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Abstract

When multiple sources of information are available, any decision must take into account
their correlation. If information about this correlation is lacking, an agent may find it desirable
to make a decision that is robust to possible correlations. Our main results characterize the
strategies that are robust to possible hidden correlations. In particular, with two states and two
actions, the robustly optimal strategy pays attention to a single information source, ignoring all
others. More generally, the robustly optimal strategy may need to combine multiple information
sources, but can be constructed quite simply by using a decomposition of the original problem
into separate decision problems, each requiring attention to only one information source. An
implication is that an information source generates value to the agent if and only if it is best
for at least one of these decomposed problems.

∗We are grateful to Nageeb Ali, Marc Henry, Pietro Ortoleva, and Shamim Sinnar for valuable comments.
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1 Introduction

During the COVID-19 pandemic, testing has been essential in effectively monitoring the trans-
mission of the virus. Two prevalent diagnostic tests are the molecular and antigen tests, which
differ in checking the virus’s genetic materials or specific proteins.1 It might then be appealing
to use both tests.2

In order to correctly interpret the joint pair of results from the two tests, knowledge of
the correlation is crucial. For example, conditional on the molecular test producing a false
negative, what is the probability that the antigen test also yields a false negative? Although the
likelihoods of false positives and false negatives for each test are well-understood, data regarding
the correlations between these two tests is much more scarce.3 In the presence of such limited
information about these correlations, how does a decision maker make use of the results of both
tests?

To answer this question, consider a health authority who must use the results of these two
tests to make a decision of whether to recommend quarantine or not to a potentially infected
patient. Due to limited information about the correlations of these two tests, the authority
evaluates policies according to their worse case guarantee among all possible correlations. Our
main results imply that it is never beneficial to base this quarantine decision on the results of
both tests. In this regard, conducting both tests is never helpful in decision problems involving
a simple choice between two actions. In contrast, if the decision problem involves more than
three actions, such as designing a full treatment plan, then using the results from both tests
may robustly improve the agent’s payoff.

Aside from the COVID example, there are many other settings in which an agent makes
decisions based on multiple information sources where data regarding the correlations may be
limited. For example, a consumer can acquire information from different review platforms
before buying a product, a graduate student often seeks advice from multiple faculty members
when pursuing a new project, and an investor often solicits the recommendations of different
financial consultants. We study a general model where an agent confronts a decision problem
after observing signals generated from distinct information sources. To study the impact of
robustness concerns regarding correlations, we assume that the agent fully understands each
information source in isolation but has no knowledge about the correlations between different
information sources. We then study the robustly optimal strategy of such an agent who chooses
a decision plan that maximizes expected payoff with respect to the worst possible correlation.

Our main results characterize the set of all robustly optimal strategies. The simplest char-
acterization occurs when we have two states and two actions. In that case, to guard against
hidden correlation one must resort to a rather extreme measure: the optimal robust strategy
involves paying attention to a single information source, ignoring all others.

In more general settings, this extreme measure is no longer necessary and it can be beneficial
to use multiple information sources. However, we show a method of finding robust strategies that

1For more information regarding these tests, see for example https://www.fda.gov/health-professionals/
closer-look-covid-19-diagnostic-testing.

2Taking both tests is indeed recommended by FDA: “(for antigen test) positive results are usually highly accurate,
. . . negative results may need to be confirmed with a molecular test." Some medical providers always require one to
take both tests.

3See for example Dinnes et al. [2020].
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consists of decomposing a decision problem into subproblems, each requiring the use of a single
information source. This shows the precise (and restricted) way in which information sources
should be merged. In general, this decomposition can depend on the information sources, but
we also show that, with two states, there is a canonical decomposition of a decision problem
into binary action problems that is independent of information sources.

2 Related Literature

Our paper provides practical robust strategies to deal with possible hidden correlation. The
practice of finding robust strategies dates back at least to Wald [1950] and our modeling of
information structures follows that of Blackwell [1953].

Our way of modeling robustness, by considering the worst case scenario, also is in line with
the literature on ambiguity aversion, going back to Gilboa and Schmeidler [1989]. More recently,
Epstein and Halevy [2019] run an experiment that documents ambiguity aversion on correlation
structures.

More closely related, some papers consider strategies that are robust to unknown correla-
tions in different contexts. In particular, Carroll [2017] studies a multi-dimensional screening
problem, where the principal knows only the marginals of the agent’s type distribution, and
designs a mechanism that is robust to all possible correlation structures. With similar robust-
ness concerns regarding the correlations of values between different bidders, He and Li [2020]
study an auctioneer’s robust design problem when selling a single indivisible good to a group of
bidders.

Another thread of related literature studies how a decision maker combines forecasts from
multiple sources. Levy and Razin [2020a] consider a model where the decision maker can consult
multiple forecasts (posterior beliefs), but is uncertain about the information structures that
generate these forecasts. Levy and Razin [2020b] study a maximum likelihood approach of
combining forecasts, and derive a novel result that only extreme forecasts will be used. A key
distinction is that the aforementioned mentioned papers consider robust optimality using an
interim approach, while we study the decision maker’s robustly optimal ex-ante decision plan.

