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Abstract

We study the regulation of a monopolistic firm using a non-Bayesian approach. We

derive the policy that minimizes the regulator’s worst-case regret, where regret is the

difference between the regulator’s complete-information payoff and his realized payoff.

When the regulator’s payoff is consumers’ surplus, he imposes a price cap. When his

payoff is the total surplus of both consumers and the firm, he offers a capped piece-

rate subsidy. For intermediate cases, the regulator uses both a price cap and a capped

piece-rate subsidy. The optimal policy balances three goals: giving more surplus to

consumers, mitigating underproduction, and mitigating overproduction.
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1 Introduction

Regulating monopolies is challenging. A monopolistic firm has the market power to set

its price above that in an oligopolistic or competitive market. For instance, Cooper et al.

(2018) show that prices at monopoly hospitals are 12 percent higher than those in markets

with four or five competitors. In order to protect consumers’ surplus, a regulator may want

to constrain the firm’s price. However, a price-constrained firm may fail to obtain enough

revenue to cover its fixed cost, so it may end up not producing. The regulator must balance

the need to protect consumers’ surplus and the need to not distort production.

This challenge could be solved easily if the regulator had complete information about

the industry. The regulator could ask the firm to produce at the efficient level and to set

its price equal to the marginal cost. He could then subsidize the firm for all of its other

costs. However, the regulator typically has limited information about consumer demand or

the technological capacity of the firm. How should the regulatory policy be designed when

the regulator knows considerably less about the industry than the firm does? If the regulator

wants a policy that works “fairly well” in all circumstances, what should this policy look like?

We study this classic problem of monopoly regulation (e.g., Baron and Myerson (1982))

using a non-Bayesian approach. The regulator’s payoff is a weighted sum of consumers’

surplus and the firm’s profit. He can regulate the firm’s price and/or quantity. He can give

a subsidy to the firm or impose a tax on it. Given a policy, the firm chooses its price and

quantity to maximize its profit. The regret of the regulator is, by definition, the difference

between what he could have gotten if he had complete information about the industry and

what he actually gets. We can think of regret as “money left on the table” due to the

regulator’s lack of information. The regulator evaluates a policy by his worst-case regret,

i.e., the maximal regret he can incur across all possible demand and cost scenarios under

this policy. The optimal policy minimizes worst-case regret.
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The worst-case regret approach to uncertainty is our most significant difference from

Baron and Myerson (1982) and the literature on monopoly regulation in general. Baron

and Myerson (1982) take a Bayesian approach to uncertainty by assigning a prior to the

regulator over the demand and cost scenarios and characterizing the policy that minimizes

the expected regret. (Minimizing the expected regret is the same as maximizing the expected

payoff, since the regulator’s expected complete-information payoff is constant.) We instead

focus on industries in which information asymmetry is so pronounced that there is no obvious

way to formulate a prior, or industries where new sources of uncertainty arise all the time.

(See Hayek (1945), Weitzman (1974) and Carroll (2019), for instance, for elaboration of

these points.) In response, the regulator looks for a policy that works fairly well in all

circumstances.

To illustrate our solution, we begin with two extreme cases of the regulator’s payoff. If

the regulator puts no weight on the firm’s profit, so that his payoff is only consumers’ surplus,

then it is optimal to impose a price cap. A price cap bounds how much consumers’ surplus

the firm can extract. Consumers benefit from a lower price. However, a price cap might

discourage a firm which should have produced from producing. Consumers lose in this case

due to the firm’s underproduction. The optimal level of the price cap balances consumers’

gain from a lower price and their loss from the firm’s underproduction.

If the regulator puts the same weight on the firm’s profit as he does on consumers’ sur-

plus, so that his payoff is the total surplus of both consumers and the firm, then the regulator

simply wants the firm to produce as efficiently as possible. Given that an unregulated mo-

nopolistic firm tends to supply less than the efficient level, the regulator wants to encourage

more production by subsidizing the firm. However, a subsidy might incentivize production

above the efficient level. The optimal design of a subsidy must balance the loss from under-

production and that from overproduction. The optimal policy has the following form: The

regulator will have a target price and a subsidy cap. For each unit that the firm sells, he
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subsidizes the firm for the difference between its price and the target price, subject to the

constraint that the total subsidy not exceed the subsidy cap. This piece-rate subsidy up to

the target price effectively lifts the firm’s selling price, incentivizing the firm to serve more

consumers than just those with high values. On the other hand, the cap on the firm’s total

subsidy makes sure that the regulator doesn’t lose too much from potential overproduction.

For intermediate cases, the regulator puts some weight on the firm’s profit, but less than

the weight he puts on consumers’ surplus. He must balance three goals simultaneously: giving

more surplus to consumers, mitigating underproduction, and mitigating overproduction. It

is optimal to combine the policies described above for the extreme cases, which leads to a

regulatory policy with three distinctive features. First, the regulator imposes a price cap so

the firm can’t get more per unit than the price cap. As the regulator puts more weight on

the firm’s profit, the price cap increases. Second, the firm gets a piece-rate subsidy. Third,

the regulator imposes a cap on the total subsidy that the firm will get.

The worst-case regret approach advances our knowledge of monopoly regulation. First,

it highlights the tradeoff among the three goals of the regulator: giving more surplus to con-

sumers, mitigating underproduction, and mitigating overproduction. Second, it highlights

the roles of three policy instruments which are common in practice in achieving these three

goals. The price cap bounds how much consumers’ surplus the firm can extract. The piece-

rate subsidy encourages the firm to serve more consumers than just those with high values.

Hence, it deals with a monopolistic firm’s intrinsic tendency to underproduce. The cap on

the total subsidy makes sure that the potential overproduction induced by the subsidy is

also under control. We show that, among all the policy instruments that the regulator can

choose, these three policy instruments are sufficient.

We address how to incorporate the regulator’s additional knowledge about the industry

in Subsection 4.1. The worst-case regret approach remains tractable. In particular, we show

that price-cap regulation is optimal when the range of consumers’ values is small or the
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weight the regulator puts on the firm’s profit is small.

Related literature

This paper contributes to the literature on monopoly regulation. Caillaud et al. (1988),

Braeutigam (1989), and Laffont and Tirole (1993) provide an overview of earlier contribu-

tions in this field. Armstrong and Sappington (2007) discuss recent developments. Our paper

is closely related to Baron and Myerson (1982), Lewis and Sappington (1988a,b), and Arm-

strong (1999). The most significant difference is our approach to uncertainty. These papers

take a Bayesian approach to uncertainty. Armstrong and Sappington (2007) emphasize two

limitations of the Bayesian approach. First, since the relevant information asymmetries can

be difficult to characterize precisely, it is not clear how to formulate a prior. Second, since

multidimensional screening problems are difficult to solve, the form of optimal regulatory

policies is generally not known. We take a worst-case regret approach. It does not require a

prior and allows us to derive an optimal policy.

