F p(m)}m∈M , an assessment. An equilibrium associated with the mechanism γ is a pair (σ, F p) such

that the strategy σ is optimal given the assessment F p, and the assessment F p is Bayes’ consistent given

the strategy σ.7

We say that a mechanism γ respects (data-sensitive consumers’) privacy if the mechanism sustains an

equilibrium (a, s, F P) in which the monopolist does not learn anything from a message m that some data-

sensitive consumer sends in equilibrium:

For all m,θ such that a(θ , 1) = 1 and s(θ , 1) = m : F p(m) = F. (6)

Under a mechanism that respects privacy, equilibrium payoffs do not depend on the principal’s equi-

librium beliefs. Hence, the economic outcome associated with a mechanism that respects privacy, is fully

described by its induced pair (q, p), yielding the monopolist and consumer the payoffs Π = p − c(q) and

u= θq− p, respectively.

Therefore, we can capture the set of outcomes that are attainable by some mechanism that respects

privacy by the class of social choice functions of the form ϕ : Θ × {0, 1} → R+ × R, which assign to any

consumer type (θ ,ρ) an outcome (q(θ ,ρ), p(θ ,ρ)).8 In particular, we say that a mechanism γ that respects

privacy implements the social choice function ϕ : Θ×{0, 1} → R+×R, if the mechanism has an equilibrium

satisfying (6) with consumer strategies (a, s) such that ϕ(θ ,ρ) = a(θ ,ρ)γ(s(θ ,ρ)) for all (θ ,ρ).
Throughout, we assume that a consumer’s valuation θ is his private information. We begin our analysis

with the benchmark case that a consumer’s privacy type ρ is publicly observable, and then move on to the

case in which ρ is the consumer’s private information.

6As is usual in applications of mechanism design, we focus on deterministic mechanisms that induce pure strategy equilibria
both for tractability reasons and because stochastic mechanisms are difficult to implement in practice.

7It is without loss to assume that any message in M is sent with positive probability: ∀m ∈ M : {(θ ,ρ)|a(θ ,ρ) = 1∧ s(θ ,ρ) =
m} 6= ;. Otherwise, we could obtain an outcome-equivalent mechanism with this property by removing all zero-probability
messages from the message set.

8As we discuss in more detail below, a more involved notion of a social choice function (one that also includes the monopolist’s
assessment F p) is needed for describing economic outcomes of mechanisms that do not respect privacy
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4 Publicly observable privacy types

We first study the benchmark case where a consumer’s privacy type ρ is public information. In this case,

the monopolist conditions her mechanism directly on ρ and treats the two consumer groups independently.

When consumers are classical (ρ = 0), the monopolist faces the standard non-linear pricing problem

as in Mussa and Rosen (1978). Consequently, the monopolist optimally offers a direct revelation mecha-

nism where a consumer obtains the terms of trade (q0(θ ), p0(θ )) upon reporting valuation θ . The profit

maximizing schedule q̄0(θ ) equals qβ(θ ) as defined in (2).

A consumer of type θ obtains the utility

ū0(θ ) =

∫ θ

θ

qβ(t) d t,

and the optimal price schedule is

p̄0(θ ) = θqβ(θ )− ū0(θ ). (7)

If the monopolist faces a data-sensitive consumer (ρ = 1) she can respect privacy only by offering a

mechanism where all consumer types θ who accept the mechanism end up with the same pooling outcome

(q1, p1). To see this, note that if, in equilibrium, some data-sensitive consumers end up buying the bundle

(q1(m̂), p1(m̂)) associated with the message m̂, while some other data-sensitive consumers end up buying

the different bundle (q1(m̃), p1(m̃)) associated with the message m̃, then the principal’s belief F p(m̂) and

F p(m̃) differ so that they cannot both coincide with the ex ante belief F .

These considerations imply that a mechanism that respects the privacy of data-sensitive consumers

simply offers a quantity q1 at a price p1.

Moreover, all data-sensitive consumers either all accept or reject the mechanism, because otherwise, the

monopolist would infer a consumer’s valuation from his acceptance decision, thus not respecting privacy. In

particular, profit maximization implies that the monopolist keeps the lowest type θ just indifferent between

accepting and rejecting, i.e. p1 = θq1. This price gives all other types a strict incentive to buy so that in

equilibrium they accept, yielding the monopolist a profit θq1−c(q1). Hence, the profit-maximizing quantity

level, q̄1, satisfies the first order condition c′(q̄1) = θ and corresponds to the first best level, q∗(θ ), for type

θ , characterized by c′(q∗(θ )) = θ . The utility of a data-sensitive consumer with valuation θ is

ū1(θ ) = θq∗(θ )− θq∗(θ ) = q∗(θ )(θ − θ ). (8)

Having characterized the profit-maximizing selling mechanisms for consumers with different privacy

types, we next compare them. Since the Mussa-Rosen schedule q̄0 is strictly distorted downwards for all

except for the highest type θ , it follows

dū0(θ )
dθ

= q∗(θ )> q̄0(θ ) =
dū1(θ )

dθ
for all θ ∈ [θ ,θ ). (9)

Together with ū0(θ ) = ū1(θ ) = 0, this implies that ū0(θ ) > ū1(θ ) for θ close to θ . Hence, with publicly

observable privacy types, a data-sensitive consumer with a low valuation type is strictly better off than a
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Figure 1: Optimal schedules with public privacy concerns

classical consumer of the same valuation type: The next proposition summarizes these results.

Proposition 1 Suppose privacy types ρ are publicly observable. Then a classical consumer with valuation θ

obtains the Mussa-Rosen schedule q̄0(θ ) = qβ(θ ) at a price p̄0(θ ) as given by (2) and (7). All data-sensitive

consumers obtain the same quantity q̄1 = q∗(θ ) at a price p̄1 = θ q̄1. Data-sensitive consumers with a low

valuation are strictly better off than classical consumers with the same valuation.

Figure 1 illustrates the proposition for the uniform-quadratic case, where valuations are uniformly

distributed and the cost function is quadratic.9 The left panel illustrates the optimal quantity schedule,

while the right panel shows the consumer’s payoffs. Data-sensitive consumers all receive the same quantity

level q̄1, which equals the first best level, q∗(θ ), of the consumer with the lowest valuation θ . The utility

of data-sensitive consumers, ū1(θ ), increases therefore linearly in the valuation θ , as illustrated in the

second panel. Classical consumers get screened through an increasing quantity schedule q̄0(θ ), which is

downward distorted compared to the surplus maximizing quantity q∗(θ ). Low valuation consumers do not

receive the good, whereas higher valuation consumers receive a quantity level that is strictly increasing in

valuation. Their utility level ū0(θ ) is therefore convex in valuation, as illustrated in the second panel.

