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ABSTRACT
Given the unconfoundedness assumption, we propose new nonparametric estimators for the reduced
dimensional conditional average treatment effect (CATE) function. In the first stage, the nuisance functions
necessary for identifying CATE are estimated by machine learning methods, allowing the number of covari-
ates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional
local linear regression, reducing CATE to a function of the covariate(s) of interest. We consider two variants
of the estimator depending on whether the nuisance functions are estimated over the full sample or over
a hold-out sample. Building on Belloni at al. and Chernozhukov et al., we derive functional limit theory for
the estimators and provide an easy-to-implement procedure for uniform inference based on the multiplier
bootstrap. The empirical application revisits the effect of maternal smoking on a baby’s birth weight as a
function of the mother’s age.
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1. Introduction

In settings with individual-level treatment effect heterogeneity,
the unconfoundedness assumption theoretically permits iden-
tification and consistent estimation of the conditional average
treatment effect (CATE) for all possible values of the set of
covariates X used in adjusting for selection bias. One way to
think about these covariates is that they are ex-ante predictors of
an individual’s potential outcomes with and without treatment,
and hence are highly correlated with the treatment participation
decision as well. Unconfoundedness states that the econometri-
cian observes all relevant predictors so that conditional on X,
the treatment takeup decision is no longer statistically related
to the potential outcomes.1 Nevertheless, in many situations the
individual deciding on treatment participation is likely to have
access to private signals about their potential outcomes. Relying
on the unconfoundedness assumption amounts to hoping that
a set of publicly observed characteristics can still proxy for
the information content of these signals. Therefore, the uncon-
foundedness assumption is more plausible in applications in
which X is a rich, detailed set of covariates, that is, the dimension
of X is high.

While CATE as a function of X provides a detailed character-
ization of treatment effect heterogeneity across observable sub-
populations, this information is very hard to analyze and convey
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1This condition was formalized by Rosenbaum and Rubin (1983); since then, unconfoundedness (or “selection on observables”or “conditional independence”)

has become one of the standard paradigms for modeling selection effects. See, for example, Imbens and Wooldridge (2009) for further discussion.
2If all covariates X are integrated out, one obtains an estimator of ATE as in Hahn (1998) or Hirano, Imbens, and Ridder (2003).
3This step assumes that X1 is a continuous variable, which is the technically challenging and interesting case.

if X is high dimensional. Of course, one could examine slices of
this function along some component(s) X1 of X while holding
the other components X−1 of X constant. Nevertheless, how
CATE varies as a function of X1 will generally depend on the
level at which X−1 is held constant, requiring the examination
of (infinitely) many different slices. For this reason, instead of
holding the variables in X−1 constant, Abrevaya, Hsu, and Lieli
(2015) (henceforth AHL) suggested integrating them out with
respect to the conditional distribution of X−1 given X1 or, in
practice, a smoothed estimate of this distribution. This gives rise
to a reduced dimensional CATE function that is easier to present
and interpret.2

In this article, we propose two-step estimators of the
reduced dimensional CATE function where in the first step
the required high-dimensional nuisance regressions are con-
ducted by machine learning methods designed specifically
to handle such problems, while the second integration step
is implemented by a traditional local linear nonparametric
regression.3 We derive the statistical properties of two vari-
ants of the estimator. In the first case, the first step (nui-
sance function estimation) and the second step (local lin-
ear regression) are both implemented over the full sam-
ple of available observations. In the second case, the avail-
able sample is split into parts, and the first step is imple-
mented in one subsample while the second step is done in
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the complement sample. The roles of the subsamples are then
rotated and the results are averaged. This is the “cross-fitting”
approach to machine-learning-aided causal inference advocated
by Chernozhukov et al. (2018). The first approach is used
by Belloni et al. (2017) in estimating unconditional treatment
effects.

In proposing and studying these estimators, we contribute
to two recent strands of the econometrics literature. First, we
advance the currently available flexible methods for the esti-
mation of reduced dimensional CATE functions due to AHL
and Lee, Okui, and Whang (2017) (henceforth LOW). Second,
we make technical contributions to the recent literature that
employs machine learning methods in tackling the prediction
component of causal inference problems (see, e.g., Belloni,
Chernozhukov, and Hansen 2014a, 2014b; Belloni et al. 2017;
Chernozhukov et al. 2017, 2018). Taking a broader perspective,
our article is also related to a large statistics literature on regular
estimation and the use of orthogonal (doubly robust) moment
conditions.