A second difference between our paper and the previous papers is the scope of uncertainty.

Baron and Myerson (1982) and Lewis and Sappington (1988a) assume one-dimensional un-

certainty about cost or demand scenarios, respectively. Lewis and Sappington (1988b) and

Armstrong (1999) assume two-dimensional uncertainty about both cost and demand sce-

narios. In our model, the firm also has private information about both cost and demand

scenarios, and this private information is infinite-dimensional.

Our paper also contributes to the literature on mechanism design where the designer min-

imizes his worst-case regret. Hurwicz and Shapiro (1978) examine a moral hazard problem

and show that a fifty-fifty split is the minimax-regret solution. Bergemann and Schlag (2008,

2011) examine monopoly pricing and argue that minimizing worst-case regret is more rele-

vant than maximizing worst-case payoff, since the criterion of maximizing worst-case payoff

suggests pricing to the lowest-value buyer. Caldentey, Liu and Lobel (2017) characterize the
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dynamic-pricing rule that minimizes the seller’s worst-case regret. Renou and Schlag (2011)

apply the solution concept of ε-minimax regret to the problem of implementing social choice

correspondences. Beviá and Corchón (2019) characterize contests in which contestants have

dominant strategies; within this class they find the contest which minimizes the designer’s

worst-case regret. More broadly, we contribute to the growing literature of mechanism design

with worst-case objectives. See for instance Chassang (2013), Carroll (2015), and Carroll

(2019) for a survey. In terms of the monopoly regulation environment, a related paper in

this literature is Garrett (2014) which considers the cost-based procurement problem (Laffont

and Tirole (1986)).

Minimizing worst-case regret is a more relevant criterion than maximizing worst-case

payoff in our setting for two reasons. First, regret in our setting has a natural interpretation:

it is the weighted sum of distortion in production and the firm’s profit. Second, the regulator’s

worst-case payoff is zero or less under any policy, since consumers’ values might be too low

relative to the cost. In this case, there is no surplus even under complete information. When

there is no surplus, there is nothing the regulator can do. We argue that the regulator’s goal

should instead be to protect surplus in situations where there is some surplus to protect.

The notion of regret catches this idea.

We also contribute to public policy design under the minimax-regret criterion. Manski

(2006) examines the optimal way to search for evidence of crime. Manski (2011) reviews

optimal treatment choice for a population in environments in which the policy outcome is

only partially identified due to the unobservability of counterfactual policy outcomes.

The worst-case regret approach goes back at least to Savage (1954). Under this approach,

when a decision maker has to choose some action while facing uncertainty, he chooses the

action that minimizes his worst-case regret across all possible realizations of the uncertainty.

Regret is defined as the difference between what the decision maker could achieve given the

realization, and what he achieves under this action. In our case, the regulator is uncertain
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about demand and cost scenarios and he has to choose a policy. Savage also puts forward

an interpretation of the worst-case regret approach in the context of group decision-making,

which is relevant for our policy design context. Consider a group of people who must jointly

choose a policy. They have the same payoffs but different probability judgments. Under the

policy that minimizes worst-case regret, no member of the group faces great regret, so no

member will feel that the policy is a serious mistake. Seminal game-theory papers in which

players minimize worst-case regret include Hannan (1957) and Hart and Mas-Colell (2000).

Minimizing worst-case regret is also the leading approach in online learning, and in particular

in multi-armed bandit problems (see Bubeck, Cesa-Bianchi et al. (2012) for a survey). It has

also been used in designing treatment rules (e.g., Manski (2004) and Stoye (2009)) and in

forecast aggregation (e.g., Areili, Babichenko and Smorodinsky (2017) and Babichenko and

Garber (2018)).

Our work also contributes to the delegation literature (e.g., Holmström (1977, 1984)).

Alonso and Matouschek (2008), Amador and Bagwell (2019), and Kolotilin and Zapechel-

nyuk (2019) characterize conditions under which price-cap regulation is optimal under the

restriction that transfers are infeasible. In our environment, the regulator and the firm can

make transfers to each other. We characterize conditions under which price-cap regulation

is optimal. To our knowledge, we are the first to show that a contract that doesn’t use

transfers is optimal in a contracting environment in which both parties can make transfers

to each other.1

2 Environment

There is a monopolistic firm and a mass one of consumers. Let V : [0, 1] → [0, v̄] be a

decreasing upper-semicontinuous inverse-demand function. A quantity-price pair (q, p) ∈
1Armstrong and Vickers (2010) show that it can be optimal not to use transfers in an environment in

which the agent must receive nonnegative transfers from the principal.
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[0, 1]× [0, v̄] is feasible if and only if it is below the inverse-demand function, i.e., p 6 V (q).

The firm can choose any feasible quantity-price pair. The total value to consumers of quantity

q is the area under the inverse-demand function, given by
∫ q

0
V (z) dz.

Let C : [0, 1] → R+ with C(0) = 0 be an increasing lower-semicontinuous cost function.

The optimal total surplus is given by:

OPT(V, C) = max
q∈[0,1]

(
∫ q

0

V (z) dz − C(q)

)

. (1)

If the firm produces q units, then the (market) distortion is given by:

DSTR(V, C, q) = OPT(V, C)−
(
∫ q

0

V (z) dz − C(q)

)

. (2)

To simplify notation, we will sometimes omit the dependence of OPT on V, C and the

dependence of DSTR on V, C, and q. We will do the same for other terms when no confusion

arises.

Example 1. Suppose that V (q) = 1 − q and C(q) = q/2. It is efficient to produce q∗ = 1
2

units. The optimal total surplus is
∫ q∗

0
(1− z) dz− q∗/2. If the firm produces q < q∗, we say

that the firm underproduces. If the firm produces q > q∗, we say that it overproduces. In

both cases, distortion is strictly positive.

