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Abstract

We study the design of profit-maximizing mechanisms in environments with in-
terdependent values. A single unit of a good is for sale. There is a known joint
distribution of the bidders’ ex post values for the good. Two programs are consid-
ered:

(i) Maximize over mechanisms the minimum over information structures and equi-
libria of expected profit;

(ii) Minimize over information structures the maximum over mechanisms and equi-
libria of expected profit.

These programs are shown to have the same optimal value, which we term the profit
guarantee.

In addition, we characterize a family of linear programs that relax (i) and produce,
for any finite number of actions, a mechanism with a corresponding lower bound on
equilibrium profit. An analogous family of linear programs relax (ii) and produce,
for any finite number of signals, an information structure with a corresponding upper
bound on equilibrium profit. These lower and upper bounds converge to the profit
guarantee as the numbers of actions and signals grow large.

Our model can be extended to allow for demand constraints, multiple goods,
and ambiguity about the value distribution. We report numerical simulations of
approximate solutions to (i) and (ii).
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1 Introduction

In recent work, we studied an informationally robust auction design problem in which the
bidders have a pure common value for the good being sold, drawn from a known prior
distribution (Brooks and Du, 2020). The main result of that paper is the construction of
a mechanism and a (common-prior) information structure for the bidders such that the
mechanism maximizes minimum expected profit across all information structures and equi-
libria, the information structure minimizes maximum expected profit across all mechanisms
and equilibria, and the min-max and max-min profits coincide. This model can roughly
be described as a game between a Seller, who chooses the mechanism to maximize profit,
and adversarial Nature, who chooses the information structure to minimize profit. It is
not a standard zero-sum game, however, because profit depends on which equilibrium is
played, and the set of equilibria depends in a complicated manner on the mechanism and
the information structure. It is therefore a non-trivial result that min-max profit is equal
to max-min profit and that this remains true regardless of which equilibrium is selected.

The purpose of the present paper is to generalize this finding. First and foremost,
we drop the common value hypothesis and instead allow for an arbitrary finite-support
joint distribution over bidders’ values. The only substantive assumption for our results to
hold is that the support of the distribution is a product set, although the probability of
a given value profile can be arbitrarily small. In addition, the techniques we develop can
accommodate a variety of auction design problems, such as additional feasibility constraints
on the allocation, the simultaneous auction of multiple goods, and ambiguity about the
value distribution.

Throughout our analysis, we restrict attention to finite mechanisms and finite infor-
mation structures, although the numbers of actions and signals can be arbitrarily large.
Max-2min profit is defined to be the supremum over mechanisms of the infimum over in-
formation structures and Bayes Nash equilibria of expected profit. (The “2” here indicates
that we are minimizing over two objects, the information structure and the equilibrium.)
Similarly, min-2max profit is defined to be the infimum over information structures of the
supremum over mechanisms and equilibria of expected profit. Our first main result, Theo-
rem 1, says that max-2min profit is equal to min-2max profit. We refer to this as a strong
minimax theorem, since the equality of max-min and min-max profit holds regardless of
how we select an equilibrium. We refer to the optimal profit level as the profit guarantee.
Our second main result, Theorem 2, concerns a pair of sequences of linear programs whose
solutions are mechanisms and information structures. Theorem 2 shows that these objects
have lower and upper bounds on profit, respectively, that converge to the profit guarantee
as the number of actions and signals goes to infinity. Thus, the solutions are approximate
max-2min mechanisms and min-2max information structures.

To prove these theorems, we study versions of the max-2min and min-2max programs for
fixed numbers of actions and signals, respectively. We then relax these programs to obtain
upper and lower bounds on min-2max and max-2min profit. These relaxations are the linear
programs characterized in Theorem 2. We argue that the relaxations have asymptotically
the same optimal value, in the limit as the numbers of actions and signals is large, which
is precisely the profit guarantee. The relaxations are obtained by (i) fixing an (arbitrary)
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order on the actions/signals, (ii) dropping all equilibrium conditions except those pertaining
to “local” deviations, and (iii) normalizing the units for signals and actions so that the
shadow cost of all local incentive constraints is the same. The resulting relaxations are
linear programs. Moreover, it turns out that these programs are “almost” a dual pair,
except that in the min-2max relaxation, the local downward constraints bind, as in the
standard auction design model of Myerson (1981), whereas in the max-2min relaxation, it
is local upward constraints that bind. The remainder of the proof shows that in spite of
this difference, the duality gap is small when the number of actions and signals is large.

As mentioned previously, the linear relaxations of the max-2min and min-2max pro-
grams produce approximate max-2min mechanisms and min-2max information structures.
After proving Theorems 1 and 2, we present numerical simulations of these objects for
a wide variety of examples, including: Pure common values; asymmetric perfectly corre-
lated values; independent values; pure common values with asymmetric demands; multiple
goods auctioned simultaneously; and ambiguous correlation between values. The simula-
tions suggest features of the saddle point in the continuum action/signal limit. We stop
short of providing an analytical characterization of the limit solution. Part of the reason is
that there are generally many solutions of the linear relaxations, and additional properties
may be needed to isolate those that are theoretically tractable and of practical interest.
We comment further on this issue in our discussion. Nonetheless, these simulations can
motivate and guide the limit analysis, as they did for our earlier results on pure common
values.

After the extensions, we discuss additional theoretical topics, starting with properties
of the approximate max-2min mechanisms. We then characterize a lower bound on the rate
of convergence of the approximations to the optimal value. We also show that the bounds
are linear and continuous in the underlying fundamental distribution of values.

This paper is related to large literatures in mechanism design and information design.
As discussed above, the most closely related paper is Brooks and Du (2020),1 which studies
a version of the present problem under the assumption of pure common values. In that
paper, we explicitly constructed a saddle point in the limit model with continua of actions
and signals. The max-2min mechanism is what we termed a “proportional auction,” in
which the sum of bidders’ allocations and the sum of bidders payments only depend on
the sum of their actions, and individual allocations and payments are proportional to
actions. We also showed that the limit solution can be approximated by finite mechanisms
and information structures. We have no reason to think that this particular form of the
saddle point will generalize beyond the pure common value model, and we do not construct
continuous solutions for the class of environments considered here. Instead, we argue
non-constructively that the profit guarantee exists and can be approximated with finite
mechanisms and information structures. Thus, a major part of our present contribution
is to develop new tools for simulation, which can then be used to motivate constructions,
either finite or continuous, such as those in Brooks and Du (2020).

Our analysis draws on techniques from the theory of mechanism design and informa-
tion design. With respect to the former, we use direct revelation mechanisms and local

1That paper built on earlier analysis of informationally robust auctions under common values by Du
(2018) and Bergemann, Brooks, and Morris (2016).
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relaxations to bound max-2min profit, as in the revenue equivalence arguments of Myerson
(1981). Our bounds on min-2max profit use analogous revelation arguments for informa-
tion design, specifically Bayes correlated equilibrium (BCE) introduced by Bergemann and
Morris (2013, 2016).

Various papers have studied informationally robust auction design under the assumption
that values are private, including Chung and Ely (2007), Yamashita (2016), Chen and Li
(2018). In contrast, our model allows for values to be interdependent. Yamashita and Zhu
(2018) also study robust mechanism design with interdependent values, but they focus on
conditions under which ex-post incentive compatible mechanisms are also max-min optimal
when the Seller-preferred equilibrium is selected. Other related studies of robust mechanism
design include Neeman (2003), Brooks (2013), Yamashita (2015), Carroll (2017), Berge-
mann, Brooks, and Morris (2019), and the literature on algorithmic mechanism design (e.g.,
Hartline and Roughgarden, 2009).

We conclude this introduction by discussing possible interpretations. Our results can
be understood literally as predicting the choices of a Seller who evaluates each mechanism
by its worst-case profit across all information structures and equilibria. We do not believe
that real-world auction designers have such extreme preferences. At the same time, we
suspect that designers in a practical setting may be unable or unwilling to commit to a
single information structure and a single equilibrium as the correct description of behavior,
as required by the classical Bayesian auction design paradigm. Our view is that the truth is
somewhere in between: Designers may know some features of bidders’ information without
being able to give a complete description. Of course, the ambiguity of bidders’ information
may be accompanied by distinct concerns about the complexity of the mechanism and/or
the accuracy of the equilibrium prediction. It is beyond our present abilities to incorporate
all such concerns into the theory of optimal auctions. We can, however, ask what mech-
anisms are robust to ambiguity about bidders’ information in an extreme sense, provided
we are still willing to accept the common prior and Bayes Nash equilibrium as an as-if
description of behavior.

In our view, the greatest promise of this approach is that it may lead to the discovery
of new auction designs, such as the proportional auction, that are compelling both for their
optimal worst-case performance as well as their simplicity.2 The worst-case performance of
a mechanism is, in a sense, a measure of how “safe” it is. To be sure, it is just one of many
criteria that might be considered in applied auction design. For example, one may also care
how the auction performs on particular, benchmark information structures, such as affili-
ated values. Importantly, there need not be conflict between these criteria: when values are
common and the number of bidders is large, the profit guarantee is approximately the entire
surplus, so that max-2min mechanisms are near optimal in all information structures (Du,
2018; Brooks and Du, 2020). This will not always be the case, however, and an important
task for future work is to evaluate max-2min auctions on particular information structures
and under different solution concepts. Such analyses will lead to a more balanced view of

2The worst-case analysis naturally leads to a great deal of structure on information and mechanisms,
which we view as being relatively “simple,” at least compared to the benchmark of full surplus extraction
mechanisms in correlated type spaces (Crémer and McLean, 1988; McAfee et al., 1989): As we show, there
always exist approximate min-2max information structures with independent signals.
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the merits and demerits of the max-2min auctions, and the tradeoff between informational
robustness and Bayesian optimality.

The rest of this paper proceeds as follows. Section 2 describes a baseline model where
a single unit is being auctioned to bidders with single unit demand, and there is a known
joint distribution of the bidders’ values. Section 3 states and proves the strong minimax
theorem and characterizes the bounding programs. Numerical examples immediately follow
the proof. Section 4 describes various extensions of the baseline model, with accompanying
simulations. Section 5 discusses additional theoretical topics, such as features of max-
2min mechanisms and min-2max information structures, comparative statics in the value
distribution, and the rate of convergence to the profit guarantee. Section 6 is a conclusion.

2 Model

One unit of a good is for sale to a finite group of bidders, indexed by i “ 1, . . . , N . Each
bidder i demands a single unit at a value of vi P R`, with the joint distribution of values
being given by µ P ∆pRN

` q. We assume that µ has a finite support contained in V “ ˆNi“1Vi,
where Vi Ď R` is a finite set of values for bidder i. We let v “ maxi maxVi.

A (finite) information structure consists of a finite set of signals Si for each bidder,
with S “ ˆNi“1Si, and a joint distribution σ P ∆pV ˆ Sq such that the marginal of σ on
V is µ. An information structure is denoted by I “ pS, σq. We let IpSq denote the set of
information structures with signal space S. We let I denote the set of finite information
structures.3

A (finite) mechanism consists of a finite set of actions Ai for each bidder, with A “

ˆNi“1Ai; an allocation rule q : AÑ r0, 1sN and Σqpaq ď 1 for all a P A;4 and a transfer rule
t : AÑ RN . A mechanism is denoted by M “ pA, q, tq. A mechanism is participation secure
if for all i, there exists an action 0 P Ai such that tip0, a´iq “ 0 for all a´i P A´i “ ˆj‰iAj.
We let MpAq denote the set of participation-secure mechanisms with action space A (which
implicitly includes a zero action for each bidder). M is the set of finite mechanisms.

A mechanism and information structure pM, Iq are a Bayesian game, in which bidder
i’s strategy is a mapping bi : Si Ñ ∆pAiq. A strategy profile b “ pb1, . . . , bNq is identified
with the kernel b : S Ñ ∆pAq where bpsq is the product measure ˆNi“1bipsiq. Profit from a
strategy profile b of a game pM, Iq is

ΠpM, I, bq “
ÿ

vPV

ÿ

sPS

ÿ

aPA

Σtpaqbpa|sqσps, vq.