Regarding the first set of articles, AHL use an inverse prob-
ability weighted conditional moment of the data to identify
CATE. They consider both kernel-based and parametric esti-
mation of the propensity score in the first step, and derive
the asymptotic distribution of the estimated CATE function
evaluated at a fixed point x1 in the support of X1. LOW advance
these results in two respects: their estimator is based on a
Neyman-orthogonal moment condition and they also provide
a method for uniform inference about the CATE function as
a whole (rather than point by point). While LOW only use
parametric models to estimate the nuisance functions involved
in the moment condition, orthogonality lends their estima-
tor a “double robustness” property: either the model for the
propensity score or the models for the conditional means of
the potential outcomes are allowed to be misspecified (but
not both).

The CATE estimator proposed here is based on the same
orthogonal moment condition as in LOW, but the required
nuisance functions are estimated by machine learning methods,
which allow for data-driven flexible functional forms as well as a
(very) high-dimensional set of covariates. Neyman orthogonal-
ity is crucial in ensuring that the proposed CATE estimators are
robust to the regularization bias inherent in the first stage, mak-
ing post-selection inference possible. As the asymptotic theory
is derived from high-level assumptions, there are a number of
applicable first-stage estimation methods in practice, such as a
random forest or �1-penalized lasso or post-lasso. In this article,
we use lasso estimation as the leading example.

In light of the discussion of the unconfoundedness assump-
tion above, replacing the parametric estimators in LOW with
machine learning methods greatly enhances the applicability
and empirical relevance of flexible CATE estimation. At the
same time, the asymptotic theory remains tractable: we provide
methods for pointwise as well as uniform inference about the
CATE function under both the full sample and sample-splitting
implementation schemes. The uniform methods use the multi-
plier bootstrap, while pointwise inference can be based either on
the bootstrap or the analytic results.

Turning to the literature on machine learning in treatment
effect estimation, we build primarily on Belloni et al. (2017) for

the full-sample method and Chernozhukov et al. (2017, 2018)
for the split-sample method, while providing the necessary
extension of the theory to account for the use of local linear
regression in second step. In these articles the parameter of
interest is identified by the restriction that the unconditional
expectation of a “score function” evaluated at the true parameter
value (and the true nuisance functions) is zero. By contrast,
the identifying restriction in our case is that the conditional
expectation of the same score function is zero. Hence, our
estimation procedure does not simply consist of substituting
in the estimated nuisance functions and setting the sample
average score to zero; instead, the score function will enter a
local linear regression with kernel weight K((X1i − x1)/h)/h
on each observation, where h denotes a smoothing parameter
(bandwidth).

The key high-level assumptions we employ in deriving our
asymptotic results involve bounding the L∞ norm of the differ-
ence between the true and estimated nuisance functions, and
the L2 norm of the same difference multiplied by the kernel.
The rates at which these error bounds are required to converge
to zero are closely linked to the rate at which the bandwidth
sequence converges to zero. From a purely technical stand-
point, incorporating the bandwidth conditions into the high-
level norm bounds in the full-sample as well as the cross-fitting
case is a central contribution of the article. Similarly to AHL and
LOW, the resulting convergence rate of the CATE estimators is√

Nhd, where N is the sample size and d = dim(X1).
In addition to the error bounds, the full-sample estimator

also requires controlling the complexity (entropy) of the func-
tion space in which the nuisance functions take values. In the
case of lasso estimation, this can be accomplished by restricting
how fast the number of covariates and the sparsity indices
associated with the nuisance functions are allowed to increase
with the sample size. These conditions are more stringent than
in the case of estimating ATE.