Regulatory policies

A policy is given by an upper-semicontinuous function ρ : [0, 1]× [0, v̄] → R. If the firm sells

q units at price p, then it receives revenue ρ(q, p). This revenue is the sum of the revenue qp

from the marketplace, and any tax or subsidy, ρ(q, p) − qp, imposed by the regulator. We

also assume that ρ(0, 0) > 0, so the firm is allowed to stay out of business without suffering

a negative profit. This is the participation constraint.
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There are many policy instruments that the regulator can use. To illustrate, we give four

examples of policies:

1. The regulator can give the firm a lump-sum subsidy s > 0 if it sells more than a certain

quantity q̃. The policy is ρ(q, p) = qp if q < q̃ and ρ(q, p) = qp+ s if q > q̃.

2. The regulator can charge a proportional tax by setting ρ(q, p) = (1 − τ)qp for some

τ ∈ (0, 1).

3. The regulator can require that the firm get no more than k per unit by imposing

ρ(q, p) = min(qp, qk). If the firm prices above k, it pays a tax of q(p − k) to the

regulator. This policy effectively creates a price cap at k.

4. If the regulator decides not to intervene, then he chooses ρ(q, p) = qp, so the firm’s

revenue ρ(q, p) equals its revenue from the marketplace.

The regulator could ask the firm to report its inverse-demand and cost functions, and then

determine the firm’s quantity, price, and revenue as a function of its report. For any such

direct-revelation mechanism, there exists a revenue function ρ(q, p) that induces the same

outcome. This is referred to as the Taxation Principle (Rochet (1986) and Guesnerie (1998)).

Hence, it is without loss of generality to work with the revenue function ρ(q, p) directly.

Fix a policy ρ, an inverse-demand function V , and a cost function C. If the firm produces

q units at price p, then consumers’ surplus and the firm’s profit are given by:

CS(V, ρ, q, p) =

∫ q

0

V (z) dz − ρ(q, p), and FP(V, C, ρ, q, p) = ρ(q, p)− C(q). (3)

The definition of consumers’ surplus incorporates the fact that any subsidy to the firm is

paid by consumers through their taxes and that any tax imposed on the firm is passed on

to consumers.
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The firm’s profit doesn’t depend directly on V , but since V determines which quantity-

price pairs are feasible, we include V as an argument in the firm’s profit.

We say that (q, p) is a firm’s best response to (V, C) under the policy ρ if it maximizes

the firm’s profit over all feasible (q, p). The firm might have multiple best responses. The

participation constraint implies that FP(V, C, ρ, q, p) > 0 for every best response (q, p) of the

firm.

The regulator’s payoff is a weighted sum, CS+αFP, of consumers’ surplus and the firm’s

profit. The parameter α ∈ [0, 1] is the welfare weight the regulator puts on the firm’s profit.

The regulator’s complete-information payoff

Fix an inverse-demand function V and a cost function C. We let CIP(V, C) denote the

regulator’s complete-information payoff. This is what the regulator would achieve if he

could tailor his policy for these inverse-demand and cost functions. Formally,

CIP(V, C) = max
ρ,q,p

(CS(V, ρ, q, p) + αFP(V, C, ρ, q, p)) , (4)

where the maximum ranges over all policies ρ and all of the firm’s best responses (q, p) to

(V, C) under ρ.

Claim 1 below shows that the regulator’s complete-information payoff equals the optimal

total surplus. The regulator would ask the firm to produce the efficient quantity and to set

a price equal to the marginal consumer’s value at this efficient quantity. He would then give

the firm a revenue equal to its cost. Although the regulator’s payoff is a function of α, his

complete-information payoff doesn’t depend on α. This is because the optimal total surplus

is generated and all of this surplus goes to consumers.
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Claim 1. For any inverse-demand function V and cost function C,

CIP(V, C) = OPT(V, C).

Proof. First, the regulator’s complete-information payoff is at most OPT(V, C). Indeed,

CS(V, ρ, q, p) + αFP(V, C, ρ, q, p) 6 CS(V, ρ, q, p) + FP(V, C, ρ, q, p) 6 OPT(V, C),

for every policy ρ and every best response (q, p) of the firm to (V, C) under ρ. Here the first

inequality follows from α 6 1 and the participation constraint FP(V, C, ρ, q, p) > 0, and the

second inequality follows from the definitions of OPT,CS,FP in (1) and (3).

Second, let q∗ denote a quantity that achieves the optimal total surplus. The regulator

can achieve OPT(V, C) by setting

ρ(q, p) =















C(q∗) if (q, p) = (q∗, V (q∗))

0 otherwise.

Choosing (q, p) = (q∗, V (q∗)) is a firm’s best response to (V, C) under ρ. Since CS(V, ρ, q, p) =

OPT(V, C) and FP(V, C, ρ, q, p) = 0, it follows that CS(V, ρ, q, p) + αFP(V, C, ρ, q, p) =

OPT(V, C).

Regret

When the regulator does not know (V, C), a policy will usually not give the regulator his

complete-information payoff. Given a policy ρ, an inverse-demand function V , and a cost

function C, the regulator’s regret is the difference between what he could have gotten under
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complete information and what he actually gets:

RGRT(V, C, ρ, q, p) = CIP(V, C)− (CS(V, ρ, q, p) + αFP(V, C, ρ, q, p)) .

The following claim shows that the regret is a weighted sum of distortion and the firm’s

profit.

Claim 2. For every pair (V, C) of inverse-demand and cost functions and for every policy

ρ,

RGRT(V, C, ρ, q, p) = DSTR(V, C, q) + (1− α)FP(V, C, ρ, q, p).

Proof. Suppressing the dependence on V, C, ρ, q, p, we have

RGRT = CIP − (CS + αFP) = OPT− (CS + αFP)

= OPT− (CS + FP) + (1− α)FP

= DSTR + (1− α)FP.

Here, the first equality is the definition of regret, the second is from Claim 1 that CIP = OPT,

and the last is from the definition of distortion.

Thus, regret has a natural interpretation in our setting. DSTR represents the loss in the

regulator’s efficiency objective, since he wishes the firm to produce as efficiently as possible.

(1− α)FP represents the loss in his redistribution objective, since the regulator wants more

surplus to go to consumers rather than to the firm. The less weight α the regulator puts on

the firm’s profit, the more he cares about redistribution, and the higher his regret is.
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The regulator’s problem

We look for a policy that minimizes worst-case regret. Thus the regulator’s problem is

minimize
ρ

max
V,C,q,p

RGRT(V, C, ρ, q, p),

where the minimization is over all policies ρ, and the maximum ranges over all (V, C) and

all of the firm’s best responses (q, p) to (V, C) under ρ.