Bidder i’s surplus/utility from a strategy profile b is

Uipbq “
ÿ

vPV

ÿ

sPS

ÿ

aPA

pviqipaq ´ tipaqqbpa|sqσps, vq.

3The set of finite information structures exists because we can identify finite sets of signals with finite
subsets of N. Likewise for the set of finite mechanisms.

4Throughout the paper, we adopt the convention that for a vector x P RN , Σx denotes the sum
x1 ` ¨ ¨ ¨ ` xN .
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A (Bayes Nash) equilibrium is a strategy profile b such that Uipbq ě Uipb
1
i, b´iq for all i and

strategies b1i. We let BpM, Iq denote the set of equilibria for the game pM, Iq, which is
always non-empty since the mechanism and information structure are finite.

3 A Strong Minimax Theorem

3.1 Main results

Our first main result is the following:

Theorem 1 (Strong Minimax). Suppose µpvq ą 0 for all v P V . Then,

inf
IPI

sup
MPM

sup
bPBpM,Iq

ΠpM, I, bq “ sup
MPM

inf
IPI

inf
bPBpM,Iq

ΠpM, I, bq. (1)

We denote the value in (1) by Π˚. The left-hand side of (1) is the min-2max program,
as described in the introduction, whose value is min-2max profit, and the right-hand side
is the max-2min program, whose value is max-2min profit. Theorem 1 says that min-2max
profit is equal to max-2min profit. Equivalently, for any ε ą 0, the Seller has a mechanism
which guarantees a profit of at least Π˚´ ε across all information structures and equilibria,
and Nature has an information structure which guarantees a profit of at most Π˚` ε across
all mechanisms and equilibria.

Theorem 1 is essentially a minimax theorem for the zero-sum game in which the Seller
chooses the mechanism to maximize profit and Nature adversarially chooses information to
minimize profit. There are some key differences between this result and standard minimax
theorems, as we now explain.

First, the aforementioned zero-sum competition between Seller and Nature is not quite
a game, because for a given mechanism and information structure, there may be multiple
equilibria with different profit levels (although an equilibrium always exists due to the
restriction to finite actions and signals). In the left-hand side of (1), in which the Seller
has the second-mover advantage, we have effectively allowed the Seller to also choose the
equilibrium, thus giving the most pessimistic value for Nature. Similarly, in the right-hand
side of (1), where Nature has the second-mover advantage, we also have Nature choose the
equilibrium, thus giving the most pessimistic value for the Seller. The theorem therefore
implies that the values of these programs would hold regardless of how we selected an
equilibrium. We now state this result formally:

Corollary 1. Fix a selection bpM, Iq P BpM, Iq from the equilibrium correspondence B
on Mˆ I. If µpvq ą 0 for all v P V , then

inf
IPI

sup
MPM

ΠpM, I, bpM, Iqq “ sup
MPM

inf
IPI

ΠpM, I, bpM, Iqq.

Second, in a standard zero-sum game, the problem of computing the value can be
reformulated as a linear program. As we will see, the equilibrium constraints prevent
us from following the same approach, and both the min-2max and max-2min in (1) are
non-linear programs.
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Finally, Theorem 1 does not hold when we impose an upper bound on the number of
actions/signals. Fix a finite signal space S and define

ΠMIN´2MAX
pSq “ inf

IPIpSq
sup
MPM

sup
bPBpM,Iq

ΠpM, I, bq. (2)

Similarly, fix an action space A and define

ΠMAX´2MIN
pAq “ sup

MPMpAq

inf
IPI

inf
bPBpM,Iq

ΠpM, I, bq. (3)

Note that the values of these programs only depend on the cardinality of the action and sig-
nal space. In our simulations, reported below, we have generally found that ΠMIN´2MAXpSq ą
ΠMAX´2MINpAq when S andA are finite. Only as |S| Ñ 8 and |A| Ñ 8 does ΠMIN´2MAXpSq´
ΠMAX´2MINpAq tend to zero. This is elaborated in Theorem 2 below, from which Theorem
1 immediately follows.

To develop this result, we need to define two auxiliary linear programs. For a fixed
k P N, let

Xpkq “

"

l

k

ˇ

ˇ

ˇ

ˇ

0 ď l ď k2, l P Z
*N

be the space of actions/signals.
Given a function f : Xpkq Ñ RN , the discrete upward partial derivative ∇`

i fpxq is
defined as5

∇`
i fpxq “ Ixiăkpk ´ 1qpfipxi ` 1{k, x´iq ´ fipxqq.

We let ∇`fpxq “ p∇`
1 fpxq, . . . ,∇`

Nfpxqq. The discrete upward divergence is ∇` ¨ fpxq “
řN
i“1 ∇

`
i fpxq. Also, let

ρpxq “

ˆ

1´
1

k

˙kΣx
1

k
řN

i“1 Ixiăk

. (4)

denote the independent censored geometric distribution on Xpkq with arrival rate 1{k.
Consider the programs

Π
MIN´2MAX

pkq “ min
γ:XpkqÑR`, σ:XpkqˆVÑR`, w:XpkqÑRN

`

ÿ

xPXpkq

γpxq

s.t. γpxq ě ρpxq
“

wipxq ´∇`
i wpxq

‰

@x;
ÿ

vPV

σpx, vq “ ρpxq @x;

ÿ

xPXpkq

σpx, vq “ µpvq @v;

wpxq “
1

ρpxq

ÿ

vPV

vσpx, vq @x

(5)

5Given that the increment between elements in Xpkq is 1{k, a seemingly more natural definition of the
discrete derivative would have a factor k rather than k ´ 1. Of course, these definitions are equivalent in
the limit as k tends to 8, and by defining it with k ´ 1, we simplify several calculations in the proof of
Theorem 2.
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and

ΠMAX´2MIN
pkq “ max

λ:VÑR, q:XpkqÑRN
` , t:XpkqÑRN

ÿ

vPV

µpvqλpvq

s.t. λpvq ď Σtpxq ` v ¨∇`qpxq ´∇`
¨ tpxq @v, x;

Σqpxq ď 1 @x;

tip0, x´iq “ 0 @i, x´i.

(6)

Theorem 1 follows immediately from our second main result, which is the following:

Theorem 2 (Bounds). For all k,

Π
MIN´2MAX

pkq ě ΠMIN´2MAX
pXpkqq ě ΠMAX´2MIN

pXpkqq ě ΠMAX´2MIN
pkq. (7)

Moreover, any optimal solution of problem (5) yields an information structure such that

the maximum profit across mechanisms and equilibria is at most Π
MIN´2MAX

pkq, and any
optimal solution of problem (6) yields a mechanism such that the minimum profit across
information structure and equilibria is at least ΠMAX´2MIN

pkq. Finally, if µpvq ą 0 for all
v P V , then

lim
kÑ8

Π
MIN´2MAX

pkq “ lim
kÑ8

ΠMAX´2MIN
pkq “ Π˚,

where Π˚ is as given in Theorem 1.

Thus, the finite linear programs (5) and (6) bound (2) and (3), and under the full-
support hypothesis, their asymptotic values are equal to the profit guarantee.

3.2 Proof of Theorems 1 and 2

We now prove Theorems 1 and 2. The first step of the proof is showing the inequalities

(7). We then show that Π
MIN´2MAX

pkq ´ ΠMAX´2MIN
pkq converges to zero under the full

support hypothesis.

3.2.1 Ordering ΠMIN´2MAX and ΠMAX´2MIN

An elementary observation is that ΠMIN´2MAX is always greater than ΠMAX´2MIN, and these
values move closer as the the number of actions and signals increases.

Lemma 1. For all S and A, ΠMIN´2MAXpSq ě ΠMAX´2MINpAq. Moreover, if |Ai| ď |A1i|
(respectively |Si| ď |S 1i|) for all i, then ΠMAX´2MINpAq ď ΠMAX´2MINpA1q (respectively
ΠMIN´2MAXpSq ě ΠMIN´2MAXpS 1q).

Proof of Lemma 1. The first part follows from a standard argument in zero-sum games,
adapted to the setting where the second mover also chooses the equilibrium. Fix an ε ą 0,
let M P MpAq be a mechanism such that the infimum profit across information structures
and equilibria is at least ΠMAX´2MINpAq´ ε. Let I P IpSq be an information structure such
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that the supremum profit across mechanisms and equilibria is at most ΠMIN´2MAXpSq ` ε.
Thus, for any equilibrium b P BpM, Iq, ΠMIN´2MAXpSq`ε ě ΠpM, I, bq ě ΠMAX´2MINpAq´
ε, thus showing that ΠMIN´2MAXpSq ě ΠMAX´2MINpAq´2ε. Since ε is arbitrary, we conclude
that ΠMIN´2MAXpSq ě ΠMAX´2MINpAq.

We now prove the second part. For ε ą 0, let M “ pA, q, tq be a mechanism such that
infimum profit across information structures and equilibria is at least ΠMAX´2MINpAq ´ ε.
Since |A1i| ą |Ai|, there exists an onto mapping fi : A1i Ñ Ai for each i. Let f : A1 Ñ A
be the product mapping. We define q1pa1q “ qpfpa1qq and t1pa1q “ tpfpa1qq, and let M1 “

pA1, q1, t1q. It is clear that for every I and Π, there is an equilibrium of pM, Iq with profit
Π if and only if there is an equilibrium of pM1, Iq with profit Π: For given the former, we
can construct a profit-equivalent equilibrium of the latter by selecting a single action in
f´1
i paiq to be played instead of ai, and given the latter, we can construct a profit equivalent

equilibrium in which the action fipa
1
iq is played instead of a1i. Thus, ΠMAX´2MINpA1q ě

ΠMAX´2MINpAq´ε, and since ε is arbitrary, we have ΠMAX´2MINpA1q ě ΠMAX´2MINpAq. The
proof for ΠMIN´2MAX is analogous and is omitted.

3.2.2 Local relaxations

Lemma 2. For all k P N, Π
MIN´2MAX

pkq ě ΠMIN´2MAXpXpkqq. Moreover, if pγ˚, σ˚, w˚q
is an optimal solution to (5), then pXpkq, σ˚q is an information structure for which profit

in any mechanisms and equilibrium is at most Π
MIN´2MAX

pkq.

Proof of Lemma 2. Consider the inner maximization program in (2) for a fixed information
structure I “ pXpkq, σq in IpXpkqq, in which we maximize over all participation-secure
mechanisms and equilibria. The presence of the participation-security action implies that
all bidders must receive non-negative utility in equilibrium. Thus, we can relax the program
by dropping the requirement of participation security, and replacing it with the constraint
that equilibrium interim bidder surpluses must be non-negative.

By the revelation principle (Myerson, 1981), this relaxed program is equivalent to maxi-
mizing profit over incentive compatible and individually rational direct mechanisms. Recall
that a direct mechanism on the information structure I is a mechanism with A “ Xpkq.
When the action and signal spaces coincide, we let bi denote the truthful strategies that
place probability one on ai “ si for all i. The direct mechanism is incentive compatible if
b is an equilibrium. It is individually rational if the truthful strategies give each bidder
a non-negative payoff in the interim stage. Thus, the relaxed program is the finite linear
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program

max
q:SpkqÑRN

` , t:XpkqÑRN

ÿ

xPXpkq

ÿ

vPV

Σtpxqσpx, vq

s.t.
ÿ

vPV

ÿ

x´iPX´ipkq

pviqipxi, x´iq ´ tipxi, x´iqqσpxi, x´i, vq

ě
ÿ

vPV

ÿ

x´iPX´ipkq

pviqipx
1
i, x´iq ´ tipx

1
i, x´iqqσpxi, x´i, vq @i, xi, x

1
i;

ÿ

vPV

ÿ

x´iPX´ipkq

pviqipxi, x´iq ´ tipxi, x´iqqσpxi, x´i, vq ě 0 @i, xi;

Σqpxq ď 1 @x.