The second panel illustrates that data-sensitive consumers are strictly better off than their classical

counterparts for any valuation in the interval (θ , θ̃ ). Hence, any such consumer would have an incentive

to claim that he is data-sensitive if he could do so. This shows that the optimal selling mechanism from

Proposition 1 is no longer feasible if consumers’ privacy types are their private information.

In the next section, we show how we can adapt standard tools from mechanism design to study the

case when consumers’ privacy types are their private information. We will show that in this case the main

economic insight of Proposition 1 changes in three respects. First, data-sensitive consumers are harmed by

the fact that privacy types are private information. Second, overturning the last result of Proposition 1, all

data-sensitive consumers are strictly worse off than classical consumers with the same valuation. Third,

9We present this case as an example in Appendix B.
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classical consumers are better off in the presence of data-sensitive consumers. Thus, classical consumers

benefit at the expense of data-sensitive consumers when privacy types are private information.

5 Unobservable privacy types

We next turn to the case where privacy types are a consumer’s private information. To provide intuition for

this case, we first ask whether the monopolist is able to implement the quantity schedules of Proposition 1

through some other mechanism if she cannot observe consumers’ privacy types. The dotted upward shifted

curve, û0(θ ), in the second panel in Figure 1 shows a partial answer to this question. By lowering the prices

to classical consumers by the amount ∆u, the monopolist can ensure that at least the classical consumers

have no incentive to “misrepresent” their privacy types by picking (q̄1, p̄1). As illustrated in Figure 1, the

minimal price decrease ∆u that achieves this satisfies ∆u≡ ū1(θ̂ )− ū0(θ̂ ) with

θ̂ ≡ arg max
θ
{ū1(θ )− ū0(θ )}. (10)

If the privacy cost K is large enough, also a data-sensitive consumer has no incentive to misrepresent his

type by picking an option (q0(θ ), p0(θ )) that is intended for classical consumers. The reason is that this

would induce the monopolist to believe that the consumer’s valuation is θ and thus cause a loss of K to

the data-sensitive consumer. Thus, this decrease in prices does indeed enable the principal to implement

the quantity schedules of Proposition 1. Because under the adapted scheme, the monopolist sells the good

for ∆u less to a classical consumer, the adapted scheme lowers the principal’s profits by µ∆u. Hence, µ∆u

represents an upper bound on the principal’s loss from not being able to observe the privacy types.

However, next to lowering prices to classical consumers, the principal has two additional tools by which

to reduce her loss. First, she can lower the quantity q̄1 that she offers data-sensitive consumers. Because q̄1

was chosen optimally, this has no first order effect on the monopolist’s profits, but has a first order effect on

the amount by which she has to lower prices for classical consumers so as to dissuade them from picking

(q̄1, p̄1). Second, the monopolist can reduce the adaptation costs by lowering prices to classical consumers

by less than ∆u and offering the pair (q̄1, p̄1) rather than the Mussa-Rosen schedule to classical consumers

with valuations θ in a small interval Θ̂ around θ̂ . As illustrated by the dashed curve, this corresponds to

shifting the dotted curve in Figure 1 downward for valuations θ outside of Θ̂ and pooling it with ū1 on Θ̂.

This is profitable, because offering the pair (q̄1, p̄1) to the small set of classical consumers with valuations in

Θ̂ has no first order effect on profits, as the dotted line is tangent to ū1. But because all classical consumers

with θ outside of Θ̂ now obtain a smaller price decrease than∆u, the monopolist makes a first order profit

gain.

In order to determine the principal’s profit-maximizing mechanism with data-sensitive consumers, we

study the structure of mechanisms that respect privacy. Note first that the usual class of incentive compat-

ible, direct mechanisms, by definition, does not respect the consumer’s privacy. Since privacy matters only

to data-sensitive consumers, a natural class of mechanisms to consider instead is one that offers an option

that can be chosen without sending a message to the monopolist. We first confirm that this intuition is

indeed correct.

To do so, we define a privacy mechanism γ = ((q0(θ ), p0(θ )), (q1, p1)) as a combination of a direct
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mechanism

(q0, p0) : Θ→ R+ ×R, (11)

that asks consumers to report a valuation, and a single “privacy option”

(q1, p1) ∈ R+ ×R, (12)

that a consumer can pick without sending a message. The next lemma establishes a revelation principle

for mechanisms that respect privacy and says that any mechanism that respects privacy can be replicated

by a privacy mechanism in which all classical consumers reveal their type truthfully and all data-sensitive

consumers pick the privacy option.

Lemma 1 Let ρ be consumers’ private information, and let γ be a mechanism that respects privacy and imple-

ments the social choice function ϕ. Then there is a privacy mechanism γ̃= ((q0(θ ), p0(θ )), (q1, p1)) that also

implements ϕ and respects privacy. Moreover, it induces an equilibrium in which (i) all consumer types accept

the mechanism, and (ii) all classical consumers truthfully reveal their valuation and (almost) all data-sensitive

consumers pick the privacy option (q1, p1).

Property (ii) of Lemma 1 shows that we can restrict attention to privacy mechanisms that satisfy the

incentive compatibility conditions

θq0(θ )− p0(θ )≥ θq0(θ ′)− p0(θ ′) (ICθ )

θq0(θ )− p0(θ )≥ θq1 − p1 (IC0)

θq1 − p1 ≥ θq0(θ ′)− p0(θ ′)− K (IC1)

for all θ ,θ ′ ∈ Θ.

Here, (ICθ ) and (IC0) ensure that a classical consumer does not misrepresent his valuation and does

not pretend to be data-sensitive and pick the privacy option, while (IC1) ensures that a data-sensitive

consumer does not pretend to be classical by announcing a valuation θ ′. In the latter case, the monopolist

would believe the consumer’s valuation to be θ ′ so that the (data-sensitive) consumer would suffer the

privacy cost K .

Moreover, part (i) of Lemma 1 implies that we can focus on mechanisms that satisfy the individual

rationality conditions

θq1 − p1 ≥ 0. (IR1)

θq0(θ )− p0(θ )≥ 0. (IR0)

for all θ ∈ Θ.

Note that (IR1) only imposes individual rationality for a data-sensitive consumer with the lowest val-

uation, because this is equivalent to the requirement that the mechanism is individually rational for a

data-sensitive consumer with any valuation θ . Also note that (IC0) and (IR1) imply (IR0) so that we can

disregard it.
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Hence, we call a privacy mechanism γ feasible if it satisfies (ICθ ), (IC0), (IC1), and (IR1).

Our motivation for focusing on mechanisms that respect privacy is to capture situations in which data-

sensitive consumers suffer a large cost K from a privacy violation. Note that a large K ensures that (IC1) is

satisfied. We will therefore disregard (IC1) and later state a lower bound on the size of K such that (IC1)

is indeed satisfied.

Disregarding (IC1), all constraints except for (IR1) are relaxed when increasing p1. Because raising p1

also increases the principal’s objective, the constraint (IR1) is binding at an optimum, implying p1 = θq1.