3 Model

An agent faces a decision problem Γ ≡ (Θ, ν, A, %) with finite state space Θ, prior ν ∈ ∆Θ,
finite action space A, and utility function % : Θ × A → R. To later simplify notation, define
u : A → R|Θ| such that u(a) =

(
ν(θ)%(θ, a)

)
θ∈Θ

. Since (A, u) is the only relevant part, we
simply call (A, u) a decision problem.4

A marginal experiment Pj : Θ → ∆Yj maps each state to a distribution over some finite
signal set Yj . The agent can observe the realizations of multiple marginal experiments {Pj}mj=1,
but does not have detailed knowledge of the joint. To simplify notation, let Y = Y1 × · · · × Ym
denote the set of possible observations the agent can see. Thus, the agent conceives of the

4While it is redundant to include A, it helps in simplifying notations later.
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following set of joint experiments:

P(P1, ..., Pm) =

P : Θ→ ∆(Y) :
∑
−j

P (y1, . . . , ym|θ) = Pj(yj |θ) for all θ, j, yj

 .

A strategy for the agent is a mapping σ : Y → ∆(A), and the set of all strategies is denoted
by Σ. The agent’s problem is to maximize his/her expected utility robustly among the set of
possible joint experiments (i.e. considering the worst possible joint experiment):5

V (P1, . . . , Pm; (A, u)) := max
σ∈Σ

min
P∈P(P1,...,Pm)

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(σ(y1, . . . , ym); θ).

We call a solution to the problem a robustly optimal strategy.
Clearly if only one experiment P : Θ → ∆(Y ) is considered (m = 1), V (P ) is the same as

the classical value of a Blackwell experiment, and a robustly optimal strategy is just an optimal
strategy for a Bayesian agent.

3.1 The Payoff Polyhedron

For each decision problem (A, u), define the associated polyhedron containing all payoff vectors
that are either achievable or weakly dominated by some mixed action:6

H(A, u) = co{u(a) : a ∈ A} − R|Θ| ⊂ R|Θ|.

The following figure depicts an example of H(A, u) when |Θ| = 2.

θ = 2

θ = 1

u(a4)

u(a3)

u(a2)

u(a1)

H(A, u)

Figure 1: The shaded area represents H(A, u)

We define the following order on decision problems.

5Whenever there is no confusion about the decision problem, we omit (A, u) from the argument of V .
6Here and in what follows, whenever + and − are used in the operations of sets, they denote the Minkowski sum

and difference.
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Definition 1. A decision problem (A, u) contains another decision problem (A′, u′) if

H(A′, u′) ⊆ H(A, u).

Two decision problems (A, u) and (A′, u′) are equivalent if they contain each other.

3.2 Composition of Decision Problems

One of the key ideas that we will use in our analysis is how a decision problem can be broken
down in a way that allows us to find robust strategies. In order to do this, we now define a
central operation of this paper: the composition of decision problems.

Definition 2. Given a finite collection of decision problem (A1, u1), ..., (An, un), their compo-
sition, denoted by

⊕k
`=1(A`, u`), is a decision problem with action space A = (A1 × . . . × Ak)

and u(a) =
∑k
`=1 u`(a`).

Thus, the composition of decision problems is a single decision problem that has a specific
additively separable structure. We will see later that this structure facilitates the search for
robust strategies.

With composition of decision problems defined, we can define its inverse operation:

Definition 3. A decision problem (A, u) admits a decomposition {(A`, u`)}k`=1 if (A,U) is
equivalent to

⊕k
`=1(A`, u`).

Example 1. Consider two decision problems A1 = {I1, N1}, u1(I1) = (2, 0), u1(N1) = (0, 1)

and A2 = {I2, N2}, u2(I2) = (0, 2), u2(N2) = (1, 0). The associated polyhedra are the blue/red
shaded areas in Figure 2(a). Their composition (A1, u1)

⊕
(A2, u2) consists of four actions,

which are depicted in Figure 2(b).
Now we consider a three-action decision problem A = {a1, a2, a3} with u(a1) = (3, 0), u(a2) =

(2, 2), and u(a3) = (0, 3). Notice that H(A, u) = H((A1, u1)
⊕

(A2, u2)) as the shaded area in
Figure 2(b), so (A, u) is equivalent to (A1, u1)

⊕
(A2, u2). Therefore, (A1, u1), (A2, u2) is a

decomposition of (A, u).

4 Binary State Decision Problems

In this section, we study the agent’s decision problem while restricting attention to binary
state decision problems (i.e. |Θ| = 2). Binary state environments yield nice properties such
as a natural monotone ordering on the set of undominated actions, and the existence of the
Blackwell minimum element in the set P(P1, ..., Pm). These properties allow us to provide a
clean and simple characterization to the agent’s robustly optimal strategy. The insights from
the binary state setup will be extended to general state decision problems in Section 5.