There are several articles in the broader statistics litera-
ture that have considered estimation problems related to ours
(Robins 2004; van der Laan 2013; Luedtke and van der Laan
2016a, 2016b; Nie and Wager 2017; Lechner 2019).4 Nie and
Wager (2017), in particular, estimated the full-dimensional
CATE function in a data-rich environment using penalized
regression, and established the quasi-oracle error bounds for
their estimator. While we also use a high-dimensional set
of covariates and machine learning methods to deal with
selection into treatment, the ultimate parameter of interest,
being a function of a low-dimensional subset of the covari-
ates, is then targeted by a traditional nonparametric estima-
tor. We also complement Nie and Wager (2017) by estab-
lishing both pointwise and uniform inference procedures.
In a related article, Zimmert and Lechner (2019) consid-
ered the local constant estimation of CATE in the high-
dimensional setting but only provide pointwise asymptotic
results.

Another closely related article, Chernozhukov and Semen-
ova (2019), proposes an approach to CATE estimation that
also includes a dimension-reduction step. There are, however,

4We thank Edward Kennedy and an anonymous referee for these references.
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substantial technical differences between their article and ours.
First, the traditional nonparametric estimator used by Cher-
nozhukov and Semenova (2019) in the second stage is series
regression rather than local linear regression. Second, they only
consider the cross-fitting approach and do not address the prob-
lem of estimating both the nuisance functions and the target
function on the full sample. Third, we also provide a reasonably
detailed discussion of the primitive conditions under which
lasso estimation fulfills the high-level conditions posited in the
article, while Chernozhukov and Semenova (2019) restricted
attention to high-level analysis.

Finally, our estimation method based on doubly robust
moments is tied to the classic literature on regular estima-
tion and semiparametric efficiency (Begun et al. 1983; Pfanzagl
1990; Bickel et al. 1993; Newey 1994a; van der Vaart 2000).
As mentioned above, in a parametric setting, estimation of
CATE based on doubly robust moments is consistent as long
as either the treatment assignment process or the outcome
processes is correctly specified. If both processes are nonpara-
metrically estimated, the method can achieve a faster conver-
gence rate than the nuisance estimators employed. The use of
doubly robust methods for causal inference has also been con-
sidered by Robins and Rotnitzky (1995), Hahn (1998), van der
Laan and Robins (2003), Hirano, Imbens, and Ridder (2003),
van der Laan and Rubin (2006), Firpo (2007), Tsiatis (2007),
van der Laan and Rose (2011), Belloni et al. (2017), Farrell
(2015), Kennedy et al. (2017), Robins et al. (2017), Wager
and Athey (2018), and Su, Ura, and Zhang (2019), among
others.

In addition to providing theoretical results, we study and
illustrate our methods through Monte Carlo simulations. The
proposed estimators perform well in terms of bias, MSE, and
coverage rates. In general, we find that the cross-fitting estima-
tor has somewhat better finite sample properties than the full
sample estimator, and thus we suggest using the cross-fitting
estimator in empirical studies with reasonably large sample
sizes.

Our application uses vital statistics data from North Carolina
to estimate the effect of a (first-time) mother’s smoking dur-
ing pregnancy on the baby’s birth weight as a function of the
mother’s age. Despite a number of previous analyses, the appli-
cation is well worth revisiting with the help of machine learning
methods, as there are a large number of covariates describing
the mother’s characteristics and events during pregnancy, and
the specification of the propensity score is known to have a
substantial impact on the results (see AHL, sec. 4.2). Our results
provide some corroborating evidence that the negative effect of
smoking on birth weight becomes more detrimental with age.
This pattern is less prevalent than some of the results reported
in AHL but stronger than that found by LOW.

The rest of the article proceeds as follows. In Section 2,
we describe the formal setup and the estimators. Section 3
states and discusses the assumptions underlying the first-order
asymptotic theory and provides the main results. Section 4
describes how to conduct uniform inference using the multi-
plier bootstrap. The application is presented in Section 5, while
Section 6 concludes. An online supplement contains additional
empirical studies, the Monte Carlo exercise as well as detailed
proofs of the theoretical results.