Formulating the regulator’s problem as a minimax-regret problem is our main departure

from the literature on monopoly regulation. If we assigned a Bayesian prior to the regulator

over the demand and cost scenarios, minimizing the expected regret would be the same

as maximizing the expected payoff as in Baron and Myerson (1982). Instead we consider

environments where information asymmetry is so pronounced that there is no obvious way to

formulate a prior. The regulator looks for a policy that works fairly well in all circumstances.

Remark 1. We focus on deterministic policies. If the regulator can randomize but the ad-

versary chooses the worst-case inverse-demand and cost functions after seeing the realized

policy, then deterministic policies are without loss. �

Remark 2. In the definition of consumers’ surplus, we made the efficient-rationing assump-

tion, so consumers with the highest values are served when the firm chooses not to clear the

market. In Subsection 4.2, we argue that the firm will clear the market under our optimal

policy if its average cost is decreasing in quantity q, so our result does not depend on this

assumption. �

Remark 3. In the definition of the regulator’s complete-information payoff, we assumed that

the firm breaks ties in favor of the regulator, whereas in the definition of the regulator’s

problem, we assumed that the firm breaks ties against the regulator. These assumptions

are for convenience only and do not affect the value of the regulator’s complete-information
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payoff in Claim 1 or the solution to the regulator’s problem in Theorems 3.1 to 3.3.2 �

3 Main result

We begin with a lower bound on the worst-case regret of any policy. We then show that

our policy indeed achieves this lower bound, so it is optimal. Both the lower-bound and

the upper-bound discussions will center on the tradeoff between giving more surplus to

consumers, mitigating underproduction, and mitigating overproduction.

3.1 Lower bound on worst-case regret

We first illustrate that there is a nontrivial tradeoff between giving more surplus to consumers

and mitigating underproduction.

Suppose that the regulator constrains how much consumers’ surplus the firm can extract

by imposing a price cap k. This price-cap policy has opposing implications for the two

market scenarios in Figure 1.

On the left-hand side, every consumer has the highest value v̄, and the firm’s cost is zero.

The firm will price at k and serve all consumers. There is no distortion since all consumers

are served, as they should be. The firm’s profit is k, so the regret is (1 − α)k. The lower

the price cap k, the lower this regret. On the right-hand side, every consumer still has the

highest value v̄, but now the firm has a fixed cost of k. It is a best response of the firm not

to produce. The firm’s profit is zero, but the distortion is v̄ − k, which is the surplus that

2If in the definition of CIP(V,C) we assumed that the firm breaks ties against the regulator, we would
define

CIP(V,C) = sup
ρ

min
q,p

(CS(V, ρ, q, p) + αFP(V,C, ρ, q, p)),

where the minimum ranges over all of the firm’s best responses (q, p) to (V,C) under ρ. Then the supremum
may not be achieved, but the value of CIP(V,C) would be the same. Similarly, if we assumed that the firm
breaks ties in favor of the regulator in the regulator’s problem, then the “worst-case” pair (V,C) may not
exist, but the solution to the regulator’s problem would remain the same.
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V (q)

0 1

v̄

q

k

C(q) = 0

DSTR = 0, FP = k

RGRT = (1− α)k

V (q)

0 1

v̄

q

k

C(q) = k

DSTR = v̄ − k, FP = 0

RGRT = v̄ − k

Figure 1: Impact of the price-cap policy on two scenarios

could have been generated. The regret equals this distortion. The lower the price cap k, the

higher this regret.

The contrast between the two scenarios shows that a lower price cap may advance the reg-

ulator’s redistribution objective on the one hand, but may worsen the problem of underpro-

duction on the other. It also shows that the regulator’s regret is at least max((1−α)k, v̄−k).

We let kα be the price cap that minimizes max((1− α)k, v̄ − k), so

kα =
v̄

2− α

as depicted in the left panel of Figure 2. Not surprisingly, the more weight α the regulator

puts on the firm’s profit, the higher this price cap kα is.

Our next claim follows directly from the discussion above. Even if the regulator had

the knowledge that he were facing one of the two scenarios in Figure 1, he would have

nonnegligible worst-case regret.

Claim 3. The worst-case regret under any policy is at least (1− α)kα = 1−α
2−α

v̄.

Proof. Fix a policy ρ and let k = maxq∈[0,1],p∈[0,v̄] ρ(q, p) be the highest revenue the firm can
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0 1

v̄

v̄
2

α

kα

0 1

v̄

α

v̄
2 rα

1
2

0 1

1

α

qα

1
2

sα

Figure 2: Values of kα, rα, qα, and sα

get under ρ. If the inverse-demand and cost functions are given by the left-hand side of

Figure 1, the regret is at least (1 − α)k since the firm’s profit is k. If the inverse-demand

and cost functions are given by the right-hand side of Figure 1, it is a firm’s best response

not to produce and so the regret is v̄ − k. Hence, the worst-case regret under ρ is at least

max((1− α)k, v̄ − k), which is weakly greater than (1− α)kα.

With this kα balancing the tradeoff between giving more surplus to consumers and mit-

igating underproduction, we are ready to establish a tight lower bound on the worst-case

regret.

Theorem 3.1 (Lower bound on worst-case regret). Let

rα = max
q∈[0,1], p∈[0,kα]

min (q(1− α)kα − qp log q, q(kα − p)) . (5)

Then the worst-case regret under any policy is at least rα.

For any (q, p), we argue that the worst-case regret is at least the minimum of two terms.

Roughly speaking, the first term, q(1−α)kα− qp log q, is the possible regret from underpro-

duction if the revenue to the firm is too low. This occurs when the inverse-demand function

is Uq,p given in Figure 4. The second term, q(kα−p), is the possible regret from overproduc-

tion if the revenue is too high. This occurs when the inverse-demand function is Wq,p given
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in Figure 4. No matter how the policy is designed, the regulator has to suffer from one of

these two terms. Since the worst-case regret is at least the minimum of these two terms for

every (q, p), it is at least the maximum over any q ∈ [0, 1] and p ∈ [0, kα].

Let qα achieve the maximum in the definition of rα in (5). When α 6 1/2, qα equals one.

When α > 1/2, qα is interior. The explicit values of rα and qα are given by:

rα = v̄















1−α
2−α

if α 6 1
2

(

2+α−
√

α(α+4)
)

e1−
α+

√
α(α+4)
2

2(2−α)
if α > 1

2
,

qα =















1 if α 6 1/2

e1−
α+

√
α(α+4)

2 if α > 1/2.

The middle and right panels of Figure 2 depict the values of rα and qα.

3.2 Optimal policy

Our next theorem shows that our policy guarantees that the worst-case regret is at most rα,

so it is optimal.