4.1 Nature’s problem

Most of our focus will be on the robustly optimal strategies for the agent, but it will be helpful
to first understand Nature’s problem, of choosing the worst possible correlation structure.
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θ = 2

θ = 1I1

N1

I2

N2

(a) Polyhedra induced by (A1, u1) and (A2, u2)

θ = 2

θ = 1

I1 +N2

I1 + I2

N1 + I2

N1 +N2

(3,0)

(2,2)

(0,3)

H(A, u)

(b) Polyhedron induced by (A1, u1)
⊕

(A2, u2)

Figure 2

First note that since the objective function is linear in both σ and P , and the choice sets of
σ and P are both convex and compact, the minimax theorem implies that

V (P1, . . . , Pm) = min
P∈P(P1,...,Pm)

max
σ∈Σ

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym)).

That is, the value of the agent’s maxmin problem equals the value of a problem where Nature
chooses an experiment in set P(P1, . . . , Pm) to minimize a Bayesian agent’s value in the decision
problem.

An immediate observation is that if there exists a Blackwell least informative element in
the set P(P1, . . . , Pm), it would solve Nature’s problem—any other information structure would
yield a higher value for the agent. Notice that every experiment in P(P1, . . . , Pm) must be more
informative than every Pj . By Proposition 16 in Bertschinger and Rauh [2014], the Blackwell
order defines a lattice on the set of experiments under binary state. In particular, there is a
Blackwell supremum—the least informative experiment that Blackwell dominates every Pj . The
only question that remains is whether this Blackwell supremum, denoted by P (P1, . . . , Pm), can
be expressed as a joint distribution with marginals P1, . . . , Pm. This is proved in the following
lemma.

Lemma 1. For any collection of experiments {Pj}mj=1, P (P1, . . . , Pm) ∈ P(P1, . . . , Pm).

Proof. See Appendix A.1.

Immediately from the lemma, we have the following proposition.

Proposition 1. For any decision problem (A, u),

V (P1, ..., Pm) = V (P (P1, ..., Pm))

where P (P1, ..., Pm) is the Blackwell supremum of experiments {P1, ..., Pm}.

6



Thus, the agent’s value from using a robust strategy is the same as the value she would
obtain if she faced a single experiment—the Blackwell supremum of all marginal experiments.
Moreover, the Blackwell supremum depends only on the marginal experiments, and not on the
particular decision problem.

4.2 Binary Action Problems

While Proposition 1 provides a useful characterization of the agent’s value, it still does not
answer our main question: what are the robust strategies? This is because a strategy may be
a best response to the Blackwell supremum P̄ (P1, . . . , Pm), without being an robustly optimal
strategy. In particular, the Blackwell supremum typically specifies a probability of zero for many
signal realizations, so that any action is a best response to those signal realizations. But if we
fix a strategy that chooses a particularly bad action after such a signal realization, it might be
a best response for Nature to make it occur with positive probability. So we now turn to the
question of finding the optimal robust strategies.

Consider any decision problem (A, u). One simple strategy that can always be used is to
choose exactly one experiment Q ∈ {P1, . . . , Pm} and play the optimal strategy that uses that
information alone, ignoring the signal realizations of all other experiments. By choosing Q

optimally, the agent achieves an ex-ante expected payoff of maxj=1,...,n V (Pj ; (A, u)), regardless
of the particular actual joint experiment P ∈ P(P1, . . . , Pm). Theorem 1 shows that if (A, u) is
a binary action problem, this is indeed an optimal robust strategy.

Theorem 1. If |A| = 2, then

V (P1, . . . , Pm) = V (P̄ (P1, . . . , Pm)) = max
j=1,...,m

V (Pj).

Proof. By Proposition 1, it suffices to show that V (P (P1, ..., Pm)) = maxj=1,...,m V (Pj).
For any experiment P : Θ→ ∆Y , let

ΛP =

{
λ : Θ→ ∆A|λ(a|θ) =

∑
y

σ(a|y)P (y|θ)

}
⊂ R2.

The set belongs to R2 because |A| = 2 so λ(·|θ) can be represented by a number in [0, 1]. One can
interpret ΛP as the feasible state-action distribution generated by experiment P . Geometrically,
ΛP is a Zonotope, as depicted in Figure 3(a).

By Proposition 16 in Bertschinger and Rauh [2014], an experiment P is the Blackwell supre-
mum of P1, . . . , Pm if and only if

ΛP = cov (ΛP1 ∪ · · · ∪ ΛPm) (1)

Now, the maximum utility achievable given Blackwell experiment P (P1, . . . , Pm) is V (P ) =

maxλ∈ΛP

∑
a,θ u(θ, a)λ(a|θ). Since the maximand is linear in λ, the maximum is achieved at an

extreme point of ΛP . By (1), an extreme point of ΛP must belong to some ΛPj
. Hence, we have

V (P ) = max
λ∈ΛPj

∑
a,θ

u(θ, a)λ(a|θ) = max
j=1,...,m

V (Pj).
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λ(·|θ = 1)

(0,0) λ(·|θ = 1)

(1,1)

(a) ΛP represented as a Zonotope

(0,0)

ΛP1

ΛP2

ΛP = cov(ΛP1 ∪ ΛP2)

u

(b) Graphical representation of ΛP1 , ΛP2 , and ΛP

Figure 3

The idea of Theorem 1 can be visualized in Figure 3(b) for two marginal experiments. Each
marginal Blackwell experiment P1, P2 can be represented by ΛP1

,ΛP2
, the set of feasible state-

action distribution generated by the experiment. The corresponding ΛP for Blackwell supremum
P is the convex hull of ΛP1 ∪ ΛP2 . Since the utility function is linear with respect to λ ∈ ΛP ,
the maximum is achieved at an extreme point, which belongs to either ΛP1

or ΛP2
, and thus

can be achieved by using a single marginal experiment.