Together, these considerations imply that the monopolist’s problem boils down to10

Q : max
q0(·),p0(·),q1

W =(1−µ)

(

∫ θ

θ

p0(θ )− c(q0(θ )) dF(θ )

)

+µ{θq1 − c(q1)} s.t. (13)

θq0(θ )− p0(θ )≥ θq0(θ ′)− p0(θ ′) ∀θ ,θ ′ ∈ Θ. (ICθ )

θq0(θ )− p0(θ )≥ (θ − θ )q1 ∀θ ∈ Θ. (IC0)

Note that (IC0) requires a classical consumer to obtain at least the utility (θ−θ )q1 from the mechanism.

Effectively, it is as if a classical consumer has a type-dependent outside option of (θ − θ )q1. In contrast to

standard screening problems with type-dependent outside options, the novelty here is that the value of the

outside option is endogenous, as it depends, in addition, on the monopolist’s choice of q1.

To solve the monopolist’s problem, we first re-write the constraints. Note that (IC0) must hold with

equality for some θ at an optimum. The reason is that otherwise the monopolist could uniformly increase

the price p0(·) by a small amount. This would maintain (ICθ ) but increase profits.

Further, let u0(θ ) = θq0(θ )− p0(θ ) denote a classical consumer’s indirect utility function. As is well-

known from standard screening problems, (ICθ ) is then satisfied if and only if q0(·) is increasing and

du0(θ )/dθ = q0(θ ). In particular, the indirect utility function u0(·) is convex. Because the function on the

right hand side of (IC0) is linear, convexity of u0(·) implies that the set of valuations where (IC0) holds

with equality is an interval [θa,θb], that is, u0(θ ) = (θ − θ )q1 if and only if θ ∈ [θa,θb]. Together with

the fact that du0(θ )/dθ = q0(θ ), this also means that and q0(θ ) = q1 if and only if θ ∈ [θa,θb] The next

lemma summarizes these considerations.

Lemma 2 Problem Q is equivalent to the problem where (ICθ ) and (IC0) are replaced by the following

constraints: There are θa,θb ∈ Θ with θa ≤ θb so that

(i) q0(·) is increasing, and q0(θ ) = q1 if and only if θ ∈ [θa,θb].
(ii) u0(·) is convex with du0(θ )/dθ = q0(θ ) for almost all θ , and u0(θ ) = (θ−θ )q1 if and only if θ ∈ [θa,θb].

Lemma 2 confirms our graphical intuition as expressed by the dashed curve in the second panel of

Figure 1 that it is optimal to pool classical and data-sensitive consumers in some interval [θa,θb].
Following the literature on screening with type-dependent outside options, we use part (ii) of Lemma

2 to recover u0(·) from integration as follows:

u0(θ ) = u0(θa)−
∫ θa

θ

q0(t) d t if θ ∈ [θ ,θa), u0(θ ) = u0(θb) +

∫ θ

θb

q0(t) d t if θ ∈ (θb,θ]. (14)

10Note that because p1 = θq1 at an optimum, the monopolist’s profit from a data-sensitive consumer is θq1 − c(q1). Similarly,
the right hand side of (IC0) becomes p1 − θq1 = (θ − θ )q1.
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As shown in Appendix A, we can use these expression to re-write the monopolist’s problem in terms of

maximizing the virtual surplus subject to the monotonicity constraints from part (i) of Lemma 2:

P : max
q0(·),θa ,θb ,q1

(1−µ)

¨

∫ θa

θ

α(θ )q0(θ )− c(q0(θ ))− (θa − θ )q1 dF(θ ) (15)

+ [F(θb)− F(θa)](θq1 − c(q1))

+

∫ θ

θb

β(θ )q0(θ )− c(q0(θ ))− (θb − θ )q1 dF(θ )

)

+µ{θq1 − c(q1)} s.t.

q0(·) increasing; q0(θ ) = q1 if and only if θ ∈ [θa,θb]. (MON)

The first line of the virtual surplus corresponds to the total surplus generated by classical consumers

with valuations in [θ ,θa) minus the information rent the monopolist has to leave to these consumers for

not mimicking a marginally higher valuation. The second line corresponds to the total surplus generated by

classical consumers in [θa,θb] minus the information rent the monopolist has to leave to these consumers

for not mimicking a data-sensitive consumer and the third line corresponds to the total surplus generated

by classical consumers with valuations in (θa,θ] minus the information rent the monopolist has to leave

to these consumers for not mimicking a marginally lower valuation. Finally, the fourth line corresponds to

the profit the monopolist obtains from data-sensitive consumers.

The next lemma derives the optimal quantity schedule q̂0(θ ) offered to classical consumers for a given

q1. To characterize this schedule, we first define for any q1 the two cutoffs θα and θβ as the valuations

where qα(·) and qβ(·) intersect with q1. To cover cases where this intersection does not exist, we formally

define

θα(q
1) = arg min

θ∈[θ ,θ]
|qα(θ )− q1|, θβ(q

1) = arg min
θ∈[θ ,θ]

|qβ(θ )− q1|. (16)

Note that for q1 = 0, and β(θ ) < 0, we have that arg min
θ∈[θ ,θ] |qβ(θ )− q1| = [θ ,θ0]. For this case, we

define θβ(q1) = θ0.

We now show that at an optimum, marginal costs equal marginal virtual valuations outside of the

interval [θα,θβ] where (IC0) is not binding. In particular, for valuations larger than θb, the schedule

corresponds to the Mussa-Rosen schedule.

Lemma 3 A solution {q̂0(·), θ̂a, θ̂b, q̂1} to P exhibits θ̂a = θα(q̂1), θ̂b = θβ(q̂1) and

q̂0(θ ) =











qα(θ ) i f θ ∈ [θ ,θα)
q̂1 i f θ ∈ [θα,θβ]
qβ(θ ) i f θ ∈ (θβ ,θ].

(17)

Lemma 3 characterizes a solution to P up to q1. Therefore, if we insert q̂0(·) into the objective, the

monopolist’s problem boils down to the choice of q1. We next show that the optimal q1 lies below the
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efficient level of the lowest value type, implying that θ̂a = θα = θ .

Lemma 4 A solution {q̂0(·), θ̂a, θ̂b, q̂1} to P exhibits q̂1 ≤ q∗(θ ) = q̄1. In particular, θ̂a = θ .

The lemma states that when privacy types are unobservable, data-sensitive consumers end up with a

lower quantity than when the monopolist can distinguish them from classical consumers. Moreover, recall-

ing that the optimal price for a data-sensitive consumer is p1 = θ q̂1, the lemma implies that when privacy

types are unobservable, then data-sensitive consumers are worse off compared to when the monopolist

cannot recognize them.