2. The Formal Framework, Identification, and the
Estimators

Population units are characterized by a random vector
(D, Y(1), Y(0), X), where D ∈ {0, 1} indicates the receipt
of a binary treatment, Y(1) and Y(0) are the potential outcomes
with and without the treatment, respectively, and X is a vector
of pretreatment covariates. The observed variables are given by
the vector W = (D, Y , X), where Y = DY(1) + (1 − D)Y(0).
The distribution of (D, Y(1), Y(0), X), and hence W, is induced
by an underlying probability measure P; parameter values
computed under P will be denoted by the subscript “0” and
represent the true values of these parameters. The expectation
operator corresponding to P is denoted by E, but we also use
the linear functional notation Pf := ∫

f (w)dP = E[f (W)].
To accommodate high-dimensional data, we follow the con-

ceptual considerations in Farrell (2015) and treat the DGP (the
measure P) as dependent on the sample size N, allowing, in
particular, the dimension of X to grow with N.5 This has two
practical interpretations. First, the number of raw controls can
already be comparable to the sample size or, second, X may be
composed of a large dictionary of sieve bases derived from a
fixed dimensional vector X∗ through suitable transformations
(e.g., powers and interactions). Thus, the high dimensionality
of X can also stem from the desire to provide a flexible approx-
imation to the required nuisance functions. We explicitly allow
for the use of lasso-type methods in the first stage that select a
smaller subset of terms from the dictionary to approximate these
functions.

To ease the already heavy notational burden in the article,
the dependence of the DGP on the sample size is left implicit
throughout, but is of course accounted for in the theoretical
analysis. Most arguments in the article are based on concen-
tration inequalities, which are nonasymptotic in nature. In our
Assumption 3.2, we also take into account the fact that, as the
dimension of X grows, the complexity of the first-stage estimator
will generally diverge, which can affect the rate of convergence of
our second-stage estimator. Furthermore, we establish the uni-
form inference results using the multiplier bootstrap based on
the strong approximation theory developed by Chernozhukov,
Chetverikov, and Kato (2014), which does not require the exis-
tence of an asymptotic distribution.

Given a d-dimensional subvector X1 ⊂ X composed of
continuous variables, the reduced dimensional CATE function
is defined as

τ0(x1) = CATE(x1) = E[Y(1) − Y(0)|X1 = x1].6

The identification of τ0(x1) from the joint distribution of W
is facilitated by the unconfoundedness assumption along with
some technical conditions:

Assumption 2.1. The distribution P satisfies:

5This implies that the nuisance functions μ0(j, X), j = 0, 1 and π0(X), to be
defined below, may generally depend on N as well.

6The most relevant case in practice is d = 1 or perhaps d = 2, otherwise
the motivating properties of the reduced dimensional CATE function (inter-
pretability and presentability) are lost. As we will see below, under a fourth-
moment condition on Y , the general theory requires d ≤ 3. There are no
restrictions on d for bounded outcomes.
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(i) (Unconfoundedness) (Y(1), Y(0)) ⊥ D
∣∣X.

(ii) (Moments) E
[|Y(j)|q] < ∞, j = 0, 1 and q ≥ 4.

(iii) (Propensity score) Let π0(x) = P(D = 1|X = x). There
exists some constant C > 0 such that P(C ≤ π0(X) ≤
1 − C) = 1.

Assumption 2.1(i) is the standard unconfoundedness condi-
tion. Although we are interested in CATE for a low-dimensional
subset X1 of the covariates, we still use the full vector of X to
address selection into treatment. Allowing for X to be high-
dimensional makes it more plausible to have conditional inde-
pendence between the potential outcomes and the treatment
indicator. Assumption 2.1(ii) is a usual sufficient condition for
the estimation of standard errors. Assumption 2.1(iii) is the
overlapping support condition commonly assumed in the liter-
ature. We also need it to establish that our CATE(x1) estimator
converges at the usual nonparametric rate.

Let μ0(j, x) = E[Y|X = x, D = j], j = 0, 1. It follows
immediately from Assumption 2.1 that E[Y(j)|X1 = x1] =
E[μ0(j, X)|X1 = x1], and hence τ0(x1) is identified as τ0(x1) =
E[μ0(1, X) − μ0(0, X)|X1 = x1].