The value of this program is equal to that of its dual:

min
tαi:Xipkq2ÑR`, βi:XipkqÑR`uNi“1, γ:XpkqÑR`

ÿ

xPXpkq

γpxq (8)

s.t. γpxq ě
ÿ

x1iPXipkq

ÿ

vPV

virσpx, vqαipxi, x
1
iq ´ σpx

1
i, x´i, vqαipx

1
i, xiqs

`
ÿ

vPV

βipxiqviσpx, vq @i, x;
(8a)

ÿ

vPV

σpx, vq “
ÿ

x1iPXipkq

ÿ

vPV

rσpx, vqαipxi, x
1
iq ´ σpx

1
i, x´i, vqαipx

1
i, xiqs

`
ÿ

vPV

βipxiqσpx, vq @i, x,
(8b)

where αipxi, x
1
iq is the multiplier on the incentive compatibility constraint for type xi not

misreporting as x1i and βipxiq is the multiplier on the individual rationality constraint for
type xi. Thus, (2) has a value less than or equal to the (non-linear) program of minimizing
the value of (8) across all information structures σ and multipliers pα, β, γq.

Note that the value of the inner program (8) will only increase if we hold α and β fixed
at particular values. In particular, consider the following values:

αipxi, x
1
iq “

$

’

&

’

%

1 if x1i `
1
k
“ xi “ k;

k if x1i `
1
k
“ xi ă k;

0 otherwise

(9)

and

βipxiq “

#

k if xi “ 0;

0 otherwise.
(10)

The constraint (8b) (for which tipxq is the multiplier) can be simplified as follows: In a
slight abuse of notation, let σpxq denote the marginal of σ on Xpkq. Then integrating out

10



values and using the particular multipliers, (8b) becomes

σpxq “

#

k´1
k
σpxi ´ 1{k, x´iq if 0 ă xi ă k;

pk ´ 1qσpk ´ 1{k, x´iq if xi “ k.
(11)

The unique probability distribution satisfying this equation is σpxq “ ρpxq defined by (4).
As a result, we can replace (8b) with the constraint

ÿ

vPV

σpx, vq “ ρpxq. (12)

Thus, the multipliers in (9) and (10) are feasible for problem (8) if σ’s marginal distribution
on Xpkq is ρ.

In addition, substituting the chosen multipliers into (8a), the constraint becomes

γpxq ě

$

’

&

’

%

k
ř

vPV virσpx, vq ´ σpxi ` 1{k, x´i, vqs if xi ă k ´ 1{k;
ř

vPV virkσpx, vq ´ σpxi ` 1{k, x´i, vqs if xi “ k ´ 1{k;
ř

vPV viσpx, vq if xi “ k.

(13)

Letting

wpxq “
1

ρpxq

ÿ

vPV

vσpx, vq (14)

denote the interim expected value of bidder i conditional on the signal profile x, the con-
straint (13) can be rewritten as

γpxq ě ρpxq
“

wipxq ´∇`
i wpxq

‰

. (15)

Thus, replacing (8b) with (12) and replacing (8a) with (14) and (15) yields a program with
weakly higher value than (2). This relaxed program is precisely (5).

Lemma 3. For all k ě 0, ΠMAX´2MIN
pkq ď ΠMAX´2MINpXpkqq. Moreover, if pλ˚, q˚, t˚q is

an optimal solution of problem (6), then pXpkq, q˚, t˚q is a mechanism for which profit in
any information structure and equilibrium is at least ΠMAX´2MIN

pkq.

Proof of Lemma 3. Consider the inner minimization program in (3) for a fixed mechanism
M “ pXpkq, q, tq in MpXpkqq. The program of minimizing expected profit over all informa-
tion structures and equilibria can be reformulated as a finite linear program. Specifically, a
Bayes correlated equilibrium (BCE) of M is an information structure with S “ Xpkq such
that the truthful strategies are an equilibrium. The problem of minimizing expected profit
over information structures and equilibria is equivalent to minimizing expected profit over

11



BCE (Bergemann and Morris, 2013, 2016). Explicitly, this program is

min
σ:XpkqˆVÑR`

ÿ

vPV

ÿ

xPXpkq

Σtpxqσpx, vq

s.t.
ÿ

vPV

ÿ

x´iPX´ipkq

rviqipxi, x´iq ´ tipxi, x´iqsσpxi, x´i, vq

ě
ÿ

vPV

ÿ

x´iPX´ipkq

rviqipx
1
i, x´iq ´ tipx

1
i, x´iqsσpxi, x´i, vq @i, xi, x

1
i;

ÿ

xPXpkq

σpx, vq “ µpvq @v.

The value of this program is equal to that of its dual:

max
tαi:pXipkqq2ÑR`uNi“1, λ:VÑR

ÿ

vPV

λpvqµpvq (16)

s.t. λpvq ď Σtpxq `
N
ÿ

i“1

ÿ

x1iPXipkq

αipxi, x
1
iq
“

pviqipx
1
i, x´iq ´ tipx

1
i, x´iqq

´ pviqipxi, x´iq ´ tipxi, x´iqq
‰

@x, v,

where αpxi, x
1
iq is the multiplier on the obedience constraint that a bidder with signal xi not

want to bid x1i, and λpvq is the multiplier on the constraint that the marginal probability
of v P V under σ is µpvq. Moreover, any feasible solution to the dual is a lower bound on
the value of the primal. In particular, consider the following feasible multipliers:

αipxi, x
1
iq “

#

k ´ 1 if x1i ´
1
k
“ xi;

0 otherwise.
(17)

In this case, the dual constraint becomes

λpvq ď Σtpxq ` v ¨∇`qpxq ´∇`
¨ tpxq. (18)

Thus, the maximum of (16) subject to (18) is a lower bound on the inner minimization
program in (3). As a result, the maximum of this lower bound across all participation secure
mechanisms, given by the linear program (6), is a lower bound on the value of (3).

12



3.2.3 Convergence

Program (5) has the following dual:6

max
λ:VÑR,Ξ:XpkqÑR, q:XpkqÑRN

`

ÿ

xPXpkq

ρpxqΞpxq `
ÿ

vPV

µpvqλpvq

s.t. Ξpxq ` λpvq ď v ¨∇´qpxq @v, x;

∇´
i qpxq “

$

’

&

’

%

kqipxq xi “ 0;

kpqipxq ´ qipxi ´ 1{k, x´iqq 0 ă xi ă k;

qipxq ´ qipxi ´ 1{k, x´iq xi “ k;

@i, x

Σqpxq ď 1 @x.

(19)

Lemma 4. Suppose µpvq ą 0 for every v P V . Let εpkq ą C
k

where C is any constant

bigger than 2v{µpvq
v2i´v

1
i

for all i, v P V , and v1i, v
2
i P Vi such that v1i ‰ v2i . Then there exists an

optimal solution pλ˚,Ξ˚, q˚q of (19) that satisfies

q˚i pxi ´ 1{k, x´iq ď q˚i pxq ` εpkq (20)

for every i and every x such that 0 ă xi ă k.

We defer the proof of Lemma 4 to the appendix. The argument consists of two main
steps. First, we argue that optimal λ can be taken to be bounded as k Ñ 8. The optimal
λ and Ξ in (19) are only defined up to a constant, so it is without loss to normalize them
so that the expected value of Ξ is zero and

ÿ

vPV

µpvqλpvq “ Π
MIN´2MAX

pkq.

Now, consider the variation of (19) where we hold fixed some particular λ. The dual of
this linear program is similar to (5), except that instead of the constraint on the marginal
of σ on v, there is an extra term in the objective, which is now

Π
MIN´2MAX

pkq `
ÿ

xPXpkq

γpxq ´
ÿ

vPV

λpvq
ÿ

xPXpkq

σpx, vq, (21)

which is effectively a linear cost of a value distribution. Now, if λpvq were larger than v,
then a feasible solution to this program is to put probability one on this v. As a result,
the second two terms in (21) would be negative, which contradicts the optimal value being

Π
MIN´2MAX

pkq. Finally, since λ is bounded above and the value of (19) is non-negative,
the full-support hypothesis implies that λ is bounded below, uniformly across k. This is
the only place in the proof of Theorems 1 and 2 where we use the hypothesis that µ has
full support.

6When taking the dual of (5) we find it convenient to replace the constraint (15) by the equivalent
constraint (13).
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The second step is to show that for k sufficiently large, the optimal value of (19) does
not change if we impose (20) for all i and x as additional constraints. This argument is
actually made through the dual of the constrained program where we hold fixed an optimal
λ. Again, this program looks much like (5), except with the modified objective (21) and no
marginal constraint, and there are now extra variables which correspond to multipliers on
(20). When k is large, and using the hypothesis that λ is bounded, we use a perturbation
argument to show that the optimal multipliers on the constraints (20) must all be zero.

The following lemma is the last piece of the argument that the programs (5) and (6)
have the same asymptotic value as k goes to infinity:

Lemma 5. Suppose µpvq ą 0 for every v P V . Then

lim inf
kÑ8

´

ΠMAX´2MIN
pkq ´ Π

MIN´2MAX
pkq

¯

ě 0.

Proof of Lemma 5. To prove the lemma, it is convenient to reformulate program (6) so
that it closely resembles program (19).

First, the dual of (6) is

min
γ:XpkqÑR`, σ:XpkqˆVÑR`

ÿ

xPXpkq

γpxq (22)

s.t. γpxq ě pk ´ 1q
ÿ

vPV

vipσpxi ´ 1{k, x´i, vqIxią0 ´ σpx, vqIxiăkq @i, x; (22a)

ÿ

v

pσpx, vq ´ pk ´ 1qpσpxi ´ 1{k, x´i, vqIxią0 ´ σpx, vqIxiăkqq “ 0

@i, x such that xi ą 0;

(22b)

ÿ

xPXpkq

σpx, vq “ µpvq @v, (22c)

where σpx, vq is the multiplier on the first constraint in (6), and γpxq is the multiplier on
the second constraint (feasibility constraint for q).

Second, exactly as we solve the marginal of σ on Xpkq in program (8) (see equation
(11)), we have picked the multipliers in (17) so that constraint (22b) is equivalent to

ÿ

vPV

σpx, vq “ ρpxq @x. (23)

This follows from an analogous calculation as in the proof of Lemma 2. Finally, after
replacing constraint (22b) with (23) in program (22), the dual of (22) becomes:

max
λ:VÑR,Ξ:XpkqÑR, q:XpkqÑRN

`

ÿ

xPXpkq

ρpxqΞpxq `
ÿ

vPV

µpvqλpvq (24)

s.t. Ξpxq ` λpvq ď v ¨∇`qpxq @v, x; (24a)

Σqpxq ď 1 @x, (24b)

where qipxq is the multiplier on constraint (22a), λpvq is the multiplier on constraint (22c),
and Ξpxq is the multiplier on constraint (23). By construction, the programs (6) and (24)
have the same optimal value of ΠMAX´2MIN

pkq.
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Let εpkq “ C`ε
k

where C is given in the statement of Lemma 4 and ε ą 0 is arbitrary.
By Lemma 4, let pλ˚,Ξ˚, q˚q be an optimal solution of (19) that satisfies q˚i pxi´1{k, x´iq ď
q˚i pxq ` εpkq for every i and every x such that 0 ă xi ă k.

Define

qipxq “

#

q˚i pxi´1{k,x´iq

1`Nεpkq
if 0 ă xi ă k;

0 if xi “ 0 or xi “ k;

λpvq “
k ´ 1

kp1`Nεpkqq
λ˚pvq @v P V ;

Ξpxq “

#

k´1
kp1`Nεpkqq

Ξ˚pxq if x R BXpkq;

´pk ´ 1qNv ´maxvPV λpvq if x P BXpkq,

(25)

where BXpkq “ tx P Xpkq | xi ě k ´ 1{k for some iu.
We claim that pλ,Ξ, qq is feasible for the program (24): First, the constraint (24a) holds

for x P BXpkq because

Ξpxq “ ´pk ´ 1qNv ´max
vPV

λpvq ď v ¨∇`qpxq ´ λpvq

for all v; (24a) also holds for x R BXpkq because ∇`qpxq “ k´1
kp1`Nεpkqq

∇´q˚pxq, Ξpxq “
k´1

kp1`Nεpkqq
Ξ˚pxq, λpvq “ k´1

kp1`Nεpkqq
λ˚pvq, and Ξ˚pxq`λ˚pvq ď v¨∇´q˚pxq. Also, the feasibility

constraint (24b) is satisfied, as

N
ÿ

i“1

qipxq “
N
ÿ

i“1

q˚i pxi ´ 1{k, x´iq

1`Nεpkq
I0ăxiăk ď

N
ÿ

i“1

q˚i pxq ` εpkq

1`Nεpkq
ď 1.