Theorem 3.2 (Optimal policy). Let

sα = sup{q(kα − p) : q ∈ [0, 1], p ∈ [0, kα], q(1− α)kα − qp log q > rα}.

The policy

ρ(q, p) = min(qkα, qp+ s) (6)

with sα 6 s 6 rα achieves the worst-case regret rα.

We first provide intuition as to how a policy of the form (6) simultaneously addresses the

three goals of giving more surplus to consumers, mitigating underproduction, and mitigating

overproduction. First, the firm can’t get more than kα for each unit it sells. This caps how

much consumers’ surplus the firm can extract. Second, a monopolistic firm has the tendency
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to serve just those consumers with very high values. In order to incentivize the firm to

produce more, the regulator subsidizes the firm for the difference between its price and kα.

This piece-rate subsidy effectively increases the firm’s selling price to kα. Third, the firm’s

total subsidy is capped by s, so the potential overproduction induced by the subsidy is also

under control.

Depending on the welfare weight α that the regulator puts on the firm’s profit, the

regulator puts different weights on these three goals, and hence varies kα and s as α varies.

The explicit value of sα is given below, and is depicted as the dashed line in the middle panel

of Figure 2. When α 6 1/2, the cap s on the total subsidy to the firm can take any value

between sα and rα.

sα =















v̄ α
2−α

if α 6 1
2

rα if α > 1
2
.

Note that sα = 0 when α = 0. Hence, the policy ρ(q, p) = qmin(v̄/2, p) is optimal when

α = 0. The regulator doesn’t subsidize the firm, and simply imposes a price cap at v̄/2.

The optimal policy in Theorem 3.2 features three properties. The first property is that

ρ(q, p) 6 qkα for every q implies a price cap: the firm cannot get more than kα per unit

sold. The second property is that for some quantity-price pairs, the total subsidy to the

firm is at least sα. The third property is that the total subsidy to the firm is at most rα.

Not every optimal policy has the same form as in (6), but Theorem 3.3 asserts that every

optimal policy has similar properties. Recall that qα achieves the maximum in the definition

of rα in (5).

Theorem 3.3. Let ρ be an optimal policy. Then

1. (Price cap): ρ(q, p) 6 qkα for every q 6 qα.

2. (Subsidy): There exists some (q, p) such that ρ(q, p) > qp+ sα.
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3. (Subsidy cap): ρ(q, p) 6 qp+ rα for every (q, p).

In particular, since qα = 1 for α 6 1/2, it follows from Theorem 3.3 that for α 6 1/2 a

price cap at kα is necessary for every level of production.

4 Discussions

4.1 Incorporating additional knowledge

In our model we made no assumptions on the inverse-demand or cost functions except for

monotonicity, semicontinuity, and the upper bound of consumers’ values (which is v̄). We

view this minimally-informed regulator as a natural starting point. The regulator may

know more than this. We can extend our framework in an obvious way to incorporate the

regulator’s knowledge by restricting the set of inverse-demand and cost functions in the

regulator’s problem.

Let E be the set of possible inverse-demand and cost functions. The regulator chooses a

policy that minimizes the worst-case regret across the elements of E :

minimize
ρ

max
(V,C)∈E,q,p

RGRT(V, C, ρ, q, p),

where the maximum ranges over all (V, C) ∈ E and all of the firm’s best responses (q, p) to

(V, C) under ρ. We illustrate how to solve the regulator’s problem for some explicit E , and

demonstrate the adaptability of the worst-case regret approach.

4.1.1 Additional knowledge about cost

The regulator may know that the firm has a constant marginal cost together with a fixed cost,

but doesn’t know these cost levels. In this case, E = {(V, C) : C(q) = aq + b for some a, b >

0}. This is the type of cost function used most frequently in studies of monopoly regulation.
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In our proof of Theorem 3.1, we establish a lower bound on the worst-case regret of

any policy using only fixed-cost functions, i.e., C(q) = b for some b > 0. (See Remark

4 for details.) This means that Theorem 3.1 remains true for every set of cost functions

that includes the set of all fixed-cost functions. In particular, Theorem 3.1 remains true for

E = {(V, C) : C(q) = aq + b for some a, b > 0}. Once we know that Theorem 3.1 remains

true, we know that our policy in Theorem 3.2 remains optimal, since the worst-case regret

under our policy is at most rα across all inverse-demand and cost functions.

4.1.2 Additional knowledge about demand

The regulator may know not only an upper bound but also a lower bound on consumers’

values. Let v̄ > 0 and v ∈ [0, v̄] be the upper and lower bounds on consumers’ values, so

E = {(V, C) : v 6 V (q) 6 v̄}. If v = 0, we are back to our baseline model. If v = v̄, the

regulator knows the inverse-demand function exactly since every consumer has value v̄.

We show in Theorem 5.1 that, for any v ∈ [0, v̄], a policy of the form ρ(q, p) = min(qk, qp+

s) remains optimal. The price cap k is still kα for any v ∈ [0, v̄], but the cap s on the total

subsidy becomes smaller as v increases. Hence, as consumers become more homogeneous in

their values, the regulator is less willing to subsidize the firm. In particular, we characterize

the condition under which it is optimal to choose s = 0 so that a price-cap policy is optimal.

Proposition 4.1 (Price cap optimality). If v > 1
2−α

v̄, it is optimal to impose a price cap

kα.

Both this proposition and Proposition 4.2 follow directly from Theorem 5.1. A price-cap

policy is optimal when v is sufficiently close to v̄ or when the welfare weight α on the firm’s

profit is sufficiently low. When the range of consumers’ values is small, consumers with the

highest values don’t value the product much more than consumers with the lowest values.

In such a case, the regulator is not concerned that the firm will serve just a small group of
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consumers with very high values. Hence, he has no incentive to offer a piece-rate subsidy to

encourage more production. Similarly, the redistribution objective is more salient when α is

small than when α is large, so the regulator is less willing to subsidize when α is small.

It is interesting to derive the comparative statics with respect to v. A natural conjecture

is that the regulator’s worst-case regret decreases as v increases. We show that the answer

depends on the welfare weight α that the regulator puts on the firm’s profit.

Proposition 4.2. For α 6 1/2, the worst-case regret is constantly rα = 1−α
2−α

v̄ for any

v ∈ [0, v̄]. In contrast, for α > 1/2, the worst-case regret goes down from rα to 1−α
2−α

v̄ as v

goes from 0 to v̄.