Note that, together with part (ii) of Lemma 2, Lemma 4 confirms the intuition from the beginning

of the section that the monopolist optimally uses two tools to reduce the cost of maintaining incentive

compatibility: reducing the quantity q1 offered to data-sensitive consumers (Lemma 4) and pooling some

classical consumers with data-sensitive consumers (Lemma 2). The second part of Lemma 4 that θ̂a = θ ,

means that the monopolist optimally uses the second tool in an extreme sense in that she pools all classical

consumers with a low valuation with data-sensitive consumers.

It remains to characterize the optimal quantity q̂1 consumed by data-sensitive consumers and the re-

sulting highest valuation θ̂b of the pooling interval. In order to take care of possible corner solutions, we

define the auxiliary function φ : [θ ,θ]→ R by

φ(θ )≡ θ − β(θ )− (1−µ)
(1− F(θ ))2

f (θ )
.

Recall that for β(θ )< 0 there is a unique θ0 so that β(θ0) = 0. The next lemma completes the characteri-

zation of the profit-maximizing mechanism when privacy types are private information.

Lemma 5 Let {q̂0(·), θ̂a, θ̂b, q̂1} be a solution to P .

If β(θ )< 0 and φ(θ0)≤ 0, then θ̂b = θ0 and q̂1 = 0;

Otherwise, θ̂b is given as the unique solution to φ(θ̂b) = 0, and q̂1 = qβ(θ̂b), with q̂1 > 0.

Taken together, the previous lemmata fully characterize the monopolist’s profit-maximizing privacy

mechanism γ̂= {q̂0(·), θ̂a, θ̂b, q̂1} under the assumption that the incentive constraint of data-sensitive con-

sumers, (IC1), is not binding. Using this characterization, we obtain a lower bound on the privacy costs K

such that the characterized solution does indeed satisfy the neglected incentive constraint (IC1). Let

K̄ ≡ û0(θ )− û1(θ ) =

∫ 1

θβ

q̂0(θ )− q̂1 dθ , (18)

where û0(·) and û1(·) are the utilities of a classical and data-sensitive consumers under γ̂. It follows that, for

K ≥ K̄ , the mechanism γ̂ satisfies the neglected constraint (IC1) so that we obtain the following proposition.

Proposition 2 Suppose privacy types are private information and K ≥ K̄. Then the profit-maximizing selling

mechanism is characterized by Lemmata 3, 4, and 5. In particular, we have:

1. Classical consumers with a valuation θ ≥ θ̂b obtain the Mussa-Rosen quantity q̂0(θ ) = q̄0(θ ) at a price

below the Mussa-Rosen price: p̂0(θ )≤ p̄(θ ).
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Figure 2: Optimal schedules with private vs. public privacy concerns

2. For any valuation θ , classical consumers obtain a larger utility than data-sensitive consumers: û0(θ )≥
û1(θ ).

3. Compared to when privacy types are public, i) Classical consumers obtain a higher utility: û0(θ ) ≥
ū0(θ ); ii) Data-sensitive consumers obtain a lower utility: û1(θ )≤ ū1(θ ).

4. With unobservable privacy types full exclusion of data-sensitive consumers might be optimal, that is,

q̂1 = 0. In particular, this exclusion is optimal if and only if β(θ )< 0 and φ(θ0)≤ 0.

Figure 2 illustrates the proposition by depicting the optimal schedules and the associated utilities for

the cases where privacy types are unobservable (dashed curves) and observable (solid curves). In line with

the second statement of the proposition, it shows that when privacy types are unobservable our earlier

result from the case with observable privacy types is overturned: when privacy types are unobservable a

consumer is better off if she is not data-sensitive.

Figure 2, moreover, illustrates the third result of the proposition that, except for the type θ , classical

consumers strictly benefit from the private information at the expense of data-sensitive consumers, who

all obtain a strictly lower utility when the principal cannot distinguish them from classical consumers.

This insight has policy relevance if one interprets privacy policies initiatives such as the European

GDPR as enabling consumers to keep their privacy attitudes private. In particular, it implies that classical

consumers benefit from such privacy policies, whereas data-sensitive consumers lose. The intuition behind

this result is that the consumers’ mimicking abilities are asymmetric: The monopolist can costlessly prevent

data-sensitive consumers from mimicking classical consumers, whereas it is costly for her to prevent clas-

sical consumers from mimicking data-sensitive consumers. Hence, when privacy types are unobservable,

the monopolist has to pay extra information rents to classical consumers, and these extra rents explain

why classical consumers are better off when privacy types are unobservable. In order to reduce these

rents, the monopolist makes the offer to data-sensitive consumers less attractive, and this explains why

data-sensitive lose out when privacy types are unobservable. The insight also implies that, in general, we

cannot Pareto-rank the outcomes of such policies among consumers.
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The final result of Proposition 2 shows that, as indicated at the beginning of this section, the monopolist

may use her first tool by which to reduce information rents to classical consumers in an extreme sense;

lowering the quantity q1 all the way to zero, thereby effectively excluding data-sensitive consumers from

consumption. This allows her to offer the classical consumers the Mussa-Rosen schedule without adapting

prices. While the proposition states the exact conditions under which this occurs, intuitively exclusion is

optimal when the share of data-sensitive consumers and the lowest valuation type, θ , are relatively small.

In this case, the monopolist does not lose much from excluding data-sensitive consumers and optimally

serves only classical consumers. This also illustrates in a stark way why raising data-awareness of con-

sumers lowers their utility. Rather than reducing their consumption, they stop buying all together. Note

that if excluding data-sensitive consumers is profit-maximizing, the outcome with observable privacy types

Pareto dominates the outcome with unobservable privacy types. In this case, all parties lose from policy

measures that prevent the monopolist from identifying and conditioning its offer on the data-sensitivity of

consumers. This result is similar to the well-known result in the literature that prohibiting (3rd degree)

price discrimination yields a Pareto inferior outcome when it leads to the exclusion of certain consumer

groups.

For the case, where full exclusion of data-sensitive consumers is too costly for the monopolist, the next

lemma derives various comparative statics results with respect to µ, the share of data-sensitive consumers.

To the extent that µ is likely to differ across markets, this gives rise to testable predictions of our model.

Moreover, as pointed out in the introduction, we may interpret µ also as a policy variable to the extent that

governmental data-awareness initiatives can be seen as raising the share of data-sensitive consumers. In

what follows, we denote the monopolist’s profits under the optimal contract by Ŵ .

Lemma 6 (Comparative statics) As the share of data-sensitive consumers increases, we have:

(i) The monopolist’s profit decreases: dŴ/dµ≤ 0;

(ii) The quantity offered to classical consumers increases: dθ̂b/dµ≥ 0; dq̂1/dµ≥ 0; dq̂0(θ )/dµ≥ 0;

(iii) Consumer utility for given privacy types increases: dû0(θ )/dµ, dû1(θ )/dµ≥ 0;

The first result states that the monopolist’s profits fall when the share of data-sensitive consumers rises.