Finally, the difference in objectives of (19) under pλ˚,Ξ˚, q˚q (which is equal to Π
MIN´2MAX

pkq)
and of (24) under pλ,Ξ, qq is

ÿ

xPXpkq

ρpxqpΞ˚pxq ´ Ξpxqq `
ÿ

vPV

µpvqpλ˚pvq ´ λpvqq

“
ÿ

xPXpkq

ρpxq

ˆ

1´
k ´ 1

kp1`Nεpkqq

˙

Ξ˚pxq `
ÿ

xPBXpkq

ρpxq

ˆ

k ´ 1

kp1`Nεpkqq
Ξ˚pxq ´ Ξpxq

˙

`
ÿ

vPV

µpvq

ˆ

1´
k ´ 1

kp1`Nεpkqq

˙

λ˚pvq

“

ˆ

1´
k ´ 1

kp1`Nεpkqq

˙

Π
MIN´2MAX

pkq

`
ÿ

xPBXpkq

ρpxq

ˆ

k ´ 1

kp1`Nεpkqq
Ξ˚pxq ` pk ´ 1qNv `max

vPV

k ´ 1

kp1`Nεpkqq
λ˚pvq

˙

ď

ˆ

1´
k ´ 1

kp1`Nεpkqq

˙

Π
MIN´2MAX

pkq `Np1´ 1{kqk
2´1

ˆ

k ´ 1

kp1`Nεpkqq
kNv ` pk ´ 1qNv

˙

,
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where in the last line we use the fact that ρpBXpkqq ď Np1´ 1{kqk
2´1 and Ξ˚pxq`λ˚pvq ď

v ¨ ∇´q˚pxq ď kNv. The last line of the display equation vanishes as k Ñ 8 because

εpkq Ñ 0 and Π
MIN´2MAX

pkq ď v for all k (since σpx, vq “ ρpxqµpvq is feasible for the
program (5)). This implies the result, since ΠMAX´2MIN

pkq is equal to the value of the
program (24), which is weakly larger than the objective obtained by pλ,Ξ, qq.

Proof of Theorem 2. From Lemma 2, we know that ΠMIN´2MAXpXpkqq ď Π
MIN´2MAX

pkq
for all k, and Lemma 3 implies ΠMAX´2MIN

pkq ď ΠMAX´2MINpXpkqq for all k. Lemma 1
implies that limkÑ8 ΠMIN´2MAXpXpkqq and limkÑ8 ΠMAX´2MINpXpkqq exist. Putting these
together and applying Lemma 5, we conclude that

lim
kÑ8

Π
MIN´2MAX

pkq “ lim
kÑ8

ΠMIN´2MAX
pXpkqq

“ lim
kÑ8

ΠMAX´2MIN
pXpkqq “ lim

kÑ8
ΠMAX´2MIN

pkq.

Proof of Theorem 1. The left-hand side of (1) is equal to the inf over all finite signal spaces
S of ΠMIN´2MAXpSq. By Lemma 1, ΠMIN´2MAXpXpkqq is a decreasing sequence, so that the
left-hand side of (1) is less than or equal to the limit as k goes to infinity of ΠMIN´2MAXpkq,
which by Theorem 2 is Π˚. A similar argument shows that the right-hand side of (1) is at
least Π˚ as well. The theorem then follows from Lemma 1, which implies that the left-hand
side of (1) is greater than the right-hand side.

3.3 Discussion

Approximate dual pair The proof of Theorems 1 and 2 essentially shows that the values
of the programs (2) and (3) are completely determined by local incentive constraints, and
that they are asymptotically equivalent to their respective local relaxations, the programs
(5) and (6). At first glance, these programs appear unrelated: in the former we minimize
over information structures, and the latter we maximize over mechanisms. In fact, these
programs are closely related to one another and are “almost” a dual pair in the following
sense. The proof of Lemma 5 shows that transfers can be “solved out” of (6) to obtain the
program (24), where we just maximize over the allocation. This program is nearly identical
to the dual of (5), program (19), with one exception: In (24), it is local upward incentive
constraints that are binding, whereas in (19), it is local downward constraints that bind.7

As a result, it is the discrete downward derivative of the allocation that appears in (19),
whereas the discrete upward derivative is in (24).

Notice that there are analogous similarities and differences between the program (5)
and the dual of (6) (or more specifically its reformulation (24)). Both involve minimization
over information structures whose marginal on Xpkq is ρ.8 And in both cases, the variable

7This difference in the pattern of binding local incentive constraints is explicit in the proofs of Lemmas
2 and 3.

8The marginal constraint on Xpkq is explicit in (5). The dual of (24) is briefly described in the proof
of Lemma 5, and is the same as the program (22) except that the constraint (22b) is replaced with the
marginal constraint on Xpkq.
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γpxq represents a highest “virtual value” of the bidders. The key difference is that in (5),
the virtual value, written in terms of the interim value, is

wipxq ´ pk ´ 1qpwipxi ` 1{k, x´iq ´ wipxqq

whereas in the dual of (6), the virtual value is

wipxq ´ kpwipxq ´ wipxi ´ {k, x´iqq.

Thus, the key difference between these expressions (when k is large) is whether local upward
or local downward constraints are used to compute information rents.

Lemma 5 shows that this difference is inconsequential when k is large, and whether local
constraints go up or down, we arrive at the same asymptotic value for the local relaxation.
An important unanswered question is whether these programs can be formulated as an
exact dual pair in the continuum limit. If so, there are important implications for the
structure of the solution, which we discuss in the conclusion.

One-dimensional action/signal space The common signal/action space Xpkq in the
programs (5) and (6) is one dimensional in the following senses: First, (5) is derived from
(2) by dropping all non-local incentive-compatibility constraints; and likewise for (6) and
(3). In effect, the proof shows that max-2min mechanisms and min-2max information
structures are determined by local incentive compatibility with respect to some order, and
we have simply labeled actions and signals in Xpkq so that the order coincides with the
standard order on subsets of R.

Second, Lemma 4 shows that it is without loss to restrict attention to solutions to (6)
and (19) in which the allocation does not jump down by more than C{k for a constant C.
Thus, in the k Ñ 8 limit, the subgradient of the allocation qi is bounded below. In fact,
while upward jumps are not ruled out by our argument, simulations reported below suggest
that it is without loss for the allocation to be continuous. This is an intuitive feature of
max-2min auctions: small changes in messages result in small changes in allocations, which
makes the mechanism less susceptible to manipulation through information.

Based on simulations, we conjecture that the order on signals and actions plays an
additional role: In every instance where we solved(6) and (19), we have found that there
exists an optimal solution in which qipxq is non-decreasing in xi. We have selected such
solutions in the simulations we report throughout this paper. The conjecture that non-
decreasing qi is without loss of generality has interesting implications, which we discuss
further in Section 5.

Independent signals It is intuitive that the min-2max information structure that solves
(2) would have independent signals, as this rules out Crémer and McLean (1988) style
constructions, where bidder surplus is extracted by having the bidders make bets about
others’ types. In the extreme case where the signal distribution satisfies the Crémer and
McLean separation conditions and full surplus extraction is possible, bidders’ incentive
constraints are all slack and only participation constraints bind. In contrast, in the classic
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revenue equivalence results of Myerson (1981) with independent signals, all local incentive
constraints bind.

Remarkably, the proof of Lemma 2 shows that binding local incentive compatibility is
actually equivalent to independence of the signals. In particular, we derived the independent
marginal ρ from the hypothesis that a rich class of local incentive constraints were binding
in the local relaxation of (2). Lemma 2 also implicitly uses the binding local incentive
compatibility constraint to solve out the interim transfer and represent the profit as an
expected virtual value of the winner (Myerson, 1981).

Note that the values of multipliers on the local incentive compatibility constraint in
Lemma 2 and also the particular independent signal distribution are merely a normalization.
This can be seen in program (8): Suppose that only local downward incentive constraints
bind, meaning compatibility constraint, that is, αipxi, x

1
iq ą 0 if and only if x1i ` 1{k “ xi.

Suppose also that individual rationality constraints are all slack, so that βipxiq “ 0. Then
letting σipxiq denote the marginal of bidder i’s signal, the constraint (8b) reduces to

σipxiq “ σipxiqαipxi, xi ´ 1{kqIxią0 ´ σpxi ` 1{kqαipxi ` 1{k, xiqIxiăk @i, x,

where we have integrated out v and x´i. Summing the above equation across xi ě x1i yields

ÿ

xiěx1i

σpxiq “ σpx1iqαipx
1
i, x

1
i ´ 1{kq.

In other words, the multiplier on the local incentive compatibility constraint is exactly
equal to the inverse hazard rate of the signal distribution.

3.4 Examples

3.4.1 Perfectly correlated values

We now give examples of the approximate min-2max information structures and max-2min
mechanisms, which solve (5) and (6), respectively.9 Our first example is one in which
v1 “ v2` c for a constant c, i.e., values are perfectly positively correlated. Bidder 2’s value
v2 is uniformly distributed on an evenly spaced grid of 10 values between 0 and 1.

Note that this example does not satisfy the full-support hypothesis, so that the asymp-
totic equivalence of (2) and (3) is not implied by Theorem 1. When values are pure common,
however, the equivalence of these programs is a result of the constructive argument in The-
orems 3 and 4 of Brooks and Du (2020). And the first part of Theorem 2, that the local
relaxations provide profit guarantees, does not depend on µ having full support. In fact, we
conjecture that Theorems 1 and 2 remain true in their entirety even without full support.

We now proceed with the discussion of simulations. When c “ 0, this example reduces
to the model of Brooks and Du (2020). In that paper, we presented max-2min mechanisms
and min-2max information structures in the limit when the action/signal space is all of R`.
The mechanism has the form of a “proportional auction,” in which the aggregate allocation

9All computations were performed using Gurobi on a 2019 Macbook Pro with a 2.8 GHz Quad-Core
Intel Core i7 processor. Unless otherwise stated, we used the interior point (barrier) algorithm. Each
calculation took approximately 5 seconds.
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(a) Approximate max-2min allocation (b) Approximate max-2min transfer

(c) Limit max-2min allocation (d) Limit max-2min transfer

(e) Approximate min-2max information

Figure 1: Max-2min mechanisms and min-2max information with pure common values.
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and aggregate transfer only depend on the aggregate action, and individual allocations and
transfers are proportional to actions. For this example, the aggregate allocation has the
form QpΣxq “ mint1, αΣxu for a constant α. Thus, each bidder i’s allocation on the low
rationing region is a simple linear function of their action: qipxq “ αxi. (This appears to
be a general feature of aggregate allocations for mechanisms in which the good is rationed
for low aggregate actions.)

The first row of Figure 1 shows the approximate max-2min mechanism as computed by
solving (6) with k “ 7 (so that each bidder has 50 actions). This mechanism guarantees
profit of at least 0.2564, or 51% of the expected value. The proportional auction (for which
the message space is all of R`) is depicted in the second row for comparison. The approx-
imate max-2min allocation bears a close resemblance to the proportional rule, including
in the behavior of the aggregate allocation. Indeed, the solution in Brooks and Du (2020)
was in part motivated by looking at simulations of this form. The approximate max-2min
transfer does not suggest the proportional form. As we will discuss in Section 5, even hold-
ing fixed a particular max-2min allocation, there may be many transfer rules which could
complete a max-2min mechanism. Numerical simulations of (6) need not produce the most
interesting or tractable solution. As a result, for our subsequent examples, we will focus
on max-2min allocations, and revisit the question of max-2min transfers in Section 5.