When α is small, the main tradeoff is that between giving more surplus to consumers and

mitigating underproduction. Even if all consumers have the highest value v̄, the uncertainty

about the cost would alone imply significant regret due to this tradeoff. When α is large,

the regulator’s main task is to promote efficiency. With a higher v, consumers become

homogenous in their values, which makes it easier to mitigate underproduction.

Figure 3 shows the worst-case regret as a function of v ∈ [0, v̄] for α = 1/2, 3/4, and 1.

0 v̄
v

r1

r1/2
α = 1

2

α = 1

r3/4 α = 3
4

Figure 3: Worst-case regret as a function of v
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4.2 The efficient-rationing assumption

In our model we allow the firm not to clear the market, and we assume that if this happens,

then the consumers who are being served are the ones with higher values. Indeed, absent

some additional assumptions on the cost function, even a firm which operates under a price

cap may choose not to clear the market.

A common assumption in the monopoly regulation literature is that the firm has decreas-

ing average cost, i.e., the average cost C(q)/q is decreasing for q > 0. Since the set of all

fixed-cost functions satisfies the decreasing average-cost assumption, in accordance with the

discussion in Subsection 4.1.1, Theorem 3.1 remains correct under this decreasing average-

cost assumption, and our policy in Theorem 3.2 is optimal. Moreover, if the cost function

satisfies this assumption, then a firm which operates under our policy will want to clear the

market.

5 Proofs

Fix v̄ > 0 and v ∈ [0, v̄]. Throughout this section, we assume that (V, C) ∈ {(V, C) : v 6

V (q) 6 v̄}. Theorems 3.1 and 3.2 follow from Theorem 5.1 when we assume v = 0.

Theorem 5.1. The worst-case regret under any policy is at least

Rα(v) = max

(

(1− α)kα,max
qp>v

min (q(1− α)kα − qp log q, q(kα − p))

)

.

Let

Sα(v) = (sup{q(kα − p) : q ∈ [0, 1], p ∈ [0, v̄], qp > v, q(1− α)kα − qp log q > Rα(v)})+.
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The policy

ρ(q, p) = min(qkα, qp+ s)

with Sα(v) 6 s 6 Rα(v) achieves the worst-case regret Rα(v).

5.1 Preliminaries

For every q, p, we let Wq,p and Uq,p be the inverse-demand functions given by:

Wq,p(z) =















p if z 6 q

0 if z > q,

and Uq,p(z) =















v̄ if z 6 q

qp
z

if z > q,

as shown in Figure 4.

0 1q

v̄

p

Wq,p(z)

z

Uq,p(z)

0 1

v̄

q

p

z

qp
z

z

Figure 4: Wq,p and Uq,p inverse-demand functions

The inverse-demand function Wq,p has the property that, among all inverse-demand func-

tions under which (q, p) is feasible, Wq,p generates the least total value to consumers. That

is, Wq,p solves

min
V (·)

∫ 1

0

V (z) dz, subject to (q, p) is feasible.

The inverse-demand function Uq,p exhibits unitary price elasticity when the price is in the

range of [qp, p].

To understand the role of Uq,p in our argument, consider an unregulated firm (i.e., a firm

23



which operates under the policy ρ(q, p) = qp). If the inverse-demand function is Uq,p and the

cost is zero, then selling q units at price v̄ is a best response of the firm. This response causes

a distortion of
∫ 1

q
Uq,p(z) dz = −qp log q due to underproduction. The following lemma shows

that this is the worst distortion that can happen when the firm is unregulated.

Lemma 5.2. Assume that an unregulated firm sells q̄ < 1 units at a price p̄ such that

p̄ > supz>q̄ V (z). Let

OPTq̄ = max
q>q̄

(
∫ q

q̄

V (z) dz − (C(q)− C(q̄))

)

be the maximal additional surplus to society if the firm has produced q̄ units, and let

FPq̄,p̄ = max
q>q̄

(

qmin(p̄, V (q))− q̄p̄− (C(q)− C(q̄))
)

be the maximal additional profit to the firm if it has produced q̄ units and commits to price

at most p̄. Then

OPTq̄ 6 FPq̄,p̄ +D(q̄, p̄),

where D(q, p) = max{−q′p̄ log q′ : q′ > q̄, q′p̄ > v}.

The lemma does not assume that selling q̄ or more units is optimal for the firm. Therefore,

the assertion in the lemma still holds even if the best response for an unregulated firm is to

sell fewer than q̄ units at a possibly higher price than p̄.

Proof of Lemma 5.2. We can assume that FPq̄,p̄ = 0. If FPq̄,p̄ > 0, we can replace C with C̄

such that C̄(z) = C(z) if z 6 q̄, and C̄(z) = C(z)+FPq̄,p̄ if z > q̄. This replacement doesn’t

change OPTq̄ − FPq̄,p̄ but makes sure that the firm’s maximal additional profit is zero.

Let q∗ ∈ argmaxq>q̄

(

∫ q

q̄
V (z) dz − (C(q)− C(q̄))

)

.

If q∗ = q̄, then OPTq̄ = 0 and the assertion in the lemma holds since D(q̄, p̄) > 0.
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Therefore, we assume from now on that q∗ > q̄. Let c∗ = C(q∗)− C(q̄).

Since V (z) 6 p̄ for z > q̄, it follows from the definition of q∗ that c∗ 6 (q∗ − q̄)p̄. Let q′′

solve (q′′ − q̄) p̄ = c∗, so q′′ 6 q∗.

Since the firm does not want to produce more, it follows that zV (z)−C(z) 6 q̄p̄−C(q̄)

for every z > q̄, so that

V (z) 6
q̄p̄+ C(z)− C(q̄)

z
6

q̄p̄+ c∗

z
=

q′′p̄

z
, for q̄ < z 6 q∗. (7)

Especially, for z = q∗, and since V (q∗) > v, it follows that q∗ 6 q′′p̄/v. Then

OPTq̄ =

∫ q∗

q̄

V (z) dz − c∗ 6 (q′′ − q̄)p̄+

∫ q∗

q′′

q′′p̄

z
dz − c∗ = q′′p̄ log

q∗

q′′
6

− q′′p̄ logmax(q′′, v/p̄) 6 −max(q′′, v/p̄)p̄ logmax(q′′, v/p̄) 6 D(q̄, p̄),

where the second step uses the fact that V (z) 6 p̄ for q̄ < z 6 q′′ and (7), the third step

follows from q̄p̄+ c∗ = q′′p̄, and the fourth step follows from q∗ 6 1 and q∗ 6 q′′p̄/v.