We now state a less obvious but more robust result based on a
Neyman-orthogonal moment condition. Given any probability
measure satisfying Assumption 2.1, let τ(·), μ(1, ·), μ(0, ·), π(·)
denote the functions corresponding to τ0(·), μ0(1, ·), μ0(0, ·),
π0(·), respectively. Let η = (π(·), μ(1, ·), μ(0, ·)) represent the
infinite dimensional nuisance parameters needed to identify
CATE, and define

ψ(W; η) = D(Y − μ(1, X))

π(X)
+ μ(1, X)

− (1 − D)(Y − μ(0, X))

1 − π(X)
− μ(0, X).

The following theorem gives a moment condition that is (at least
approximately) satisfied at (τ0, η) even when η deviates from η0.

Theorem 2.1.

(i) Under Assumption 2.1,

E

[
D(Y − μ0(1, X))

π0(X)
+ μ0(1, X)

∣∣∣X1 = x1

]
= E[Y(1) | X1 = x1]

E

[
(1 − D)(Y − μ0(0, X))

1 − π0(X)
+ μ0(0, X)

∣∣∣X1 = x1

]
= E[Y(0) | X1 = x1]

for all x1 in the support of X1.
(ii) E[ψ(W; η0) − τ0(X1)|X1 = x1] = 0 by part (i), and

this moment equation satisfies the Neyman-orthogonality
condition

∂rE
[
ψ

(
W; η0+r(η−η0)

)−τ0(X1)
∣∣X1 = x1

]∣∣
r=0 = 0. (1)

Remarks.

1. Assumption 2.1(iii) is not necessary for Theorem 2.1; a
weaker moment condition such as E[1/π2

0 (X)] < ∞ would
suffice. Nevertheless, the overlap condition stated under

Assumption 2.1(iii) is indispensable for subsequent results
concerned with the asymptotic distribution of our CATE esti-
mators. Similarly, for identification only, the fourth moment
condition in Assumption 2.1(ii) could be replaced by a sec-
ond moment condition.

2. If η = (π0, μ(0, ·), μ(1, ·)) or η = (π , μ0(0, ·), μ0(1, ·)), that
is, η deviates from η0 along one set of coordinates at a time,
then E

[
ψ

(
W; η0 + r(η − η0)

) − τ0(X1)
∣∣X1 = x1

] = 0 for
any value of r, which of course implies (1). This is the “double
robustness property” emphasized by LOW; it implies that if
π(·) and (μ(0, ·), μ(1, ·)) are parametric models for π0(·) and
(μ0(0, ·), μ0(1, ·)), respectively, and one of these models is
misspecified, then one can still consistently estimate τ0(x1)
based on the moment condition E

[
ψ(W; η) − τ0(X1)

∣∣X1 =
x1

] = 0.

The following assumption describes the properties and use
of the sample data:

Assumption 2.2.

(i) The observed data consist of N independent and iden-
tically distributed (iid) random vectors {Wi}N

i=1 =
{(Di, Yi, Xi)}N

i=1 with the same distribution as the popula-
tion distribution of W.

(ii) Let K be a (small) positive integer, and (for simplicity)
suppose that n = N/K is also an integer. Let I1, . . . , IK be
a random partition of the index set I = {1, . . . , N} so that
#Ik = n for k = 1, . . . K.

We now propose two versions of the CATE estimator,
depending on whether the first-stage approximation to η0 and
the second-stage local linear regression targeting τ0 take place
over the same sample or not.

• The full-sample estimator:
Let η̂(I) = (μ̂(0, ·; I), μ̂(1, ·; I), π̂ (·; I)), where μ̂(0, ·; I),
μ̂(1, ·; I), and π̂(·; I) are estimators of μ0(0, ·), μ0(1, ·), and
π0(·), respectively, over the full sample I. Furthermore, let
K be a d-dimensional product kernel, h be a smoothing
parameter (bandwidth), and Kh (u) = K

(u
h
)
.7 The second

stage of the full-sample estimator τ̂ (x1) is obtained as the
intercept of the local linear regression

(τ̂ (x1), β̂(x1)) = arg min
a,b

∑
i∈I

[
ψ(Wi, η̂(I)) − a

− (X1i − x1)
′b

]2Kh (X1i − x1) . (2)