The bottom panel of Figure 1 shows the approximate min-2max information produced
by (5). Profit in this information structure is at most 0.2856, so that the gap between

ΠMAX´2MIN
pkq and Π

MIN´2MAX
pkq is approximately 5.8% of the expected value. Inter-

estingly, the simulated min-2max information very nearly coincides with the theoretical
solution with a continuum of signals: The interim expected value w1pxq “ w2pxq to be
an increasing function of the aggregate signal. There is a cutoff, below which the interim
expected value grows exponentially, and above which the interim expected value is equal
to the ex post value. This structure gives rise to the discontinuities in the value function,
evident in Figure 1, which occur when the interim expected value jumps up to the next
higher value in the grid with increments of 0.1.

Our next simulation has c “ 0.1, so that there is common knowledge that bidder 1’s
value is higher than bidder 2’s.10 In this case, it is socially efficient to always allocate
the good to buyer 1. In contrast, the max-2min mechanism takes into account the cost of
incentivizing truthtelling, and sometimes allocates to bidder 2 so as to reduce information
rents. The simulated allocation is depicted in the top row of Figure 2. Together with
the transfer that solves (6), this mechanism guarantees profit at least 0.2977, while the
efficient surplus (if the good is always allocated to bidder 1) is now 0.6.11 Remarkably, it
appears that for signals in which the aggregate allocation is 1, the allocation only depends
on bidder 1’s signal. The approximate min-2max information structure has independent
censored geometric signals, with the interim value function for v2 depicted in the bottom
row of Figure 2. (Bidder 1’s interim expected value is simply w1pxq “ w2pxq ` 0.1.) Profit

10Note that this model does not have pure common values and is not characterized by Brooks and Du
(2020).

11Note that the profit guarantee rises by much less than the increase in the efficient surplus, because
in order to realize that gain, it would be necessary to allocate the good to bidder 1, which in turn would
necessitate granting bidder 1 a large information rent.
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(a) Approximate max-2min allocations

(b) Approximate min-2max interim value

Figure 2: Approximate max-2min mechanism and min-2max information with perfectly
correlated asymmetric values.

on this information structure is at most 0.2856. Thus, while this example does not satisfy
the full support assumption, we see that the upper and lower bounds on profit are quite
close. Note that bidder 1’s allocation hits 1, and bidder 2’s allocation hits 0, precisely on
the region where the interim expected value maxes out, i.e., w1 “ 1.1 and w2 “ 1.

As c increases, the region where the allocation is interior shrinks. When c is sufficiently
large, the optimal mechanism always allocates the good to bidder 1 at a price of 1.

3.4.2 Independent values

Our next example has two bidders whose values are independently distributed on the same
ten-point grid in r0, 1s. The simulated allocation and interim values for bidder 1 are depicted
in Figure 3. The corresponding objects for bidder 2 are symmetric.
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(a) Approximate max-2min allocation (b) Approximate min-2max interim value

Figure 3: Approximate max-2min mechanism and min-2max information for independent
values.

The allocation that solves (6) is in the left panel. The expected highest value in this
discrete example is 0.683, and the approximate max-2min mechanism guarantees profit of at
least 0.2826, or approximately 41% of the efficient surplus.12 We again see a region where
the aggregate action is below a cutoff on which the good is rationed, and each bidder’s
allocation is linear in their action. A striking result is that on the high region where the
good is always allocated, it appears that the allocation only depends on the difference in
the bidders’ signals, with a bidder’s allocation being increasing in their action.

The interim expected value is on the right panel. Maximum profit on this information
structure is at most 0.3170. While bidders’ ex post values are independent, their interim
expectations are highly correlated, with both bidders’ interim expected values being higher
when the absolute difference in their signals is large. Bidder i’s interim value is highest
when xi ´ xj is above a threshold. The set of signals where bidder i’s interim value is
maximized roughly corresponds to the set of actions where their allocation hits 1.

4 Variations

The proof of Theorems 1 and 2 can be extended to a variety of auction design problems
which are not formally subsumed in the model of Section 2. We now describe three such
variations: Asymmetric demands among the bidders, auctioning multiple goods simultane-
ously, and ambiguity about the value distribution.

12Thus, while the profit guarantee is higher than with perfectly correlated values, it does not rise nearly
as much as the expected value. The reason, of course, is that the bidders can obtain higher information
rents when their values are independent.
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4.1 Asymmetric demands

Even if bidders have the same per-unit value for the good, they may demand different
quantities. For example, if the auction is an IPO, then different bidders may have different
capacities for the risk associated with owning equity in the firm. These different risk
capacities may be related to public information about the bidders, such as the sizes of their
portfolios.

Let us suppose that it is public information that bidder i demands at most κi units of
the good. A mechanism must now satisfy the additional restrictions qipxq ď κi for all i.

We claim that Theorems 1 and 2 can be generalized to models with such asymmetric
demands, as we now explain. The program (5) is modified to the following:

min
γ:XpkqÑR`,ηi:XpkqÑR`,σ:XpkqˆVÑR`,w:XpkqÑRN

`

ÿ

xPXpkq

«

γpxq `
ÿ

i

κiηipxq

ff

s.t. γpxq ` ηipxq ě ρpxq
“

wipxq ´∇`
i wpxq

‰

@x;
ÿ

vPV

σpx, vq “ ρpxq @x;

ÿ

xPXpkq

σpx, vq “ µpvq @v

wpxq “
1

ρpxq

ÿ

vPV

vσpx, vq @x.

(26)

while (6) becomes

max
q:XpkqÑA,t:XpkqÑRN ,λ:VÑR

ÿ

vPV

µpvqλpvq

s.t. λpvq ď Σtpxq ` v ¨∇`qpxq ´∇`
¨ tpxq @pv, xq;

Σqpxq ď 1 @x;

qipxq ď κi @i, x;

tip0, x´iq “ 0 @i, x´i.

The proof that these programs bound (2) and (3) follows closely the proofs of Lemmas 2
and 3, with the additional demand constraints. The variables ηi in (26) are the multipliers
on the demand constraints in the inner minimization program of (2) and are introduced
when we take a dual as in the proof of Lemma 2. The proof of Lemma 3 is essentially
unchanged.

In addition, the arguments for bounded λ in Lemma 4 and the shifting argument of
Lemma 5 proceed essentially as before. A subtle feature of the proof of Lemma 4 is that in
the perturbation which “drives out” the multipliers on the constraints (20), we change the
value distribution but do not change γ. When we add demand constraints, the perturbation
proceeds as before, and now both γ and ηi are unchanged. For Lemma 5, a key step is the
transformation of an optimal solution pλ˚,Ξ˚, q˚q to (19) into a feasible solution pq, λ,Ξq
for the dual of (6), defined in (25) which has approximately the same value. Critically, we
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(a) Approximate max-2min allocations

(b) Approximate min-2max interim value

Figure 4: Approximate max-2min mechanism and min-2max information with pure com-
mon values but bidder 1 demands only 0.5 units.

have defined q to be either 0 or so that

qipxq ď q˚i pxi ´ 1{k, x´iq ď κi,

so that q also satisfies individual demand constraints. The rest of the proof goes through
as before.

Figure 4 depicts the approximate max-2min mechanism and min-2max information for
the pure common value example of Section 3.4, except that bidder 1 is only willing to buy
0.5 units of the good. In addition to the usual low linear rationing region, we see that there
is a rectangular region where bidder 1’s action is relatively high and bidder 2’s action is
relatively low on which bidder 1’s allocation maxes out at 0.5. On this region, the good
is still rationed, and bidder 2’s allocation only depends on their signal. In the information
structure, the interim expected value only depends on bidder 2’s signal on the region where
bidder 1’s allocation has maxed out.
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Note that the particular form for the feasibility constraint does not play a significant
role in the argument, and we could easily generalize to other constraints on the allocation,
e.g., a cap on the share of the good allocated to a subset of the bidders. The critical
feature is that the constraint is “downward closed,” meaning that if all bidders’ allocations
decrease, the constraint will still be satisfied.

4.2 Simultaneous auction of multiple goods

Suppose that there are L goods for sale, indexed by l “ 1, . . . , L, and each bidder demands
a single unit of each of the goods. Let vl,i denote bidder i’s value for good l. The primitive is
a prior distribution over buyers’ values for all goods. An information structure now consists
of sets of signals and a joint distribution over signals and bidders’ values for all goods. A
mechanism now specifies sets of actions and allocations for each bidder and good.13

The program (5) is generalized as follows:

min
γl:XpkqÑR`, σ:XpkqˆV LÑR`, wl:XpkqÑRN

`

L
ÿ

l“1

ÿ

xPXpkq

γlpxq

s.t. γlpxq ě ρpxq
“

wl,ipxq ´∇`
i wlpxq

‰

@l, i, x;
ÿ

vPV

σpx, vq “ ρpxq @x;

ÿ

xPXpkq

σpx, vq “ µpvq @v;

wlpxq “
1

ρpxq

ÿ

vPV

vlσpx, vq @l, x,

where now wpxq is a matrix that specifies an interim expected value wl,ipxq for each good
l and bidder i. The program (6) becomes

max
ql:XpkqÑRN

` , tl:XpkqÑRN , λ:V LÑR

ÿ

vPV L

µpvqλpvq

s.t. λpvq ď
L
ÿ

l“1

`

Σtlpxq ` vl ¨∇`qlpxq ´∇`
¨ tlpxq

˘

@pv, xq;

Σqlpxq ď 1 @l, x;

tl,ip0, x´iq “ 0 @l, i, x´i.

As with asymmetric demands, the proofs of Lemmas 2 and 3 proceed as before, by dropping
non-local obedience and incentive constraints and fixing the multipliers on local incentives.
Lemma 4 is also generalized, by showing that the constraints

ql,ipxi ´ 1{k, x´iq ď ql,ipxq ` εpkq (27)

13The demand constraint example of the previous section could also be modeled with multiple goods,
some of which are only assigned positive value by some bidders. Nonetheless, there is independent value
to the extension with demand constraints, as it illustrates how more general feasibility constraints could
be added to the model, including constraints which cannot be easily mapped into a multiple goods model.
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(a) Approximate max-2min allocations

(b) Approximate min-2max interim value

Figure 5: Approximate max-2min mechanism and min-2max information with pure com-
mon values and two goods.

are redundant if εpkq “ C{k for C sufficiently large. The proof is as before, via a pertur-
bation of the value distribution that drives out multipliers on (27). The proof of Lemma 5
is also generalized: when k is large, there is an optimal solution pλ˚,Ξ˚, q˚q that satisfies
the no-downward-jump constraints (27) for each l and i. We can define a new solution ql,i
exactly as in (25), which has approximately the same value.

We illustrate this extension with a two-bidder two-good example. First assume bidders
have pure common values for each good, so vl,1 “ vl,2 almost surely for each l “ 1, 2. The
common values are independently distributed across goods. The lower and upper bounds
on Π˚ are 0.5942 and 0.6542, respectively. The optimal mechanism and information are
depicted in Figure 5. (Bidder 1’s allocations are depicted, with bidder 2’s allocations being
symmetric.) The simulation clearly indicates that the allocation and interim expected
values for the two goods are exactly the same. Thus, the two-good pure common value
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model reduces to a single-good pure common value model, in which the value for the single
good is the sum of the values of the two goods. This is in spite of the fact that the underlying
values are independent across the two goods. Why should this be the case? Clearly the
Seller can treat the two goods as one, and only offer them bundled together, in which case
all that matters are bidders’ beliefs about the value of the bundle. At the same time, it
is possible for Nature to only give bidders information about the value of the bundle, as
in the simulation. In this case, the symmetry of the underlying value distribution implies
that w1,ipxq “ w2,ipxq for all x, i.e., bidders always assign the same interim expected value
to both goods. As a result, the Seller can do no better than the optimal profit guarantee
when the goods are bundled.