For q̄ = 0, p̄ = v̄, v = 0, Lemma 5.2 has the following corollary which is interesting for

its own sake. It bounds from below an unregulated firm’s profit in a market with a high

optimal total surplus. We are unaware of previous statements of this corollary, but similar

arguments to those in the proof of Lemma 5.2 with zero cost have appeared in Roesler and

Szentes (2017) and Condorelli and Szentes (2019a,b).

Corollary 5.3. Suppose that v = 0 and that the firm is unregulated. Then

FP > OPT− v̄

e
.
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5.2 Lower bounds on worst-case regret

For a policy ρ, let

WCR(ρ) = max
V,C,q,p

RGRT,

where the maximum ranges over all (V, C) ∈ {(V, C) : v 6 V (q) 6 v̄} and over all of the

firm’s best responses (q, p) to (V, C) under ρ.

For a policy ρ, let ρ̄(q) = maxq′6q ρ(q
′, p′) be the maximal revenue the firm can get under ρ

from selling q or fewer units, and let ρ̂(q, p) = maxq′>q,q′p′6qp ρ(q
′, p′) be the maximal revenue

under ρ if the firm sells at least q units and the revenue from the marketplace is at most

qp. As shown in Figure 5, ρ̄(q) is the maximum of ρ in the light-gray area, and ρ̂(q, p) is the

maximum of ρ in the dark-gray area.

ρ̄(q)

ρ̂(q, p)

0 1

v̄

q

p

z

pq
z

Figure 5: Definitions of ρ̄(q) and ρ̂(q, p)

Claim 4 shows that the worst-case regret under a policy is significant if this policy offers

a significant subsidy.

Claim 4. Fix a policy ρ. Then WCR(ρ) > ρ(q, p)− qmax(p, v) for every q, p.

Proof. If ρ(q, p) 6 qmax(p, v), the assertion follows from the fact that regret is nonnegative.

Assume that ρ(q, p) > qmax(p, v) and consider the inverse-demand function Wq,max(p,v) and

a fixed cost ρ(q, p). The firm will produce and incur the fixed cost, while the total value to
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consumers is at most qmax(p, v). The regret is at least:

RGRT > DSTR > ρ(q, p)− qmax(p, v),

because of overproduction.

Claim 5 shows that, if the firm doesn’t receive enough additional revenue from producing

more, there is sizable regret due to underproduction.

Claim 5. Fix a policy ρ. Let q 6 q ∈ [0, 1] and let p ∈ [0, v̄] such that qp > v. If

ρ̂(q, p) 6 ρ̄
(

q
)

+
(

q − q
)

kα, then

WCR(ρ) > (1− α)(ρ̄
(

q
)

+
(

q − q
)

kα)− qp log q.

Proof. 1. If ρ̄(q) − ρ̄
(

q
)

6
(

q − q
)

kα, then consider the inverse-demand function Uq,p

and a cost function such that producing q or fewer units is costless and producing

additional units incurs a fixed cost of
(

q − q
)

kα. The firm will produce at most q

units, with FP = ρ̄
(

q
)

and

DSTR >
(

q − q
)

(v̄ − kα)− qp log q = (1− α)
(

q − q
)

kα − qp log q,

because of underproduction. Therefore,

RGRT = (1− α)FP + DSTR > (1− α)(ρ̄
(

q
)

+
(

q − q
)

kα)− qp log q.

2. If ρ̄(q) − ρ̄
(

q
)

>
(

q − q
)

kα, then consider the inverse-demand function Uq,p and zero

cost. The firm will produce at most q units, with FP = ρ̄(q) > ρ̄
(

q
)

+
(

q − q
)

kα, and
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DSTR > −qp log q because of underproduction. Therefore,

RGRT = (1− α)FP + DSTR > (1− α)
(

ρ̄
(

q
)

+
(

q − q
)

kα
)

− qp log q.

Combining Claims 4 and 5, we show that the regulator suffers sizable regret from either

underproduction or overproduction.

Claim 6. Fix a policy ρ. Let q 6 q ∈ [0, 1] and let p ∈ [0, v̄] such that qp > v. Then

WCR(ρ) > min
(

(1− α)(ρ̄
(

q
)

+
(

q − q
)

kα)− qp log q, ρ̄
(

q
)

+
(

q − q
)

kα − qp
)

.

Proof. If ρ̂(q, p) > ρ̄
(

q
)

+
(

q − q
)

kα, then let q′, p′ be such that q′ > q, q′p′ 6 qp and

ρ(q′, p′) = ρ̂(q, p). Since q′v 6 v 6 qp and q′p′ 6 qp, we have q′ max(p′, v) 6 qp. By Claim 4

WCR(ρ) > ρ(q′, p′)− q′ max(p′, v) > ρ̄
(

q
)

+
(

q − q
)

kα − qp.

If ρ̂(q, p) < ρ̄
(

q
)

+
(

q − q
)

kα, then WCR(ρ) > (1 − α)(ρ̄
(

q
)

+
(

q − q
)

kα)− qp log q by

Claim 5.

5.3 Upper bounds on worst-case regret

We consider a policy of this form: for some k ∈ [0, v̄] and s > 0:

ρ(q, p) = min(qk, qp+ s). (8)

We bound the regret from (8) separately for the case of overproduction and the case of

underproduction.
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Claim 7. The regret from overproduction under (8) is at most

max ((1− α)k, s) .

Proof. Let q∗ be an efficient quantity, let p∗ = V (q∗), and assume that the firm chooses (q, p)

with q > q∗ and p 6 V (q) 6 p∗. Let c̄ = C(q)− C(q∗). Then

DSTR = c̄−
∫ q

q∗
V (z) dz 6 c̄− (q − q∗)p, (9)

and

c̄ 6 ρ(q, p)− ρ(q∗, p∗) (10)

since (q, p) is a best response. Therefore,

RGRT = (1− α)FP + DSTR 6 (1− α)(ρ(q, p)− c̄) + c̄− (q − q∗)p 6

(1−α)ρ(q∗, p∗)+ρ(q, p)−ρ(q∗, p∗)− (q−q∗)p 6 (1−α)ρ(q∗, p∗)+ρ(q, p)−ρ(q∗, p)− (q−q∗)p

6 (1− α)ρ(q∗, p∗) + (q − q∗)(ρ(q, p)/q − p) 6 (1− α)q∗k + (1− q∗/q)s 6

(1− α)q∗k + (1− q∗)s 6 max((1− α)k, s).

where the first inequality follows from the definition of FP in (3), the fact that c̄ 6 C(q),

and (9); the second inequality follows from (10); the third inequality follows from the fact

that p 6 p∗ and the fact that p 7→ ρ(q, p) is monotone increasing; the fourth inequality,

ρ(q, p) − ρ(q∗, p) 6 (q − q∗)ρ(q, p)/q, follows from the fact that q∗ 6 q and the fact that

q 7→ ρ(q, p)/q is decreasing; the fifth inequality follows from ρ(q∗, p∗) 6 q∗k, ρ(q, p) 6 qp+ s;

and the sixth inequality follows from q 6 1.
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Claim 8. The regret from underproduction under (8) is at most

max {qmax((1− α)k, v̄ − k)− (qk − s) log q : qk − s > v or q = 1} .