• The K-fold cross-fitting estimator:
For each k = 1, . . . , K, let η̂(Ic

k) =
(μ̂(0, ·; Ic

k), μ̂(1, ·; Ic
k), π̂ (·; Ic

k)), where μ̂(0, ·; Ic
k), μ̂(1, ·; Ic

k),
and π̂(·; Ic

k) are estimators for μ0(0, ·), μ0(1, ·), and π0(·),
respectively, constructed over the subsample Ic

k = I \ Ik. The
second stage of the K-fold cross-fitting estimator consists of

7To be specific, let kj(·) be a one-dimensional kernel, then a d-dimensional
product kernel K where bandwidth h is defined as Kh(u) = 	d

j=1kj(uj/h).
More generally, we can allow h to be different for each j such that Kh(u) =
	d

j=1kj(uj/hj) given that hj ’s are of the same order. For notational simplicity,
we focus on the first case in the theory.
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K nonparametric regressions over the samples I1, . . . , IK :

(τ̂k(x1), β̂k(x1)) = arg min
a,b

∑
i∈Ik

[
ψ(Wi, η̂(Ic

k)) − a

− (X1i − x1)
′b

]2Kh (X1i − x1) . (3)

Finally, in the third stage we take the average of the K pre-
liminary estimates to obtain an efficient estimator: τ̌ (x1) =
1
K

∑K
k=1 τ̂k(x1).

We use the local linear smoother studied by Fan (1992, 1993)
and Fan and Gijbels (1992) to estimate τ0(x1) in the second
stage. While it is possible to extend our results to local polyno-
mial estimators with an extra degree of smoothness, we focus on
the linear case for simplicity.8

Our second-stage estimator is related to the partial mean
estimator studied by Newey (1994b) and Lee (2018). However,
Lee (2018) and our article are distinct in two important ways.
First, the parameters of interest, and thus the estimators, are
different. We are interested in CATE(x1) when the treatment
variable is binary, while Lee (2018) considered a model with a
continuous treatment. Second, as explained above, our analysis
is compatible with the use of high-dimensional data. For the
full-sample first-stage estimation, we allow the complexity of
our first-stage estimator to increase with the dimensionality of
the data and investigate its impact on the rate of convergence.
For the split-sample first-stage estimation, we show that the
impact of the increasing complexity is eliminated due to the
independence between the observations used in the first- and
second-stage estimations.

When X1 is discrete and takes the values x1,1, . . . , x1,M , the
function CATE(x1,m), m = 1, . . . , M can be interpreted as the
average treatment effect for the subpopulation X1 = x1,m. In this
case one can restrict the sample to observations with X1 = x1,m,
and directly apply the full-sample or cross-fitting estimation
methods developed in Belloni et al. (2017) and Chernozhukov
et al. (2017).

3. Asymptotic Properties of CATE Estimators

3.1. CATE Estimators Based on General First-Step ML
Estimators

In this section, we first provide the fundamental asymptotic
results for our CATE estimators which form the basis of the
uniform inference procedures to be given in Section 4. To this
end, we state and discuss several assumptions. Let X1 ⊂ R

d

denote the support of X1 and let X 1 be the subset of X1 over
which τ0(x1) is to be estimated. In addition, let f (x1) denote the
p.d.f. of X1.

Assumption 3.1. Assume that

(i) The set X 1 is contained in the interior of X1 and is
the Cartesian product of closed intervals, that is, X 1 =
	d

j=1[x(j)
1� , x(j)

1u] with x(j)
1� < x(j)

1u. Furthermore, there exist

8An early version of the article considered kernel-based (local constant)
nonparametric regression in the second stage. The results are available
upon request.

positive constants C and C such that:

C ≤ inf
x1∈X 1

f (x1) ≤ sup
x1∈X 1

f (x1) ≤ C and

sup
x1∈X 1

(|E[Y(1)|X1 = x1]| + |E[Y(0)|X1 = x1]|) ≤ C.