Indeed, we conjecture that the limit analysis of Brooks and Du (2020) can be generalized
to formally show that proportional auctions for the grand bundle are max-2min mechanisms
when there are multiple goods with pure common values and the distribution of the goods’
values is exchangeable. More broadly, let us say that a value distribution is exchangeable
across goods if all µpvq “ µpv1q for all v and v1, where v1i is a permutation of vi for all i.
We conjecture that if values are exchangeable across goods, then the multi-good problem
reduces to a single-good problem in which bidders only learn about their value for the grand
bundle, and the Seller only offers the grand bundle for sale.

If, however, values are not exchangeable across goods, then the multiple-good problem
need not reduce to an auction for the grand bundle, as the following example shows. Let
us now suppose that bidder 2’s values vl,2 are distributed as before, uniform on each good
l and independent across goods; bidder 1 has the same value for good 2 as bidder 1 but
assigns more value to good 1 than bidder 2: v2,1 “ v2,2 and v1,1 “ v1,2`1. The approximate
max-2min allocations are depicted in Figure 6. As we can see, bidders receive each good
with different probabilities. As we would expect, good 1 is mostly allocated to bidder 1,
since their value for that good is much higher. Interestingly, bidder 1 also tends to get
more shares of good 2 than bidder 2, even though the two bidders have the same value,
because of the endogenous bundling of the two goods in the max-2min mechanism.

4.3 Ambiguous correlation between values

Our last two extensions regards the constraint on the value distribution. We have assumed
heretofore that the Seller knows the value distribution exactly, while at the same time
taking a worst case over bidders’ information and the equilibrium strategies. There is a
clear tension here. Our last two extensions incorporate ambiguity with regard to the value
distribution.

First, suppose that the Seller knows that each bidder i’s value is distributed according
to µi P ∆pV q, but the Seller does not know the joint distribution of values.14 Thus, an

14Carroll (2017) studies a robust multiple-good monopoly problem where the designer knows marginal
distributions but takes a worst case over the joint distribution. In contrast, we model the sale of a single
unit to multiple bidders, where there is ambiguity about the joint distribution of bidders’ values. Moreover,
Carroll (2017) assumes that the agent knows their ex post value, and just varies the correlation structure,
whereas our model incorporates ambiguity about bidders’ information.
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Figure 6: Max-2min allocation with two goods with non-exchangeable values.

information structure pS, σq need only satisfy
ÿ

s,v´i

σps, vi, v´iq “ µipviq @i, vi.

These constraints replace the marginal constraint in the program (5). The analogue of
program (6) is now:

max
q:XpkqÑRN

` ,t:XpkqÑRN ,λ:VÑR

N
ÿ

i“1

ÿ

vPV

µipviqλipviq

s.t.
N
ÿ

i“1

λipviq ď Σtpxq ` v ¨∇`qpxq ´∇`
¨ tpxq @pv, xq;

Σqpxq ď 1 @x;

tip0, x´iq “ 0 @i, x´i.

All of the previous steps in our argument go through as before, where we replace λpvq
with

ř

i λipviq, with one exception. In the proof of Lemma 4, we invoked a full-support
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(a) Approximate max-2min allocation (b) Approximate min-2max interim value

Figure 7: Approximate max-2min mechanism and min-2max information with uniformly
distributed values and unknown correlation.

hypothesis on µ to prove that optimal λ are bounded. But now, λ will be bounded if each
component λi is bounded, and the same argument for boundedness of λi goes through as
long as µi has full support on Vi. In particular, we can always normalize the λi so that

ÿ

viPVi

µipviqλipviq “
Π

MIN´2MAX
pkq

N

for all i. Under this normalization, λi must be bounded above, since otherwise, in the
version of (19) with fixed λi, Nature could place all of the mass on values with λipviq
going to infinity, which would contradict the hypothesis that the value of the program is

Π
MIN´2MAX

pkq. And since the optimal value of (19) is bounded below, λi must be bounded
below as well. Given this result, the proof of Lemma 5 goes through unchanged.

We illustrate with two bidders whose values are uniformly distributed on the ten point
grid in r0, 1s. The optimal allocation and interim value are illustrated in Figure 7. The
mechanism guarantees profit at least 0.2537 and maximum profit on the information struc-
ture is at most 0.2834. Note that both of these numbers are lower than the corresponding
figures for pure common uniform values (0.2564 and 0.2856) and independent uniform val-
ues (0.2826 and 0.3170), as they should be, since perfect correlation and independence are
both feasible joint distributions for the present problem.

4.4 A penalty-based model of ambiguous value distribution

Going a step further, we can dispense with marginal constraints on values altogether, and
instead represent the Seller’s ambiguity about the value distribution with “cost” for the
value distribution. This is in the spirit of the multiplier preferences Hansen and Sargent
(2001) and the variational preferences of Maccheroni, Marinacci, and Rustichini (2006),
where a penalty function on beliefs is used to discipline a worst-case analysis.
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We now argue that Theorems 1 and 2 can be generalized to such a model of ambiguity
aversion. In fact, we have already analyzed this model in the proof of Lemma 4, where
the penalty function arose endogenously as part of the solution of the program (6). Fix a
penalty λ : V Ñ R. The programs (2) and (3) remain the same, except that the domain
of information structures is now the set of finite information structures with arbitrary
marginal on V , and the objective is now

ΠpM, I, βq ´
ÿ

vPV

λpvq
ÿ

sPS

σps, vq.

The program (5) is modified by dropping the marginal constraints on V and changing the
objective to

ÿ

xPXpkq

γpxq ´
ÿ

vPV

λpvq
ÿ

xPXpkq

σpx, vq.

The only change to (6) is that λ is fixed and is no longer a variable over which we optimize.
Lemmas 2 and 3 go through as before, with the penalty replacing the marginal constraint

on values. In the proof of Lemma 4, boundedness of the optimal λ holds by assumption,
and no full support condition on the (endogenous) distribution of values is needed. The
only significant change is in the proof of Lemma 5, since the new solution as defined in (25)
is no longer feasible (since we cannot change the exogenously given λ). We can instead
define a solution for the analogue of (24):

qipxq “

#

q˚i pxi´1{k,x´iq

1`Nεpkq
if 0 ă xi ă k;

0 if xi “ 0 or xi “ k;

Ξpxq “

#

k´1
kp1`Nεpkqq

Ξ˚pxq if x R BXpkq;

´pk ´ 1qNv ´maxvPV λpvq if x P BXpkq,

´

ˆ

1´
k ´ 1

kp1`Nεpkqq

˙

max
vPV

λpvq

It is straightforward to verify that this solution is feasible for (24) with fixed λ and has
approximately the same value as (25) when k is large.

5 Further results

We now discuss further theoretical results on the baseline model of Sections 2 and 3.

5.1 Properties of approximate max-2min mechanisms

5.1.1 Approximate max-2min allocations

A key step in our argument (Lemma 4) shows that the dual to (5) has optimal solutions
which downward jumps vanish as k becomes large. The following result shows that this is
also true for (6):
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Proposition 1. Suppose that µpvq ą 0 for all v P V . Then there exists a constant C ą 0
such that for every k, there exists an optimal solution to (6) pλ˚, q˚, t˚q such that ∇`

i q
˚pxq ě

´ C for all i and x.

Proof of Proposition 1. As we showed in the proof of Lemma 5, (6) has the same opti-
mal value as the program (24), where we substitute Ξpxq for the aggregate excess growth
∇` ¨ t´ Σt, and add the expectation of Ξ under ρ to the objective. Now, exactly the same
sequence of steps as in the proof of Lemma 4 (normalizing by k´1 instead of k) can be used
to show that the optimal λ is bounded and that there exists an optimal solution pλ˚, q˚, t˚q
to (24) that satisfies the constraints

q˚i pxq ď q˚i pxi ` 1{k, x´iq ` εpkq @i, xi ă k,

where εpkq “ C{pk ´ 1q for a constant C ą 0.
It only remains to show that for any optimal solution pλ˚,Ξ˚, q˚q for (24), there exists

a λ1 and t1 such that pλ1, q˚, t1q is an optimal solution to (6). To see why this is the case,
consider the linear program (6) where we hold fixed q “ q˚. This program’s dual is

min
σ:XpkqˆVÑR`

ÿ

xPXpkq

ÿ

vPV

σpx, vqv ¨∇`qpxq

s.t.
ÿ

vPV

σpx, vq ´ pk ´ 1qpσpxi ´ 1{k, x´i, vqIxią0 ´ σpx, vqIxiăkq “ 0 @i, x s.t. xi ą 0;

ÿ

xPXpkq

σpx, vq “ µpvq @v.

As before, we can solve out the first constraint to determine that the marginal of σ on x
must be ρ, so that the program reduces to the transportation problem

min
σ:XpkqˆVÑR`

ÿ

x,v

σpx, vqv ¨∇`qpxq

s.t.
ÿ

v

σpx, vq “ ρpxq @x;

ÿ

xPXpkq

σpx, vq “ µpvq @v.

The dual of this program is precisely (24), where we again hold fixed q “ q˚. Thus, we
conclude that (6) and (24), where we hold fixed q “ q˚, have the same value. Since q˚ is
part of an optimal solution to (24), which has the same optimal value as (6), we conclude
that it is also part of an optimal solution to (6).

5.1.2 Approximate max-2min transfers

The proof of Proposition 1 shows that the programs (6) and (24) have the same value, even
when we hold fixed a particular allocation. Thus, there is in some sense an equivalence
between Ξpxq and the aggregate excess growth ∇` ¨ tpxq ´Σtpxq. The following two results
characterize this relationship.
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Proposition 2. Fix Ξ : Xpkq Ñ R. There exists a t that solves

∇`
¨ tpxq ´ Σtpxq “ Ξpxq @x; (28)

tip0, x´iq “ 0 @i, x´i (29)

if and only if

ÿ

xPXpkq

ρpxqΞpxq “ 0. (30)

Proof of Proposition 2. Given Ξ, Fredholm’s alternative says that there is a t that solves
(28) and (29) if and only if there does not exist a ρ1 such that

ÿ

xPXpkq

ρ1pxqΞpxq ‰ 0 (31)

ρ1pxq “

#

k´1
k
ρ1pxi ´ 1{k, x´iq if 0 ă xi ă k;

pk ´ 1qρ1pk ´ 1{k, x´iq if xi “ k.

It is easy to see that the choice of ρ1p0q pins down the rest of ρ1, and in fact

ρ1pxq “ ρpxq
ρ1p0q

ρp0q
.

As a result, (31) holds if and only if
ř

xPXpkq ρpxqΞpxq ‰ 0. Thus, (28) and (29) has a

solution if and only if (30) holds.

Proposition 2 gives a simple way to go back and forth between solutions to (6) and
(24). First, given a feasible solution pλ, q, tq to (6), we know that the expected aggregate
excess growth is zero. Thus, if we define Ξ according to (28), then the solution pλ,Ξ, qq
is feasible for (24) and has the same value. On the other hand, given a feasible solution
pλ,Ξ, qq to (24), the solution pλ` C,Ξ´ C, qq is also feasible for any constant C P R. We
can therefore without loss of generality restrict attention to feasible solutions to (24) for
which the expectation of Ξ under ρ is zero. For any such solution, we can find a transfer
t with the given excess growth, so that pλ, q, tq is feasible for (6) and has the same value.
This discussion is formalized in the following corollary:

Corollary 2. The triple pλ˚, q˚, t˚q is an optimal solution to (6) if and only if pλ˚, q˚,Ξ˚q
is an optimal solution to (24), where Ξ˚ “ ∇` ¨ t˚ ´ Σt˚.

The aggregate excess growth played a prominent role in our earlier analysis of common
values in Brooks and Du (2020). In the limit model with a continuum of actions, we
derived an optimal aggregate excess growth function, which turned out to only depend
on the aggregate action Σx (where the limit min-2max signals are independent draws
from the standard exponential distribution, which is the limit in distribution of ρ as k
goes to infinity). Using the fact that the expectation of this Ξ under the independent
standard exponential distribution is zero, we explicitly constructed transfers that attained
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the optimal excess growth and are feasible for the analogue of (6).15 Proposition 2 shows,
non-constructively and in a finite version of the model, that zero expectation is necessary
and sufficient for this to be possible.