4.3 General Decision Problems

In light of Theorem 1, a natural question arises of whether maxj=1,...,m V (Pj ; (A, u)) is always
the agent’s optimal value for all decision problems (A, u). The example below shows that in
general this does not hold.

Example 2. Suppose there are two assets whose outputs depend on an unknown state θ ∈ {0, 1}.
The output vectors are given by X1 = (2,−1) and X2 = (−1, 2) where the first element denotes
the output from state 1. An investor can choose whether or not to invest one unit in each of
the assets, and her payoff is the sum of outputs from each asset she invested. Notice that this
decision problem is exactly the composition (A1, u1)

⊕
(A2, u2), where (A`, u`) corresponds to

the decision problem of investing asset `.
The investor holds equal prior on states and has access to two experiments P1, P2:

y1 = 1 y1 = 0

θ = 1 0.9 0.1

θ = 0 0.5 0.5

P1

y2 = 1 y2 = 0

θ = 1 0.5 0.5

θ = 0 0.1 0.9

P2

By paying attention to one experiment, for example P1, the optimal strategy is to invest in
both asset if y1 = 1 and only asset 2 if y1 = 0. The expected payoff from this strategy is thus
1
2 [0.9 · 1 + 0.1 · (−1)] + 1

2 [0.5 · 1 + 0.5 · 2] = 1.15.
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Instead suppose the investor uses the following strategy that makes use of the information of
both experiments. She considers investment decision of the two assets separately: in deciding
whether to invest in asset 1, she only looks at experiment 1 and invests iff y1 = 1. Similarly
when deciding whether to invest in asset 2, she looks at experiment 2 and invests iff y2 = 0.
This strategy can be written as:

y2 = 1 y2 = 0

y1 = 1 Invest in asset 1 Invest in both
y1 = 0 No investment Invest in asset 2

This strategy guarantees an expected output of 1
2 [0.9 · 2 + 0.1 · 0] + 1

2 [0.5 · (−1) + 0.5 · 0] = 0.65

from each asset regardless of the correlations, which gives a total output of 1.3 > 1.15.

The strategy constructed in Example 2 is in fact a robustly optimal strategy. A special struc-
ture here is that the decision problem is a composition of two binary action decision problems.
This allows the agent to optimally use only one for each asset, which guarantees robustness.
But different experiments are used for different assets, which provides a payoff greater than
maxj=1,...,m V (Pj , (A, u)). This idea extends to composition of any finite collection of binary
action problems.

4.3.1 Composition of binary action problems

Slightly more generally, consider a finite collection of binary action problems, (A1, u1), . . . , (Ak, uk),
and consider the composition of these problems (Ā, Ū) :=

⊕k
`=1(A`, u`). In this decision prob-

lem, a simple, robust strategy that an agent can always use is to choose exactly one experiment
Q` ∈ {P1, . . . , Pm} for every task ` and play the optimal strategy that uses that information
alone, ignoring the signal realizations of all other experiments. Furthermore, by choosing this Q`
optimally for each task `, regardless of the actual joint experiment P ∈ P(P1, . . . , Pm), the agent
can achieve a total ex-ante utility of

∑k
`=1 maxj=1,...,m V (Pj , (A`, u`)), which is typically strictly

greater than maxj=1,...,m V (Pj , (Ā, Ū)). Moreover, the following lemma shows that indeed this
is the best that the agent can do in (Ā, Ū).

Lemma 2. Let (A1, u1), . . . , (Ak, uk) be a finite collection of binary action problems. Then

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj ; (A`, u`)).

Moreover, let σ` : Y → ∆A` be a robustly optimal strategy for decision problem (A`, u`).
Then σ : Y → ∆(A1 × ...×Ak) defined by

σ(y1, ..., ym) =

(
σ`(y1, ..., ym)

)k
`=1

for all y1, ..., ym (2)

is a robustly optimal strategy for decision problem
⊕k

`=1(A`, u`).

Proof. Using Proposition 1, V
(
P1, . . . , Pm;

⊕k
`=1(A`, u`)

)
= V

(
P (P1, . . . , Pm);

⊕k
`=1(A`, u`)

)
.
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By Theorem 1, we then have:

V

(
P (P1, . . . , Pm);

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

V (P (P1, . . . , Pm); (A`, u`)) =

k∑
`=1

max
j=1,...,m

V (Pj , (A`, u`)).

To see the second statement, for any P ∈ P(P1, ..., Pm), the agent’s payoff from strategy σ is

∑
θ∈Θ

∑
y1,...,ym

P (y1, ..., ym|θ)
k∑
`=1

u`(σ`(y1, ..., ym); θ) =

k∑
`=1

∑
θ∈Θ

∑
y1,...,ym

P (y1, ..., ym|θ)u`(σ`(y1, ..., ym); θ)

≥
k∑
`=1

V (P1, ..., Pm; (A`, u`))

= V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)

Since σ guarantees the maxmin value regardless of P , it is a robustly optimal strategy.