The second result implies that a higher share of data-sensitive consumers translates into more classical

consumers being pooled with data-sensitive ones and a less distorted quantity q̂1. The third result states

that all consumers, whose privacy type remains unchanged, benefit from an increase in the share of data-

sensitive consumers. This holds for both data-sensitive and classical consumers. The result does, however,

not imply that a raise in µ benefits all consumers, since a raise in µmeans that some classical consumers are

turned into data-sensitive consumers. Indeed, the second statement in Proposition 1 implies that classical

consumers with a valuation exceeding θβ lose when they “switch” from being a classical to a data-sensitive

type. Hence, the third result of the lemma implies that all consumers benefit from an increase in the share

of data-sensitive consumers, except for classical high valuation types who become data-sensitive. This last

insight illustrates the somewhat counter-intuitive effect that raising the data-awareness of consumers may

actually lower their utility.

To conclude this section, we finally compare the aggregate surplus generated under the optimal contract

γ̄ with observable privacy types and the optimal contract γ̂ with unobservable privacy types. According to

Proposition 1, classical consumers with a valuation exceeding θβ obtain the same quantities under γ̄ and
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γ̂. Hence, there is no difference in the surplus generated by these consumer types. On the other hand, for

classical consumers with valuations below θβ , the contract γ̂ yields a higher surplus than the contract γ̄,

because q̂0(θ ) is less (downward) distorted than q̄0(θ ). Finally, with respect to data-sensitive consumers, γ̄

generates a higher surplus, since q̄1 is less (downward) distorted than q̂1. Hence, in general the comparison

of aggregate surplus when privacy types are observable with when they are unobservable is ambiguous.

6 Conclusion

A natural extension of our analysis is to study mechanisms that do not respect the privacy of data-sensitive

consumers. Indeed, such mechanisms will be optimal when the privacy cost K that data-sensitive consumer

incur is relatively small. We leave such an analysis for future research, since it involves multiple complica-

tions. First, a study of mechanisms that intrude on the privacy of data-sensitive consumers requires a more

extended concept of a social choice function. In particular, social choice functions have to specify also the

principal’s belief function F p(m), since it affects the equilibrium payoffs of some data-sensitive consumers

explicitly. Hence, focusing on mechanisms that respect the privacy of data-sensitive consumers allows us

to disregard beliefs in the social choice function. Second and as a result of the more complicated notion of

a social choice function, the analysis of profit-maximizing mechanisms that intrude on the privacy of data-

sensitive consumers turns out to be less tractable and solving it requires the development of new analytical

techniques. Finally, when mechanisms violate privacy the use of allocative efficiency as a proper welfare

criterium is put into question, because it disregards any welfare losses of those data-sensitive consumers

who incur the privacy cost K .
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Appendix A: Proofs

Proof of Lemma 1: Consider some mechanism γ = (q, p) : M → R+ × R inducing an equilibrium with

consumers’ strategies a(θ ,ρ) and s(θ ,ρ), the monopolist’s belief F p(m) = F for all m ∈ M , and imple-

menting ϕ. Let Θr = {θ |a(θ , 1) = 0} represent the data-sensitive consumers who reject the mechanism,

and Θa = {θ |a(θ , 1) = 1} = Θ\Θr represent the data-sensitive consumers who accept the mechanism.

We distinguish between three cases: i) (almost) all data-sensitive consumers reject; Θr has measure 1, ii)

(almost) all data-sensitive consumer accept; Θa has measure 1, iii) some data-sensitive consumers accept

and some reject; both Θa and Θr have positive measure.

Case i): If a(θ , 1) = 0 for (almost) all θ , then we can replace the mechanism γwith a privacy mechanism

γ̃ = ((q̃0(θ ), p̃0(θ )), (q̃1, p̃1)) with q̃0(θ ) = a0(s(θ , 0))q0(s(θ , 0)), p̃0(θ ) = a0(s(θ , 0))p0(s(θ , 0)) and q̃1 =
p̃1 = 0. By construction, γ̃ respects consumer privacy, induces an equilibrium in which all consumer

types accept the mechanism, all classical consumers truthfully reveal their valuation and (almost) all data-

sensitive consumers pick the privacy option (q1, p1), and also implements ϕ.

Case ii): Let a(θ , 1) = 1 for (almost) all θ . We first show that γ(s(θ̂ , 1)) = γ(s(θ̃ , 1)) for (almost) all

θ̂ , θ̃ ∈ Θ. Indeed, suppose this is not the case, implying that there are sets Θ̂ and Θ̃, both with positive

mass, such that

s(θ̂ , 1) = m̂ 6= m̃= s(θ̃ , 1) ∀θ̂ ∈ Θ̂, θ̃ ∈ Θ̃. (19)

Since γ respects privacy, we also have that F p(m̂) = F p(m̃) = F , but this can only be the case if (almost)

all classical consumers with valuation not in Θ̂ send message m̂ and (almost) all classical consumers with

a valuation not in Θ̃ send message m̃. In particular:

s(θ̂ , 0) = m̃, and m̂= s(θ̃ , 0) for (almost) all θ̂ ∈ Θ̂, θ̃ ∈ Θ̃. (20)

Recall however that under a mechanism that respects privacy, data-sensitive and classical consumers with

the same valuation receive the same utility from a message. Therefore, (19) and (20) imply that all con-

sumers with valuations in Θ̂ ∪ Θ̃ are indifferent between m̂ and m̃ and thus between (q(m̂), p(m̂)) and

(q(m̃), p(m̃)). However, due to single crossing, consumers with different valuations cannot be indifferent

between two different outcomes, and it follows that (q(m̂), p(m̂)) = (q(m̃), p(m̃)), a contradiction to the

assumption that γ(s(θ̂ , 1)) 6= γ(s(θ̃ , 1)).
Consequently, there is (q̂, p̂) so that γ(s(θ , 1)) = (q̂, p̂) for (almost) all θ ∈ Θ. Thus, we can re-

place γ with the privacy mechanism γ̃ = ((q̃0(θ ), p̃0(θ )), (q̃1, p̃1)) with q̃0(θ ) = a0(s(θ , 0))q0(s(θ , 0)),
p̃0(θ ) = a0(s(θ , 0))p0(s(θ , 0)) and (q̃1, p̃1) = (q̂, p̂). By construction, γ̃ respects consumer privacy, induces

an equilibrium in which all consumer types accept the mechanism, all classical consumers truthfully re-

veal their valuation and (almost) all data-sensitive consumers pick the privacy option (q1, p1), and also

implements ϕ.