In fact, in the pure common value model, Brooks and Du (2020) constructed two distinct
transfer rules with the same aggregate excess growth. More broadly, we suspect that there
may be many solutions to the aggregate excess growth equation, and note that any convex
combination of solutions is also a solution. This multiplicity of max-2min transfer rules,
not all of which are of practical interest, presents a challenge to the study of max-2min
mechanisms, and additional properties may be needed to isolate the most useful transfer
rules. For example, in the common value model, the transfer rule in the proportional
auction is characterized by the property that the aggregate transfer depends only on the
aggregate action.

5.2 Rate of convergence

We now characterize the rate of convergence of the relaxed profit bounds to Π˚:

Proposition 3. Suppose that µpvq ą 0 for all v P V . For all k ě 1,

ˇ

ˇ

ˇ
Π

MIN´2MAX
pkq ´ ΠMAX´2MIN

pkq
ˇ

ˇ

ˇ
ď
v

k
` op1{kq.

Hence, ΠMAX´2MIN
pkq and Π

MIN´2MAX
pkq converge to Π˚ at a rate of 1{k.

Proof of Proposition 3. Theorem 2 shows that Π
MIN´2MAX

pkq ě ΠMAX´2MIN
pkq. The proof

of Lemma 5 shows that

ΠMAX´2MIN
pkq ě

k ´ 1

k ` C
Π

MIN´2MAX
pkq ´

ˆ

1´
1

k

˙k2´1 ˆ
k ´ 1

k ` C
k ` k ´ 1

˙

Nv.

for a constant C. Hence,

Π
MIN´2MAX

pkq ´ ΠMAX´2MIN
pkq ď

1` C

k ` C
Π

MIN´2MAX
pkq `

ˆ

1´
1

k

˙k2´1 ˆ
k ´ 1

k ` C
k ` k ´ 1

˙

Nv.

Since Π
MIN´2MAX

pkq ď v, this immediately gives the first result. The second result follows

immediately from the fact that Π˚ P rΠMAX´2MIN
pkq,Π

MIN´2MAX
pkqs for all k.

15In the continuum model, an additional complication arises: If we take the action space to be all of
R`, there may be solutions to the analogue of the aggregate excess growth equation (28), such as setting
∇it´ ti “ Ξ{N for all i, that diverge at infinity and lead to a mechanism that has no equilibria on any type
space. For that reason, we further restricted attention to bounded solutions. In the finite action model,
any solution must be bounded. Moreover, we suspect that the pathological limit solutions cannot arise as
limits of finite solutions, because of the need to satisfy the aggregate excess growth equation at the highest
signal, where the ∇ti term does not appear.
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(a) Pure common values (b) Independent values

Figure 8: Rate of convergence.

We illustrate this rate of convergence with two examples, depicted in Figure 8. Both
examples are for N “ 2 and values in a grid V “ t0, 0.1, . . . , 1u. In the left panel, bidders
have a pure common value that is uniform t0, 0.1, . . . , 1u, i.e., µ is concentrated on the
diagonal. In the right-hand panel, values are independent uniform on V . In each case, the

blue and red lines are Π
MIN´2MAX

pkq and ΠMAX´2MIN
pkq, respectively. Note that only the

independent example satisfies the full-support hypothesis of Proposition 3. Nonetheless,

in both cases the green line is Π
MIN´2MAX

pkqpk ´ 1q{k and is always below the red line,
consistent with the theoretical rate of convergence.

We note that if pγ˚, σ˚q is a solution to (5), then Π
MIN´2MAX

pkq is only an upper bound
on maximum profit of the information structure pXpkq, σ˚q across all mechanisms and
equilibria; because the bound uses only local incentive constraints, it is logically possible
that maximum expected profit is strictly lower and converges faster to Π˚. A corresponding
statement applies to solutions to (6) and the bound ΠMAX´2MIN

pkq.

5.3 Robustness to fundamentals

An important feature of the approximate max-2min mechanisms, in addition to their opti-
mal worst-case performance, is that we can bound their performance even when the model
from which they were derived is misspecified.

To develop this result, we need the following lemma, which asserts that any feasible
solution to the programs (5) or (6) has a corresponding bound on equilibrium expected
profit.

Lemma 6. Fix k ě 1. Suppose pγ, σ, wq is a feasible solution to (5), and let I “ pXpkq, σq.
Then

sup
M1PM

sup
bPBpM1,Iq

ΠpM1, I, βq ď
ÿ

xPXpkq

γpxq.

34



Suppose pλ, q, tq is a feasible solution to (6), and let M “ pXpkq, q, tq. Then

inf
I1PI

inf
bPBpM,I1q

ΠpM, I 1, βq ě
ÿ

vPV

λpvqµpvq.

Proof of Lemma 6. This is an immediate implication of the proofs of Lemmas 2 and 3. In
particular, the program (5) is obtained by taking the dual of the inner maximization over
mechanisms and equilibria from (2), so that any feasible solution to that dual provides an
upper bound on the value of the primal, meaning that it provides an upper bound on profit
under any mechanism and equilibrium. Similarly, we obtained (6) by taking the dual of the
inner minimization program, and any feasible solution to the dual provides a lower bound
on profit in the primal program.

We can now formalize the bounds for a misspecified prior, which generalizes Proposition 7
of Brooks and Du (2020):

Proposition 4. Suppose that pλ, q, tq is a feasible solution to (6), and extend the domain
of λ to all of RN

` according to

λpvq “ min
xPXpkq

“

Σtpxq ` v ¨∇`qpxq ´∇`
¨ tpxq

‰

Then for all µ1 P ∆pRN
` q with finite support, revenue in any information structure and

equilibrium is at least
ÿ

vPRN
`

λpvqµ1pvq. (32)

In particular, the bound (32) holds for an optimal solution pλ˚, q˚, t˚q.

Proof of Proposition 4. Suppose that the prior is µ1. Then clearly pλ, q, tq is a feasible
solution for the program (6), where we replace µ with µ1. From Lemma 6, we conclude
that (32) is a lower bound on equilibrium profit.

5.4 The monotonicity conjecture and its implications

We have conducted tens of thousands of simulations of the programs (5) and (6). In every
case, we have found that both the dual to (5) and (6) have optimal solutions in which the
allocation is such that q˚i pxq is non-decreasing in xi for all i. We refer to such an allocation
(and the corresponding solution) as monotone. We conjecture that a monotone solution
always exists for the programs (5) and (6) for all k.16 This conjecture has interesting
implications.

First, suppose that pλ˚,Ξ˚, q˚q is an optimal solution to (24) and is monotone. Clearly,
λ˚ must satisfy

λ˚pvq “ min
xPXpkq

v ¨∇`q˚pxq ´ Ξ˚pxq.

16Curiously, the allocation proportional auction constructed in Brooks and Du (2020) need not be mono-
tone. Thus, while we conjecture that there always exists a monotone solution, we know for a fact that
there are max-2min auctions that are non-monotone.
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Monotonicity of q˚ implies that ∇`q˚ ě 0, so that λ˚ is a minimum of non-decreasing
functions. As a result, λ˚ must also be non-decreasing. This implies a simple comparative
static result. A set X Ď RN

` is upward closed if v P X and v1 ě v implies that v1 P X. We
say that µ first-order stochastically dominates µ1 if for every upward closed set,

ř

vPX µpvq ě
ř

vPX µ
1pvq. It is a standard result that if µ first-order stochastically dominates µ1, then for

every non-decreasing function f : V Ñ R,
ÿ

vPV

fpvqµpvq ě
ÿ

vPV

fpvqµ1pvq

(e.g., Sriboonchita et al., 2009, Theorem 3.3). Hence, the lower bound from Proposition
4 is increasing in µ in the first-order stochastic dominance order. If this is true for all k,
then Π˚ must also be increasing in µ in the first-order stochastic dominance order.

Second, monotonicity implies additional structure on approximate min-2max informa-
tion structures. Suppose that (19) has an optimal solution pλ˚,Ξ˚, q˚q that is monotone.
Further suppose that q˚i pxq ą 0 for some x. Then for all x1i ą xi, q

˚
i px

1
i, x´iq ą 0 as well.

Complementary slackness then implies that for all x1i ě xi,

γpx1i, x´iq “ ρpx1i, x´iqrwipx
1
i, x´iq ´∇`

i wpx
1
i, x´iqs.

This property can be reformulated as follows: Let ψipxq “ wipxq ´∇`
i wpxq denote bidder

i’s virtual value. For a set Y Ď R, a function f : Y Ñ R is strictly single crossing if
fipyq ą 0 implies fipy

1q ě 0 for all y1 ą y. We say that virtual values have strict single
crossing differences if the function

ψipxi, x´iq ´maxt0,max
j‰i

ψjpxi, x´iqu (33)

is strictly single crossing as a function of xi, for all i and x´i. If the monotonicity conjecture
is true, then for all k, there exists an approximate min-2max information structure that
solves (5) and has strict single crossing differences.

In fact, the simulations suggest that there is even more structure on approximate min-
2max virtual values, beyond strict single crossing differences. Figure 9 depicts the virtual
values for the independent uniform example of Section 3.4. Note that in the case of inde-
pendent values, the virtual value function is symmetric across bidders. Also note the large
regions where bidders’ virtual values are exactly equal. In fact, for the independent values
example, the difference between the virtual values is generally less than 10´4, except when
bidders have the highest possible signals.17

This suggests that the strict single crossing differences conjecture can be significantly
strengthened: For Y Ď R, we say that a function f : Y Ñ R is weakly single crossing if
fipyq ě 0 implies fipy

1q ě 0 for all y1 ą y. An information structure has virtual values with
weakly single crossing differences if the virtual value difference (33), viewed as a function of
xi, is weakly single crossing for all i and x´i. This property is satisfied in the simulations,

17The barrier algorithm of Gurobi, with which these objects were computed, only asymptotically ap-
proaches complementary slackness, so it is expected that there is some noise in the calculation of virtual
value differences. This is especially true for high signals, where ρ is small and hence the impact of virtual
values on the objective is negligible.
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(a) Virtual value (b) Virtual value difference

Figure 9: Virtual values and virtual value differences.

and we conjecture that it is true more broadly. While the difference may seem subtle, the
simulations show that it is frequently not the case that there is a unique highest virtual
value. Indeed, the most common situation seems to be that all bidders tie for highest virtual
value. Weak single crossing differences implies that if a bidder ties, then they continue to
have a highest virtual value if their signal increases. This is consistent with an intuition
that min-2max information structures should make the Seller is indifferent between many
allocations. For example, in Brooks and Du (2020), the min-2max information structure
has the property that the Seller is always indifferent as to which bidder is allocated the
good.

5.5 Other objectives

The focus of our analysis until this point has been expected profit. One may ask: Does our
model have interesting implications for other welfare objectives, in particular total surplus?
As the following proposition shows, the answer to this particular question is essentially no.
Given a mechanism M “ pA, q, tq, information structure I “ pS, σq, and strategy profile b,
let

TSpM, I, bq “
ÿ

sPS

ÿ

vPV

ÿ

aPA

viqipaqbpa|sqσps, vq

denote the resulting expected total surplus. Let

TS “ max
i“1,...,N

ÿ

vPV

viµpvq

denote the highest ex ante expected value among the bidders.

Proposition 5.

sup
MPM

inf
IPI

inf
bPBNEpM,Iq

TSpM, I, bq “ inf
IPI

sup
MPM

sup
bPBNEpM,Iq

TSpM, I, bq “ TS.
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Proof of Proposition 5. Let i be the index of a bidder with the highest ex ante expected
value. Then clearly a feasible mechanism is qipaq “ 1 and qjpaq “ 0 for all a and j ‰ i,
and tjpaq “ 0 for all a and j. This mechanism is guaranteed to generate TS regardless
of the information structure and equilibrium. On the other hand, if Nature chooses the
degenerate information structure in which each bidder has a single signal, then total surplus
in any mechanism and equilibrium must be less than TS.