Lemma 2 provides a simple solution to any problem that can be expressed as a composition
of binary action problem: For each binary action problem, one can derive a robustly optimal
strategy by paying attention to the best marginal experiment and best responding to it. Then
assembling these strategies as in (2) yields a robustly optimal strategy for the composite problem.

4.3.2 Decomposition into binary action problems

The analyses in the previous section give some hint on how to find robustly optimal strate-
gies for general decision problems. If a given decision problem (A, u) admits a decomposition
(A1, u1), . . . , (Ak, uk) where each (A`, u`) is a binary action problem, then it is immediately
clear by Lemma 2 and H (A, u) = H

(⊕k
`=1(A`, u`)

)
that

V (P1, . . . Pm; (A, u)) = V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj ; (A`, u`)). (3)

Moreover, the robustly optimal strategy for
⊕k

`=1(A`, u`), defined in (2), allows us to charac-
terize robustly optimal strategies for (A, u) as by the following lemma.

Lemma 3. Suppose (A, u) is equivalent to
⊕k

`=1(A`, u`), and σ : Y → ∆(A1 × . . . × Ak) is a
robustly optimal strategy for

⊕k
`=1(A`, u`), then there exists σ∗ : Y → ∆A such that

u(σ∗(y)) ≥
k∑
`=1

u`(σ`(y)), for all y ∈ Y.

Moreover, any such σ∗ is a robustly optimal strategy for (A, u).

Proof. For each y,
∑k
`=1 u`(σ`(y)) ∈ H

(⊕k
`=1(A`, u`)

)
= H(A, u). So there exists σ∗(y) such

that u(σ∗(y)) ≥
∑k
`=1 u`(σ`(y)). Moreover, since σ∗ guarantees a higher value in (A, u) than
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θ = 2

(0,0) θ = 1

u∗1(1)

u∗2(1)

u∗3(1)

u(a4)

u(a3)

u(a2)

u(a1)

H(A, u)

(a) Canonical decomposition

θ = 2

(0,0) θ = 1

u∗1(1)

u∗3(1)

H(A, u)

(b) Nonconsecutive sum lies in the interior

Figure 4

σ in
⊕k

`=1(A`, u`), and V (P1, . . . Pm; (A, u)) = V
(
P1, . . . , Pm;

⊕k
`=1(A`, u`)

)
, σ∗ is a robustly

optimal strategy for (A, u).

If a decision problem (A, u) admits a decomposition into binary action problems, Lemma 2
and Lemma 3 characterize a set of robustly optimal strategies. However, it is not immediately
clear what kind of decision problem admits a decomposition into binary action problems. In-
terestingly, we show by direct construction that, any decision problem admits a decomposition
into binary action problems.

Given any decision problem (A, u), we start with some normalization to simplify exposition.
First we remove all weakly*-dominated actions,7 so that actions can be ordered as

u(a1; θ1) < u(a2; θ1) < · · · < u(an; θ1),

u(a1; θ2) > u(a2; θ2) > · · · > u(an; θ2).

Moreover, by adding a constant vector, we can normalize u(a1) = (0, 0).

Definition 4. Given a decision problem (A, u), the canonical decomposition of (A, u) is the
following collection of n− 1 binary action problems (A∗1, u

∗
1), . . . , (A∗n−1, u

∗
n−1):

A∗` := {0, 1} , u∗` (0) = (0, 0), u∗` (1) = u(a`+1)− u(a`).

The canonical decomposition can be visualized in Figure 4 for an example with four actions.
To see that a canonical decomposition is a decomposition, first notice that for any i = 1, ..., n,
u(ai) =

∑i−1
`=1 u

∗
` (1) +

∑n−1
`=i u

∗
` (0), so H(A, u) ⊂ H

(⊕n−1
`=1 (A∗` , u

∗
` )
)
. For the other direction,

we need to show that for any δ ∈ {0, 1}n−1,
∑n−1
`=1 δ`u

∗
` (1) ∈ H(A, u). The idea is that any

nonconsecutive sum of u∗` (1) always lies in the interior of H(A, u), as illustrated in the example
in Figure 4(b).

Lemma 4. The canonical decomposition is a decomposition.
7An action a ∈ A is weakly*-dominated if there exists α ∈ ∆A such that u(a) ≤ u(α).
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Proof. See Appendix A.2.

Finally Lemma 2, Lemma 3, and Lemma 4 immediately imply Theorem 2.

Theorem 2. Let (A∗1, u
∗
1), . . . , (A∗n−1, u

∗
n−1) be the canonical decomposition of (A, u), and σ∗`

be a robustly optimal strategy for (A∗` , u
∗
` ). Then

1. V (P1, . . . , Pm; (A, u)) =
∑n−1
`=1 maxj=1,...,m V (Pj ; (A∗` , u

∗
` )).

2. There exists σ∗ : Y → ∆A such that

u(σ∗(y)) ≥
n−1∑
`=1

u∗` (σ
∗
` (y)), for all y.