Case iii): Suppose some data-sensitive consumers accept and some reject; bothΘa andΘr have positive

measure. Consider a data-sensitive consumer with valuation θ a ∈ Θa, who sends the message ma = s(θ a, 1)
and obtains (q(ma), p(ma)). Since γ respects privacy, it holds F p(ma) = F , which can only be the case if

(almost) all classical consumers with valuation θ r ∈ Θr also send the message ma. Hence, (almost) all
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classical consumers with values in Θr (weakly) prefer (q(ma), p(ma)) to rejecting the mechanism, while all

data-sensitive consumers with values in Θr , (weakly) prefer rejecting the mechanism to (q(ma), p(ma)).
Because data-sensitive and classical consumers with the same valuation have the same reservation util-

ity 0, and under a mechanism that respects privacy, they receive the same utility from a message, it follows

that (almost) all classical consumers with valuations in Θr must be indifferent between rejecting the mech-

anism and (q(ma), p(ma)). This is, however, only the case if (q(ma), p(ma)) = (0,0), implying that for any

θ a ∈ Θa, we have (q(s(θ a, 1)), p(s(θ a, 1)) = (0, 0). Hence, any data-sensitive consumer obtains the out-

come (q, p) = (0, 0) either because he rejects the mechanism or accepts and submits s(θ a, 1). As a result, we

can replace γwith the privacy mechanism γ̃= ((q̃0(θ ), p̃0(θ )), (q̃1, p̃1))with q̃0(θ ) = a0(s(θ , 0))q0(s(θ , 0)),
p̃0(θ ) = a0(s(θ , 0))p0(s(θ , 0)) and q̃1 = p̃1 = 0. By construction, γ̃ respects consumer privacy, induces an

equilibrium in which all consumer types accept the mechanism, all classical consumers truthfully reveal

their valuation and (almost) all data-sensitive consumers pick the privacy option (q1, p1), and also imple-

ments ϕ. �

Proof of Lemma 2: The proof is in the main text. �

Rewriting of the principal’s maximization problem to obtain P :

By definition, u0(θ ) = θq0(θ )− p0(θ ), so that we have p0(θ )− c(q0(θ )) = θq0(θ )− c(q0(θ ))−u0(θ ) and

can rewrite the monopolist’s objective (13) of problem Q as:

W = (1−µ)
∫ θ

θ

θq0(θ )− c(q0(θ ))− u0(θ ) dF(θ ) +µ(θq1 − c(q1)). (21)

We calculate the integral by dividing the interval [θ ,θ] into three subintervals [θ ,θa], [θa,θb], and [θb,θ].
By (14),

∫ θa

θ

u0(θ ) dF(θ ) = F(θa)u
0(θa)−

∫ θa

θ

∫ θa

θ

q0(t) d t dF(θ ) (22)

= F(θa)(θa − θ )q1 −
∫ θa

θ

F(θ )
f (θ )

q0(θ ) dF(θ ), (23)

where the second line follows from integration by parts and since u0(θa) = (θa−θ )q1 by part (ii) of Lemma

2. Thus,

∫ θa

θ

θq0(θ )− c(q0(θ ))− u0(θ ) dF(θ ) =

∫ θa

θ

α(θ )q0(θ )− c(q0(θ ))− (θa − θ )q1 dF(θ ). (24)

With analogous steps, we obtain:

∫ θ

θb

θq0(θ )− c(q0(θ ))− u0(θ ) dF(θ ) =

∫ θ

θb

β(θ )q0(θ )− c(q0(θ ))− (θb − θ )q1 dF(θ ). (25)
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Moreover, because u0(θ ) = (θ − θ )q1 for all θ ∈ [θa,θb] by part (ii) of Lemma 2:

∫ θb

θa

θq0(θ )− c(q0(θ ))− u0(θ ) dF(θ ) =

∫ θb

θa

θq1 − c(q1) dF(θ ) = (F(θb)− F(θa))[θq1 − c(q1)]. (26)

Inserting these expressions in W and re-arranging terms yields the objective (15) of problem P .

Finally, note that the constraints of problemP reduce to the constraints of part (i) of Lemma 2, because

we have inserted the constraints from part (ii) into the objective. �

Proof of Lemma 3: With straightforward algebra, we can rewrite the objective (15) as

W = (1−µ)

¨

∫ θa

θ

α(θ )q0(θ )− c(q0(θ ))− [θaq1 − c(q1)] dF(θ ) (27)

+

∫ θ

θb

β(θ )q0(θ )− c(q0(θ ))− [θbq1 − c(q1)] dF(θ )

)

+ θq1 − c(q1).

By integration by parts,

∫ θa

θ

θa dF(θ ) = F(θa)θa =

∫ θa

θ

θ dF(θ ) +

∫ θa

θ

F(θ ) dθ =

∫ θa

θ

α(θ ) dF(θ ),

∫ θ

θb

θb dF(θ ) = (1− F(θb))θb =

∫ θ

θb

θ dF(θ )−
∫ θ

θb

1− F(θ ) dθ =

∫ θ

θb

β(θ ) dF(θ ).

Thus, (27) rewrites as

W =(1−µ)

¨

∫ θa

θ

α(θ )q0(θ )− c(q0(θ ))− [α(θ )q1 − c(q1)] dF(θ )

+

∫ θ

θb

β(θ )q0(θ )− c(q0(θ ))− [β(θ )q1 − c(q1)] dF(θ )

)

+ θq1 − c(q1).

For a given q1, denote byP (q1) the monopolist’s problem to chooseη= (θa,θb, q0(·)) so as to maximize

W subject to MON. Consider an auxiliary problem, denoted A , where the monopolist chooses θa,θb and

two increasing schedules q0
a : [θ ,θa)→ [0, q1) and q0

b : (θb,θ]→ (q1,∞) so as to maximize

W̃ = (1−µ)

¨

∫ θa

θ

α(θ )q0
a(θ )− c(q0

a(θ ))− [α(θ )q
1 − c(q1)] dF(θ )

+

∫ θ

θb

β(θ )q0
b(θ )− c(q0

b(θ ))− [β(θ )q
1 − c(q1)] dF(θ )

)

+ θq1 − c(q1).
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Contrary to problem P (q1), θa in problem A does not need to be smaller than θb. Therefore, for every

η = (θa,θb, q0(·)) that is feasible in P (q1), we obtain a combination λ = (θa,θb, q0
a(·), q0

b(·)) which is

feasible in A when we set q0
a(·) = q0(·) on [θ ,θa) and q0

b(·) = q0(·) on (θb,θ]. By construction, W̃ (η) =
W (λ). In particular, this implies that max W̃ ≥max W .