Proof. Let q∗ be an efficient quantity and assume that the firm chooses (q, p) with q 6 q∗.

If q∗(k − V (q∗)) 6 s, then ρ(q∗, V (q∗)) = q∗k and ρ(q, p) = qk. Therefore, since the firm

prefers to produce q over q∗, it follows that C(q∗) − C(q) > (q∗ − q)k, which implies that

DSTR 6 (q∗ − q)(v̄ − k) and

RGRT 6 (1− α)ρ(q, p) + DSTR 6 (1− α)qk + (q∗ − q)(v̄ − k) 6 max((1− α)k, v̄ − k).

If q∗(k − V (q∗)) > s, then let q̄ ∈ [q, q∗) be such that z(k − V (z)) 6 s for q < z < q̄, and

z(k−V (z)) > s for z > q̄. (q̄ is the point at which the subsidy is used up, except that if it is

already used up before q, then q̄ = q). Let p̄ = k − s/q̄. Then it follows from the definition

of q̄ that p̄ > supz>q̄ V (z).

By Lemma 5.2 there exists some z∗ ∈ [q̄, q∗] such that

∫ q∗

q̄

V (z) dz − (C(q∗)− C(q̄)) 6 z∗p− q̄p̄− (C(z∗)− C(q̄)) +D(q̄, p̄),

with p = min(p̄, V (z∗)). Since z∗ > q̄ and p 6 p̄, it follows from the definition of ρ that

ρ
(

z∗, p
)

− z∗p > ρ(q̄, p̄)− q̄p̄ = q̄(k − p̄).

Since the firm prefers to produce q over z∗, it follows that

ρ
(

z∗, p
)

6 ρ(q, p) + (C(z∗)− C(q)).
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The last three inequalities and C(q̄) 6 C(q∗) imply that

∫ q∗

q̄

V (z) dz 6 C(q∗)− C(q) + ρ(q, p)− q̄k +D(q̄, p̄). (11)

Therefore,

DSTR =

∫ q∗

q

V (z) dz − (C(q∗)− C(q)) =

∫ q̄

q

V (z) dz +

∫ q∗

q̄

V (z) dz − (C(q∗)− C(q))

6 (q̄ − q)v̄ − q̄k + ρ(q, p) +D(q̄, p̄) 6 (q̄ − q)(v̄ − k) +D(q̄, p̄),

where the first inequality follows from (11) and V (z) 6 v̄, and the second from ρ(q, p) 6 qk.

It follows that

RGRT 6 (1− α)ρ(q, p) + DSTR 6 (1− α)qk + (q̄ − q)(v̄ − k) +D(q̄, p̄) 6

q̄max((1− α)k, v̄ − k)− q′p̄ log q′ 6 q′ max((1− α)k, v̄ − k)− (q′k − s) log q′,

for some q̄ 6 q′ 6 1 such that q′p̄ > v. Here the last inequality follows from the fact that

p̄ = k − s/q̄ 6 k − s/q′.

5.4 Proof of Theorem 5.1

We need to show that WCR(ρ) > min ((1− α)qkα − qp log q, q(kα − p)) for every q, p such

that qp > v. This follows from Claim 6 with q = 0. We need to show that WCR(ρ) >

(1− α)kα. This follows from Claim 3.

Consider the policy (8) with k = kα and Sα(v) 6 s 6 Rα(v). Since s 6 Rα(v) and

(1 − α)kα 6 Rα(v), it follows from Claim 7 that the regret from overproduction is at most

Rα(v).

For the regret from underproduction, by Claim 8 we need to show that q(1 − α)kα −
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(qkα − s) log q 6 Rα(v) for q = 1 and for every q ∈ [0, 1] such that qkα − s > v. For q = 1,

this follows from the fact that (1 − α)kα 6 Rα(v). Let q < 1 and let p = kα − s/q. Then

qp > v. Let q′ > q. Then q′(kα − p) > s and q′p > v, and by the assumption on s, this

implies that (1− α)q′kα − q′p log q′ 6 Rα(v). Since this is true for every q′ > q, it follows by

continuity that (1− α)qkα − qp log q 6 Rα(v), as desired.

Remark 4. The proof of Claim 6 for the case of q = 0 and the proof of Claim 3 rely only on

fixed-cost functions, as do the proof of the lower bound on the worst-case regret in Theorem

5.1 and the proof of Theorem 3.1. �

5.5 Proof of Theorem 3.3

For this theorem, we assume that v = 0. Let (qα, pα) achieve the maximum in the definition

of rα in (5).

1. Assume that ρ(q, p) > qkα for some q 6 qα and some p. Then ρ̄
(

q
)

> qkα, and

therefore ρ̄
(

q
)

+ (qα − q)kα > qαkα. Therefore, by Claim 6 with q = qα and p = pα, it

follows that

WCR(ρ) > min
(

(1− α)(ρ̄
(

q
)

+ (qα − q)kα)− qαpα log qα, ρ̄
(

q
)

+ (qα − q)kα − qαpα
)

> min((1− α)qαkα − qαpα log qα, qα(kα − pα)) = rα.

2. Suppose that ρ(q, p) < qp+sα for every q, p. This implies that maxq′,p′(ρ(q
′, p′)−p′q′) <

sα. There exists some q ∈ [0, 1], p ∈ [0, kα] such that (1 − α)qkα − qp log q > rα and

q(kα − p) > maxq′,p′(ρ(q
′, p′) − p′q′) > ρ̂(q, p) − qp, which implies that ρ̂(q, p) < qkα.

By Claim 5 with q = 0, we get that WCR(ρ) > rα.

3. Suppose that ρ(q, p) > qp+ rα for some q, p. Then WCR(ρ) > rα by Claim 4.
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