Thus, in order to obtain non-degenerate results for social welfare, one either needs to
modify the objective (such as by using min-max regret) or by imposing restrictions on the
set of information structures so that the domain of minimization does not include a least
informative information structure.

6 Discussion and conclusion

This paper has proven a strong minimax theorem for informationally robust auction design
with interdependent values. The result says that the joint information design/mechanism
design game has the same expected profit Π˚, regardless of whether the Seller or Nature
moves first, and regardless of how we select an equilibrium. The theorem also implies that
for every ε ą 0, there exists a finite mechanism for which expected profit is at least Π˚´ε in
all information structures and equilibria, and there exists a finite information structure for
which expected profit is at most Π˚ ` ε in all information structures and equilibria. These
approximate max-2min mechanisms and min-2max information structures are a promising
subject for further study in theoretical and applied mechanism design. There are at least
four important directions for future research, which we now discuss.

6.1 Detailed analysis of particular specifications

We have reported simulations of approximate max-2min mechanisms and min-2max for
various specifications, e.g., independent values. Each of these models could be analyzed
more fully to understand the particular form of max-2min auctions and min-2max infor-
mation structures, as in Brooks and Du (2020). For example, is it the case that max-2min
mechanisms only depend on the difference in signals in the independent uniform case? Ex-
actly when does the max-2min multi-good auction collapse to a single-good auction for the
grand bundle?

6.2 The continuum limit

We have restricted attention to finite mechanisms and information structures. This means
that our results immediately apply to the finite models which can be solved numerically, and
it also allows us to avoid the delicate theoretical issue of equilibrium existence. At the same
time, it may be that the profit guarantee is not exactly attained with finitely many actions or
signals, and sharper and more interpretable results can be obtained in the continuum limit.
Such is the case in Brooks and Du (2020), where we constructed a max-2min mechanism and
min-2max information structure with continua of actions and signals that exactly attain
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the profit guarantee. Moreover, the mechanism can simply be described as a proportional
auction, and the information structure has the “additive-exponential” form where signals
are iid exponential and interim expected values only depend on the sum of the signals. In
the limit, the gap between the min-2max and max-2min programs vanishes, and the max-
2min mechanism is a profit maximizing direct mechanism for the min-2max information
structure, and the min-2max information structure is a profit-minimizing Bayes correlated
equilibrium for the max-2min mechanism. We termed this a strong max-min solution.

Can the strong minimax theorem be extended to continua of actions/signals for general
environments, so that the profit guarantee is exactly attained? Is there a limit formulation
in which the min-2max and max-2min programs are exactly a dual pair? Does a strong
max-min solution, in the sense of Brooks and Du (2020), always exist?

6.3 More general environments

Our assumptions are sufficient for the strong minimax theorem, but not necessary. What
is the most general environment in which the strong minimax theorem holds? For example,
can it be generalized to richer constraints on allocations or richer preferences, such as those
with complementarities between goods?

6.4 Restrictions on information

Perhaps most importantly, we have allowed for no lower bound on bidders’ information.
Does the strong minimax theorem continue to hold if, for example, bidders know their own
values? More broadly, we feel that while the present model does address robustness to
model misspecification, the bounds obtained with with no restrictions on information are
too conservative. We predict that this theory will become more useful as we find ways
to model intermediate ambiguity, where there are some restrictions on information and
equilibrium, but we do not commit to a single information structure and equilibrium as in
the standard model.
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A Omitted proofs

A.1 Proof of Lemma 4

Let pλ˚,Ξ˚, q˚q be an optimal solution of (19). Without loss of optimality, we can assume
that

ÿ

vPV

µpvqλ˚pvq “ Π
MAX-2MIN

pkq

and
ÿ

xPXpkq

ρpxqΞ˚pxq “ 0.

Lemma 7. Suppose µpvq ą 0 for all v P V . Then |λ˚pvq| ď maxv1PV
v

µpv1q
for all v P V and

all k.

Proof of Lemma 7. We first show that for all k and v P V , λ˚pvq ď v. For the sake of
contradiction, suppose not, i.e., there exist some k and v1 such that λ˚pv1q ą v. Consider
the dual of (19) where we fix λ˚:

min
γ:XpkqÑR`, σ:XpkqˆVÑR`

ÿ

xPXpkq

γpxq ´
ÿ

vPV,xPXpkq

λ˚pvqpσpv, xq ´ µpvqq

s.t. γpxq ě

$

’

&

’

%

ř

vPV vikrσpx, vq ´ σpxi ` 1{k, x´i, vqs if xi ă k ´ 1{k,
ř

vPV virkσpx, vq ´ σpxi ` 1{k, x´i, vqs if xi “ k ´ 1{k,
ř

vPV viσpx, vq if xi “ k,

@i, x;
ÿ

vPV

σpx, vq “ ρpxq @x,

(34)

Let σpx, vq “ ρpxqδv1pvq and γpxq “ ρpxqmaxi v
1
i. It is easy to check that pσ, γq is

feasible for the above program and obtains an objective strictly less than maxi v
1
i ´ v `

Π
MIN´2MAX

pkq ă Π
MIN´2MAX

pkq. This is an contradiction since the optimal value of (34)

is Π
MIN´2MAX

pkq.

Since λ˚pvq ď v and
ř

v µpvqλ
˚pvq “ Π

MIN´2MAX
pkq, we must have λ˚pvq ě pΠ

MIN´2MAX
pkq´

vq{µpvq ě ´v{µpvq.
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Suppose εpkq ą C
k

where C is given in the statement of Lemma 4. Consider the program
(19) where we fix λ˚ and impose our desired condition on q:

max
Ξ:XpkqÑR, q:XpkqÑRN

`

ÿ

xPXpkq

ρpxqΞpxq `
ÿ

vPV

µpvqλ˚pvq

s.t. Ξpxq ` λ˚pvq ď v ¨∇´qpxq @v, x;

∇´
i qpxq “

$

’

&

’

%

kqipxq if xi “ 0;

kpqipxq ´ qipxi ´ 1{k, x´iqq if 0 ă xi ă k;

qipxq ´ qipxi ´ 1{k, x´iq if xi “ k,

@i, x;

N
ÿ

i“1

qipxq ď 1 @x;

qipxi ´ 1{k, x´iq ´ qipxq ď εpkq @i, x such that 0 ă xi ă k.

(35)

Lemma 4 follows if we show that programs (35) and (19) have the same value. The
dual of (35) is:

min
γ:XpkqÑR`, σ:XpkqˆVÑR`,

ζ:XpkqÑRN
`

ÿ

x

γpxq ´
ÿ

v,x

λ˚pvqpσpv, xq ´ µpvqq `
ÿ

i,x

ζipxqεpkq

s.t. γpxq ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

vPV vikrσpx, vq ´ σpxi ` 1{k, x´i, vqs

`ζipxq ´ ζipxi ` 1{k, x´iq if xi ă k ´ 1{k;
ř

vPV virkσpx, vq ´ σpxi ` 1{k, x´i, vqs

`ζipxq if xi “ k ´ 1{k;
ř

vPV viσpx, vq if xi “ k,

@i, x;

ζip0, x´iq “ 0 @i, x´i;
ÿ

vPV

σpx, vq “ ρpxq @x,

(36)

where ζipxq is the multiplier on the constraint qipxi´1{k, x´iq´qipxq ď εpkq. Let pγ˚, σ˚, ζ˚q
be an optimal solution to (36). Let vi “ maxVi and vi “ minVi.

Lemma 8. Suppose that µpvq ą 0 for all v P V . Then ζ˚i pxq “ 0 for all i and x P Xpkq.

Proof of Lemma 8. For the sake of contradiction, let x be a signal profile with the lowest
Σx such that ζ˚i pxq ą 0 for some i. Notice that by construction, 0 ă xi ă k. Let w˚pxq be
the interim expected values at x under σ˚:

w˚pxq “
1

ρpxq

ÿ

vPV

v σ˚px, vq.

Case 1: w˚i pxq ă vi.
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In this case, there must exist a v such that vi ă vi and σ˚px, vq ą 0. Fix such a v, and
define

σpx1, v1q “

$

’

&

’

%

p1´ τqσ˚px1, vq if x1 “ x, v1 “ v;

τσ˚px1, vq ` σ˚px1, v1q if x1 “ x, v1 “ pvi, v´iq;

σ˚px1, v1q otherwise.

Choose τ ą 0 such that

0 ă
ÿ

v1PV

v1iσpx, v
1
qk ´

ÿ

v1PV

v1iσ
˚
px, v1qk “ pvi ´ viqτσ

˚
px, vqk ď ζ˚i pxq.

Set

ζ ipx
1
q “

#

ζ˚i pxq ´ pvi ´ viqτσ
˚px, vqk if x1 “ x;

ζ˚i px
1q otherwise,

γpx1q “ γ˚px1q.

By construction, pγ, σ, ζq is feasible for (36). Notice that
ÿ

v1PV

λ˚pv1qσpx, v1q ´
ÿ

v1PV

λ˚pv1qσ˚px, v1q “ pλ˚pvi, v´iq ´ λ
˚
pvqqτσ˚px, vq.

Therefore, the difference between the objectives of pγ˚, σ˚, ζ˚q and pγ, σ, ζq in (36) is:
˜

ÿ

x1

γ˚px1q ´
ÿ

v1,x1

λ˚pv1qσ˚pv1, x1q `
ÿ

i,x1

ζ˚i px
1
qεpkq

¸

´

˜

ÿ

x1

γpx1q ´
ÿ

v1,x1

λ˚pv1qσpv1, x1q `
ÿ

i,x1

ζ ipx
1
qεpkq

¸

“εpkqpvi ´ viqτσ
˚
px, vqk ` pλ˚pvi, v´iq ´ λ

˚
pvqqτσ˚px, vq ą 0,

since εpkqk ą pλ˚pvi, v´iq ´ λ
˚pvqq{pvi ´ viq by Lemma 7. This is a contradiction.

Case 2: w˚i pxq “ vi and w˚i pxi ´ 1{k, x´iq ą vi.
In this case, there must exist a v such that vi ą vi and σ˚pxi ´ 1{k, x´i, vq ą 0. Fix

such a v, and define

σpx1, v1q “

$

’

&

’

%

p1´ τqσ˚px1, vq if x1 “ pxi ´ 1{k, x´iq, v
1 “ v;

τσ˚px1, vq ` σ˚px1, v1q if x1 “ pxi ´ 1{k, x´iq, v
1 “ pvi, v´iq;

σ˚px1, v1q otherwise.

Choose τ ą 0 such that

0 ă
ÿ

v1PV

v1iσ
˚
pxi´1{k, x´i, v

1
qk´

ÿ

v1PV

v1iσpxi´1{k, x´i, v
1
qk “ pvi´viqτσ

˚
pxi´1{k, x´i, vqk ď ζ˚i pxq.

Set

ζ ipx
1
q “

#

ζ˚i pxq ´ pvi ´ viqτσ
˚pxi ´ 1{k, x´i, vqk if x1 “ x;

ζ˚i px
1q otherwise,

γpx1q “ γ˚px1q.

As in Case 1, pγ, σ, ζq is feasible for (36) and has a strictly lower objective than pγ˚, σ˚, w˚, ζ˚q,
a contradiction.
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Case 3: w˚i pxq “ vi and w˚i pxi ´ 1{k, x´iq “ vi.
The virtual value at pxi ´ 1{k, x´iq is vi ´ pk ´ 1qpvi ´ viq ă 0 when k is sufficiently

large. Since γ˚pxi ´ 1{k, x´iq ě 0 and ζ˚i pxi ´ 1{k, x´iq “ 0, we must have

γ˚pxi ´ 1{k, x´iq ą
ÿ

v1PV

v1ikrσ
˚
pxi ´ 1{k, x´i, v

1
q ´ σ˚px, v1qs ` ζ˚i pxi ´ 1{k, x´iq ´ ζ

˚
i pxq,

so we can decrease ζ˚i pxq to lower strictly the objective of pγ˚, σ˚, ζ˚q, a contradiction.

Lemma 8 implies that program (35) has the same value even if we drop the constraints
(20). This implies Lemma 4.
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