Reversely, this also implies that if there is a solution λ of A with the property that θa ≤ θb, then this

corresponds to a solution η of P (q1) when we set

q0(θ ) = q0
a(θ )I[θ ,θa)(θ ) + q1I[θa ,θb](θ ) + q0

b(·)I(θb ,θ](θ ). (28)

We now argue that λ̂ = (θα(q1),θβ(q1), qα(·), qβ(·)) is a solution to A . Note first that our regularity

assumptions ensure that qa(.) and qb(.) are increasing. Together with the definitions of θα(·) and θβ(·) it

then follows that λ̂ is feasible in A . Consider some λ = (θa,θb, q0
a(·), q0

b(·)) which is feasible in A . We

show that W̃ (λ̂) ≥ W̃ (λ). We consider the case that θa < θα(q1) and θb < θβ(q1). The other cases can be

dealt with analogously. Then we have

W̃ (λ̂)− W̃ (λ)
1−µ

=

∫ θa

θ

α(θ )qα(θ )− c(qα(θ ))− [α(θ )q0
a(θ )− c(q0

a(θ ))] dF(θ )

+

∫ θα(q1)

θa

α(θ )qα(θ )− c(qα(θ ))− [α(θ )q1 − c(q1)] dF(θ )

+

∫ θβ (q1)

θb

β(θ )q1 − c(q1)− [β(θ )q0
b(θ )− c(q0

b(θ ))] dF(θ )

+

∫ θ

θβ (q1)
β(θ )qβ(θ )− c(qβ(θ ))− [β(θ )q0

b(θ )− c(q0
b(θ ))] dF(θ ).

Because qα(θ ) maximizes α(θ )q − c(q), the first and the second integral are positive. To see that the

third integral is positive, note that for all θ ∈ (θb,θβ(q1)), we have

qβ(θ )< q1 < q0
b(θ ),

where the second inequality holds since, by assumption, λ is feasible in A . Hence, because β(θ )q− c(q)
is concave in q and maximized by qβ(θ ), it follows that β(θ )q1− c(q1)≥ β(θ )q0

b(θ )− c(q0
b(θ )).. Thus the

third integral is positive. Finally, the fourth integral is positive because qβ(θ ) is a maximizer of β(θ )q−c(q).
Thus, we have established that λ̂ is a solution to A . Because θα(q1) ≤ θβ(q1), the combination η̂ =

(θα(q1),θβ(q1), q̂0(·)), with q̂0(·) defined by (28), is a solution toP (q1). This solution has all the properties

stated in the lemma. �

Proof of Lemma 4: By contradiction, suppose that q̂1 > q∗(θ ) is optimal. By Lemma 3 and the definition

of θα(·), it then follows that θ̂a = θα(q̂1)> θ .

Consider an alternative mechanism (q̃1, θ̃a, θ̃b, q̃0(θ )) with q̃1 = q∗(θ ) so that, by Lemma 3, θ̃a =
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θα(q̃1) = θ , θ̃b = θβ(q̃1) ∈ (θ ,θ ), and

q̃0(θ ) =

¨

q̃1 i f θ ∈ [θ ,θβ(q̃1)]
qβ(θ ) i f θ ∈ (θβ(q̃1),θ].

By concavity of c(·) and by construction of the mechanism:

c′(q0(θ ))≥ c′(q̃0(θ ))≥ β(θ ), and u0(θ )≥ ũ0(θ ) = 0. (29)

In order to see that this alternative mechanism yields strictly more, note that we can use the second expres-

sion in (14) together with integration by parts to express the principal’s profits from an arbitrary mechanism

as

W = (1−µ)

(

∫ θ

θ

β(θ )q0(θ )− c(q0(θ )) dF(θ )− u0(θ )

)

+µ{θq1 − c(q1)}. (30)

It then follows that, for three reasons, our alternative mechanism based on q̃1 = q∗(θ ) yields more than the

original mechanism based on q1 > q∗(θ ). First, by (29), the integral is larger for the alternative than the

original mechanism (since, due to c′′(q) > 0, the virtual surplus , β(θ )q − c(q), is concave in q). Second,

by (29) u0(θ )≥ ũ0(θ ). Finally, the last term, µ{θq1− c(q1)}, is larger for the alternative than the original

mechanism, because the alternative mechanism specifies the first best quantity at θ . This proves that at an

optimal mechanism, we have q̂1 ≤ q∗(θ ). By definition of θα(·), Lemma 3 then implies that θ̂a = θ �

Proof of Lemma 5: Because θ̂a = θ by Lemma 4, Lemma 3 implies that the optimal schedule q̂0(·) is such

that q̂0(θ ) = q1 ≤ q∗(θ ) for valuations θ ∈ [θ , θ̂b] and q̂0(θ ) = qβ(θ ) for valuations θ ∈ (θ̂b,θ]. Moreover,

θ̂b = θβ(q1), or, equivalently q1 = qβ(θβ). Because of the one-to-one relationship between q1 and θβ , we

can write the monopolist’s problem as a problem of choosing θβ (rather than q1). Recall that if β(θ ) ≥ 0,

then the range of θβ is [θ ,θ], while when β(θ ) < 0 the range of θβ is [θ0,θ], where θ0 is defined by

β(θ0) = 0.

By (27), the objective as a function of θβ can be written as

W (θβ) =(1−µ)

(

∫ θ

θβ

β(θ )qβ(θ )− c(qβ(θ ))dF(θ )− [1− F(θβ)][θβqβ(θβ)− c(qβ(θβ))]

)

(31)

+ θqβ(θβ)− c(qβ(θβ)).
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The derivative is

W ′(θβ) = (1−µ){− f (θβ)[β(θβ)qβ(θβ)− c(qβ(θβ))]

+ f (θβ)[θβqβ(θβ)− c(qβ(θβ))]− [1− F(θβ)][qβ(θβ) + (θβ − c′(qβ(θβ)))q
′
β(θβ)]}

+[θ − c′(qβ(θβ))]q
′
β(θβ)

= (1−µ){ f (θβ)[θβ − β(θβ)]qβ(θβ)− [1− F(θβ)][qβ(θβ) + (θβ − β(θβ))q′β(θβ)]}

+[θ − β(θβ)]q′β(θβ)

= −(1−µ)[1− F(θβ)][(θβ − β(θβ))q′β(θβ)] + [θ − β(θβ)]q
′
β(θβ)

=

�

θ − β(θβ)− (1−µ)
(1− F(θβ))2

f (θβ)

�

q′β(θβ) = φ(θβ)q
′
β(θβ),

where the second equality uses c′(qβ(θβ)) = β(θβ), the third equality follows after using f (θβ)[θβ −
β(θβ)] = 1 − F(θβ) from the definition of β(θ ) and cancelling terms, and the third equality uses the

definition of β(θ ) after factoring out the term q′
β
(θβ).

We next argue that W (θβ) is quasi-concave in θβ . To see this, write h(θ ) = (1 − F(θ ))/ f (θ ) as the

inverse hazard rate so that β ′(θ ) = 1− h′(θ ). It then follows

φ′(θ ) = −(1− h′(θ ))− (1−µ)h′(θ )(1− F(θ )) + (1−µ)h(θ ) f (θ )

= −(1− h′(θ )) + (1−µ)(1− F(θ ))(1− h′(θ ))

= [(1−µ)(1− F(θ ))− 1](1− h′(θ )) = [(1−µ)(1− F(θ ))− 1]β ′(θ )

< 0,

where the inequality follows since the term in square brackets is negative, whereas β ′(θ ) is positive. More-

over, it holds

φ(θ ) = µ
1

f (θ )
> 0, φ(θ ) = θ − θ < 0.