Moreover, any such σ∗ is a robustly optimal strategy for (A, u).

Theorem 2 allows us to construct a robustly optimal strategy for any decision problem
(A, u) in two steps: 1. For each (A∗` , u

∗), only one (the best) marginal experiment needs to
be considered, and an robustly optimal strategy σ∗` only need to be measurable with respect
to this experiment; 2. For each realization y, pick a (mixed) action σ(y) ∈ ∆(A) such that
u(σ∗(y)) ≥

∑n−1
`=1 u

∗
` (σ
∗
` (y)).

The theorem features two interesting corollaries.

Corollary 1. For any decision problem (A, u) with the canonical decomposition (A∗1, u
∗
1), . . .,

(A∗n−1, u
∗
n−1) and any collection of marginal experiments {Pj}mj=1, for any j,

V (P1, ..., Pm; (A, u)) = V (P−j ; (A, u))

if and only if V (Pj ; (A∗` , u
∗
` )) ≤ maxj′ 6=j V (Pj′ ; (A∗` , u

∗
` )) for all ` = 1, ..., n− 1.

Corollary 1 describes when an additional marginal experiment robustly improves the agent’s
value, which happens if and only if it outperforms all other marginal experiment in at least one
of the canonically decomposed problem.

Corollary 2. For any decision problem (A, u) with |A| = n, and any collection of experiments
{Pj}mj=1, there exists a subset of marginal experiments {Pj}j∈S⊂{1,...,m} with |S| ≤ n− 1, such
that

V (P1, · · · , Pm; (A, u)) = V ({Pj}j∈S ; (A, u)).

Corollary 2 implies that in any n-action decision problem, it is not beneficial to use more
than n− 1 experiments. Theorem 1 can be viewed as a special case where n = 2.

5 General State Decision Problems

We now turn our attention to general decision environments beyond the simple binary state
decision setup. The building blocks of the binary state results are Theorem 1 and the idea of
decomposition. The former shows that with binary action, the optimal strategy is to simply use
one marginal experiment, and the latter allows us to tackle any binary state decision problem
by decomposing it into binary action ones. Unfortunately, when |Θ| > 3, Theorem 1 no longer
holds, as can be seen in Example 3. Nevertheless, the idea of decomposition remains. We show
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that a robustly optimal strategy takes the following form: there exists someweak decomposition
of the decision problem into k distinct decision problems A1, . . . , Ak, each of which we call a
task. In each of these tasks, A`, the agent chooses an optimal strategy, σ`, that uses only
the information from one single experiment, say Yb` , among those experiments available to the
agent, Y1, . . . , Ym. The agent then aggregates these “decomposed strategies” into a strategy for
the original decision problem in a natural way. To state our formal results, we first need a
modified definition of a decopmosition.

Definition 5. A decision problem (A, u) admits a weak decomposition {(A`, u`)}k`=1 if (A,U)

contains
⊕k

`=1(A`, u`).

Our main theorem of Section 5 is the following.

Theorem 3. Fix a decision problem (A, u) and Blackwell experiments P1, . . . , Pm. Then for
all weak decompositions ((A1, u1), . . . , (Ak, uk)) of (A, u),

V (P1, . . . , Pm; (A, u)) ≥
k∑
`=1

max
j=1,...,m

V (Pj ; (A`, u`)). (4)

Moreover, there exists a weak decomposition ((A∗1, u
∗
1), . . . , (A∗k, u

∗
k)) of (A, u) for which

V (P1, . . . , Pm; (A, u)) =

k∑
`=1

max
j=1,...,m

V (Pj ; (A∗` , u
∗
` )). (5)

Notice that (5) of Theorem 3 can be seen as a generalization of Theorem 2 from the binary
state environment. In particular, when the state space is binary, we showed in the previous
section that by representing a decision problem equivalently as

⊕n−1
`=1 (A∗` , u

∗
` ) corresponding

to the canonical decomposition, indeed the constructed robustly optimal strategy in the latter
decision problem guarantees the payoff

∑n−1
`=1 maxj=1,...,n V (Pj , (A

∗
` , u
∗
` )). Moreover, the first

part of the above theorem clarifies that this is indeed the optimal decomposition in the sense
that for all other weak decompositions ((A1, u1), . . . , (Ak, uk)) of (A, u),

k∑
`=1

max
j=1,...,m

V (Pj , (A`, u`)) ≤
k∑
`=1

max
j=1,...,m

V (Pj , (A
∗
` , u
∗
` )).

However, a key difference with the binary state setting is that the optimal weak decomposition
that underlies (5) need not be a decomposition, i.e. H

(⊕k
`=1(A`, u`)

)
( H(A, u).

Example 3. Suppose that there are three states θ1, θ2, θ3. The marginal experiments are both
binary with respective signals x1, x2, y1, y2, and given by Table 1.