Together with φ′(0) < 0, this implies that there is a unique θφ such that φ(θφ) = 0; and together with

q′
β
(θβ)≥ 0, it also implies that W (θβ) is quasi-concave in θβ .

For the case β(θ ) ≥ 0, where the monopolist can choose any θβ ∈ [θ ,θ], this implies that θφ is a

unique maximizer of W (θβ).
For the case β(θ ) < 0, where the monopolist can choose any θβ ∈ [θ0,θ], this implies that θφ is a

unique maximizer of W (θβ) if θφ ≥ θ0, whereas the corner solution θ0 maximizes W (θβ) if θφ < θ0.

Finally, note that θ̂b = θφ implies q̂1 = qβ(θφ), in which case q̂1 > 0 because β(θφ) > 0 and thus

qβ(θφ)> 0 by (2). Moreover, θ̂b = θ0 implies q̂1 = qβ(θ0) = 0. This completes the proof. �

Proof of Proposition 2: The first observation follows directly from Lemmata 3, 4, and 5, and the fact that

(IC1) is slack whenever K ≥ K̄ , and using the price according to (7). Part 2 of the proposition follows from

incentive compatibility (IC0). Part 3 of the proposition follows from a direct comparison of the optimal

schedules when privacy types are private and public. Part 4 follows from Lemma 5. �
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Proof of Lemma 6: To see (i), fix µ and the associated optimal privacy contract γ̂. Denote by Ŵ 0 the mo-

nopolist’s expected profit conditional on facing a classical consumer and by Ŵ 1 the monopolist’s expected

profit conditional on facing a data-sensitive consumer. Hence, we have Ŵ = µŴ 1 + (1−µ)Ŵ 0. Note that

instead of offering γ̂, it is feasible to only offer the privacy option (q̂1, p̂1) to all consumer types. Under

this alternative contract the monopolist would obtain profits Ŵ 1 also from classical consumers. Hence,

optimality of γ̂ implies that Ŵ 1 ≤ Ŵ 0 Note moreover that if we decrease µ to µ′ = µ−∆µ with ∆µ > 0,

the privacy contract γ̂ remains feasible (even though no longer optimal) and yields the expected profit of

Ŵ −∆µ(Ŵ 1 − Ŵ 0), which is larger than Ŵ , because Ŵ 1 ≤ Ŵ 0. The optimal privacy contract under µ′

must therefore yield at least Ŵ . Thus, dŴ/dµ≤ 0.

To see (ii), recall from Lemma 5 and its proof that φ(θ̂b) = 0, ∂ φ/∂ θ ≤ 0. Moreover, from inspection,

∂ φ/∂ µ ≥ 0. By the implicit function theorem, it then follows that dθ̂b/dµ ≥ 0. To see the second

statement in (ii), recall that q̂1 = qβ(θ̂b). Thus, dq̂1/dµ = q′
β
(θ̂b) · dθ̂b/dµ, which is positive since both

factors are positive. Finally, recall from Proposition 2 that q̂0(θ ) = q̂1 for θ ∈ [θ ,θβ] and q̂0(θ ) = q̄0(θ )
for θ ∈ (θβ ,θ]. Since dq̂1/dµ≥ 0 and since q̄0(·) is independent of µ, it follows dq̂0(θ )/dµ≥ 0.

To see (iii), note that

û1(θ ) = (θ − θ )q̂1, and û0(θ ) =

(

(θ − θ )q̂1 if θ ≤ θβ
(θβ − θ )q̂1 +

∫ θ

θβ
q̂0(t)d t otherwise.

(32)

Taking derivatives with respect to µ yields

dû1(θ )
dµ

= (θ − θ )
dq̂1

dµ
, and

dû0(θ )
dµ

=

¨

(θ − θ ) · dq̂1/dµ if θ ≤ θβ
(θβ − θ ) · dq̂1/dµ otherwise,

(33)

where the last line follows, because

dû0(θ )
dµ

= (θβ − θ )
dq̂1

dµ
+ q̂1 dθ̂b

dµ
− q̂0(θβ)

dθ̂b

dµ
(34)

and because q̂0(θβ) = q̂1

Statement (iii) then directly follows as dq̂1/dµ≥ 0 by part (ii). �

23



References

Acquisti, A., Taylor, C.R., Wagman, L., 2016. “The economics of privacy.” Journal of Economic Literature

52 (2), 442-492.

Athey, S., 2014. Information, Privacy and the Internet: An Economic Perspective. Central Planning Bureau

(CPB) Netherlands Bureau for Economic Policy Analysis.

Becker, G. S. (1980), “Privacy and malfeasance: A comment”, Journal of Legal Studies 9(4), 823-826.

Calzolari, G., A. Pavan (2006). “On the Optimality of Privacy in Sequential Contracting,” Journal of

Economic Theory, 130(1), 168-204.

Choi, J., D. Jeon, B. Kim (2019). “Privacy and Personal Data Collection with Information Externalities,”

Journal of Public Economics, 173, 113-124.

Dworczak, P. (2020) “Mechanism Design with Aftermarkets: Cutoff Mechanisms”, Econometrica 88 (6),

2629-2661.

Eilat, R., K. Eliaz, and X, Mu (2021) “Bayesian Privacy”. Forthcoming in Theoretical Economics.

EU (2018) Consumer market study on online market segmentation through personalised pricing/offers in

the European Union Request for Specific Services 2016 85 02 for the implementation of Framework

Contract EAHC/2013/CP/04 Final report

Fudenberg, D. and Villas-Boas, J. M. (2006). “Behavior-based price discrimination and customer recog-

nition”, Handbook on Economics and Information Systems 1, 377–436.

Ichihashi, S. (2020), “Online Privacy and Information Disclosure by Consumers”, American Economic

Review 110, 569-595.

Jullien, B. (2000), “Participation Constraints in Adverse Selection Models”. Journal of Economic Theory

93, 1-47.

Lewis, T. and D. Sappington (1989), “Countervailing incentives in agency problems.” Journal of Economic

Theory 49, 294-313

Lin, T. (2020), “Valuing Intrinsic and Instrumental Preferences for Privacy”, mimeo Boston University

Questrom School of Business.

Mussa, M and S. Rosen (1978), “Monopoly and Product Quantity”, Journal of Economic Theory 18, 301-

317.

Tang, H. (2020), “The Value of Privacy: Evidence from Online Borrowers.”, mimeo HEC Paris.

Taylor, R., C. (2004). “Consumer Privacy and the Market for Customer Information,” RAND Journal of

Economics, 631-650.

Tsai, J., S. Egelman, L. Cranor and A. Acquisti (2011), “The Effect of Online Privacy Information on

Purchasing Behavior: An Experimental Study”, Information Systems Research 22 (2), 254-268.

24


	Introduction
	Related Literature
	The Model
	Publicly observable privacy types
	Unobservable privacy types
	Conclusion