Intuitively, experiment PX tells the agent whether the state is θ3 or not and experiment PY
tells the agent whether the state is θ1 or not. Of course, upon observing both experiments, the
agent obtains perfect information and so in any decision problem, the agent obtains the perfect
information payoff.
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PX

x1 x2
θ = 1 1 0
θ = 2 1 0
θ = 3 0 1

PY

y1 y2
θ = 1 1 0
θ = 2 0 1
θ = 3 0 1

Table 1

Let A = {1, 0} and suppose that the utilities are as follows:

u(a = 1, θ) = 1 (θ ∈ {θ1, θ3})− 1 (θ = θ2) ,

u(a = 0, θ) = 0.

Suppose that the agent begins with a prior that is uniform. Notice that V (PX , PY , (A, u)) = 2
3 ,

which is the perfect information payoff.
What is the optimal weak decomposition in this decision problem? Define

A1 := {0, 1}, u1(0, ·) = (0, 0, 0), u1(1, ·) = (0,−1, 1);

A2 := {0, 1}, u2(0, ·) = (0, 0, 0), u2(1, ·) = (1,−1, 0).

It is easy to see that (A1, u1) and (A2, u2) form a weak decomposition of (A, u) that is not a
decomposition. To see that this is indeed an optimal weak decomposition, note that PX is better
than PY in decision problem (A1, u1) while PY is better than PX in decision problem (A2, u2).
Moreover, V (PX ; (A1, u1)) = V (PY ; (A2, u2)) = 1

3 and thus,

V (PX , PY ; (A, u)) = V (PX ; (A1, u1)) + V (PY ; (A2, u2)) =
2

3
.

As perhaps Theorem 3 already suggests, there is a way to characterize robustly optimal
strategies in terms of weak decompositions. We have the following characterization of all robustly
optimal strategies.

Corollary 3. Fix (A, u) a decision problem and P1, . . . , Pm experiments. Let σ : Y → ∆(A) be
a strategy. Then the following are equivalent:

1. σ is robustly optimal;

2. There exists some weak decomposition ((A1, u1), . . . , (Ak, uk)) of (A, u) and some σ` ∈
B∗(P1, . . . , Pm, (A`, u`)) for each ` = 1, 2, . . . ,m such that

u(σ(y)) ≥
k∑
`=1

u`(σ`(y))

for all y ∈ Y.
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5.1 Proof of Theorem 3

Again the same ideas that are central to the binary state analysis are at the heart of Theorem 3.
Let (A1, u1), . . . , (Ak, uk) be a finite collection of decision problems and consider again the richer
decision problem formed by composing these decision problems,

⊕k
`=1(Ak, uk).

Again this decision problem admits a simple and natural strategy that is robust in the sense
that it attains the same constant ex-ante payoff regardless of the actual correlations between the
available experiments P1, . . . , Pm. For every task A`, choose an optimal pure strategy, σ` that
is optimal among all strategies that only uses the signal realizations of exactly one experiment.
Let σ = (σ1, . . . , σk) be the strategy in

⊕k
`=1(A`, u`) that plays σ` in each task (A`, u`).

Because each agent perfectly understands the signal distributions of each marginal exper-
iment, such a strategy attains a payoff of maxj=1,...,m V (Pj , (A`, u`)) in each task (A`, u`).
Moreover, because in

⊕k
`=1(A`, u`), payoffs are additive separable across tasks, this implies

that σ achieves a payoff of
∑k
`=1 maxj=1,...,m V (Pj , (A`, u`)) for all P ∈ P(P1, . . . , Pm). This is

summarized in the following claim.

Claim 1. The strategy σ achieves the ex-ante payoff of
∑k
`=1 maxj=1,...,m V (Pj , A`) in the

decision problem
⊕k

`=1(A`, u`) for all P ∈ P(P1, . . . , Pn).

How do we make use of this observation for the construction of a robust strategy in the
original decision problem (A, u)? If (A1, u1), . . . , (Ak, uk) is a weak decomposition of (A, u) so
that the decision problem

⊕k
`=1(A`, u`) is contained in the decision problem (A, u), then the

robust strategy σ constructed above in Claim 1 for the decision problem
⊕k

`=1(A`, u`) is weakly
dominated by some strategy σ∗ in the decision problem (A, u). Constructing such a strategy is
simple since for every signal realization y, we choose some σ∗(y) such that

u(σ∗(y)) ≥
k∑
`=1

u`(σ(y)).

Because σ∗ weakly dominates σ, σ∗ guarantees at least
∑k
`=1 maxj=1,...,m V (Pj , (A`, u`)) for all

possible joint experiments. This proves the following claim and the first part of Theorem 3.

Claim 2. The strategy σ∗ guarantees at least a payoff of
∑k
`=1 maxj=1,...,m V (Pj , (A`, u`)) in

the decision problem (A, u) for every P ∈ P(P1, . . . , Pn). Consequently,

V (P1, . . . , Pm, (A, u)) ≥
k∑
`=1

max
j=1,...,m

V (Pj , (A`, u`)).

5.1.1 Completing the Proof of Theorem 3

To complete the proof of Theorem 3, it remains to show that there exists a weak decomposition
that makes Equation 4 an equality. We now prove that this is indeed the case.

A standard duality argument from linear programming provides the key argument. Because
of the first part of the theorem, it is sufficient to show that there exists some decomposition
((A1, u1), . . . , (Ak, uk)) of (A, u) such that∑

`=1,...,k

max
j=1,...,m

V (Pj , (A`, u`)) ≥ V (P1, . . . , Pm, (A, u)).
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To see this, consider a robustly optimal strategy σ∗ : Y → ∆(A) such that

V (P1, . . . , Pm, (A, u)) = min
P∈P(P1,...,Pm)

∑
θ∈Θ

∑
y∈Y

P (y | θ)u(σ∗(y), θ).

Then by considering the dual of the above linear program, we obtain:

V (P1, . . . , Pm, (A, u)) = max
φ1:Y1→R|Θ|,...,φm:Ym→R|Θ|

m∑
j=1

∑
θ∈Θ

∑
yj∈Yj

Pj(yj | θ)φj(yj , θ)

s.t.
m∑
j=1

φj(yj , θ) ≤ u(σ∗(y), θ) for all (θ,y) ∈ Θ×Y. (6)

Let φ∗1, . . . , φ∗m be solutions to the above optimization problem. Define (A`, u`) to be the de-
cision problem consisting of actions indexed by y` ∈ Y` where action ay` yields the utility
u`(ay` , θ) = φ∗` (y`, θ). Because φ∗1, . . . , φ∗m satisfy the constraints (6), it is immediate that
((A1, u1), . . . , (Ak, uk)) form a weak decomposition of (A, u).

Moreover, in every task (A`, u`), because the strategy that plays action ay` whenever the
realized signal in experiment Y` is y` exactly achieves a payoff of

∑
θ∈Θ

∑
y`∈Y`

P`(y` | θ)φ∗` (y`, θ),

max
j=1,...,m

V (Pj , (A`, u`)) ≥ V (P`, (A`, u`)) ≥
∑
θ∈Θ

∑
y`∈Y`

P`(y` | θ)φ∗` (y`, θ).

Summing across all ` = 1, 2, . . . , n,

m∑
`=1

max
j=1,...,m

V (Pj , (A`, u`)) ≥
m∑
`=1

∑
θ∈Θ

∑
y`∈Y`

P`(y` | θ)φ∗` (y`, θ) = V (P1, . . . , Pm, (A, u)).

This completes the proof.
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A Appendix

A.1 Proof of Lemma 1

Proof. Consider a collection of experiments {Pj}mj=1 and their Blackwell supremum P : Θ →
∆Z. Since P Blackwell dominates Pj for all j, there exists garblings gj : Z → ∆(Ym), j =

1, ...,m, such that for all yj ∈ Yj ,

Pj(yj |θ) =
∑
z∈Z

gj(yj |z)P (z|θ).

Construct the following experiment P̃ : Θ→ ∆(Y1 × . . .× Ym):

P̃ (y1, . . . , ym|θ) =
∑
z∈Z

m∏
j=1

gj(yj |z)P (z|θ). (7)

Notice that
∑
−j P̃ (y1, . . . , ym|θ) =

∑
z∈Z gj(yj |z)P (z|θ) = Pj(yj |θ), so P̃ ∈ P(P1, . . . , Pm).

Moreover, (7) implies P̃ is a garbling of P so P Blackwell dominates P̃ . From the definition of
Blackwell supremum, P̃ Blackwell dominates P , so P = P̃ ∈ P(P1, . . . , Pm).

A.2 Proof of Lemma 4

Proof. We first show that (A∗1, u
∗
1), . . . , (A∗n−1, u

∗
n−1) is a weak decomposition. Suppose other-

wise so that there exists some (a∗1, . . . , a
∗
n) for which u∗ := u(a∗1) + · · · + u(a∗n) /∈ H(A, u). By

Corollary 11.4.2 of Rockafellar [1970], there exists λ ∈ R2 \ {0} such that

λ · u∗ > sup
v∈H(A,u)

λ · v. (8)

Note that λ ≥ 0 since otherwise supv∈H(A,u) λ · v = +∞.

u(a4)

u(a3)

u(a2)

u(a1)

u∗

H(A, u)

Figure 5

Given the canonical decomposition, for any `′ > `,

λ · u∗` (1, ·) ≤ λ · u∗` (0, ·) =⇒ λ · u∗`′(1, ·) < λ · u∗`′(0, ·).
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Let `∗ = min {` : λ · u`(1, ·) ≤ 0} , where we use the convention that min ∅ = n. Then

λ · u(a`∗ , ·)− λ · u∗ =

`∗−1∑
`=1

λ · u∗` (1)−
n−1∑
`=1

λ · u∗` (a∗` )

=

`∗−1∑
`=1

λ · (u∗` (1)− u∗` (a∗` )) +

n−1∑
`=`∗

λ · (u∗` (0)− u∗` (a∗` )) ≥ 0.

But u(a`∗ , ·) ∈ H(A, u), which contradicts Inequality (8).
It remains to show that (A∗1, u

∗
1), . . . , (A∗n−1, u

∗
n−1) is an exact decomposition, but this is

straightforward since it suffices to show that {u(a, ·) : a ∈ A} ⊆ H
(⊕n−1

`=1 (A∗` , u
∗
` )
)
. Clearly

this is the case since for every action ak ∈ A, u(ak) =
∑k−1
`=1 u

∗
` (1).
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