(ii) The functions f (x1), E[Y(0)|X1 = x1], and E[Y(1)|X1 =
x1] are twice differentiable with bounded derivatives over
X 1; more formally,

sup
x1∈X 1,1≤j,s≤d

(
|∂jf (x1)| + |∂j,sf (x1)| + |∂jτ0(x1)|

+ |∂j,sτ0(x1)|
)

≤ C,

where ∂j,sf (x1) is the derivative of f (x1) w.r.t. x1j and x1s.
(iii) For u ∈ R

d, K(u) = κ(u1) × . . . × κ(ud), where κ

is a bounded, symmetric p.d.f. with
∫

tκ(t)dt = 0 and∫
t2κ(t)dt = ν < ∞. Furthermore, there exists a positive

constant C such that |t|κ (t) ≤ C for all t ∈ R.
(iv) The bandwidth h = hN satisfies h = CN−H for some H >

1/(4+d) and H < (1−2/q)/d, where C > 0 and q satisfies
Assumption 2.1(ii).

(v) Let β0(x1) = ∂x1τ0(x1) and τ
(2)
0 (x1) = ∂x1xT

1
τ0(x1). Then

supx1∈X 1
λmax(τ

(2)
0 (x1)) < C, where λmax(G) denotes the

maximum singular value of matrix G. In addition, we have

sup
x1,x′

1∈X 1

∣∣τ0(x′
1) − τ0(x1) − (x′

1 − x1)
Tβ0(x1)

− 1
2 (x′

1 − x1)Tτ
(2)
0 (x1)(x′

1 − x1)
∣∣

||x′
1 − x1||32

≤ C,

where || · ||2 denotes the Euclidean norm of a vector.

For the most part, Assumption 3.1 is a collection of stan-
dard regularity conditions used in the nonparametric treatment
effect estimation literature. The functions f (x1), μ0(0, x1), and
μ0(1, x1) are required to be sufficiently smooth over X 1, the
density of X1 must be bounded away from zero over the same
set, and the kernel function K must obey some mild restric-
tions, satisfied by usual choices of κ such as the Gaussian or
the Epanechnikov kernel (in the simulations and the empirical
study we use the former). Of course, Assumption 3.1(ii) also
implies that we restrict attention to the technically more inter-
esting case in which the distribution of X1 is continuous, which
means that one cannot simply use sample splitting to estimate
CATE at various points in the support of X1.

The conditions imposed on the bandwidth in Assump-
tion 3.1(iv) are motivated as follows. The restriction H >

1/(4 + d) means that h converges to zero faster than the MSE-
optimal bandwidth choice; this undersmoothing condition is
needed to ensure that the bias from the second-stage kernel
regression is asymptotically negligible. In addition, we require
H < (1 − 2/q)/d to be able to use a Gaussian approximation
as in Chernozhukov, Chetverikov, and Kato (2014, Proposition
3.2). If the outcome variable is bounded, one can set q = ∞
in Assumption 2.1(ii) so that H < 1/d as in Chernozhukov,
Chetverikov, and Kato (2014, Proposition 3.1). If one only
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assumes q = 4, then the convergence rate must satisfy H ∈
(1/(4 + d), 1/2d). For this interval to be nonempty, d can be
at most 3, which is consistent with Assumption 1 in LOW. In
principal, it would also be possible to use the optimal band-
width, that is, H = 1/(4 + d), and conduct bias correction
as in Calonico, Cattaneo, and Farrell (2018), while accounting
for the impact of the estimated bias correction term on the
standard error. This approach is, however, beyond the scope
of the present article. A key conceptual difference between our
setup and Calonico, Cattaneo, and Farrell (2018) is that in our
case the dependent variable is not directly observed, but is rather
constructed based on first-stage nuisance estimators. Finally,
Assumption 3.1(v) is a standard bound for the Taylor remainder,
commonly assumed in local linear regression theory. See, for
example, Li and Racine (2007, chap. 2).

We now state high-level conditions that specify the conver-
gence rates required of the first-stage nuisance function esti-
mators. The stated rates are linked to the bandwidth sequence
h used in the second-stage regressions. More specifically, we
make the following assumption about the full-sample first-stage
estimator η̂(I).

Assumption 3.2 (Full sample, first stage). Let δ1N , δ2N , δ4N , and
AN be sequences of positive numbers, and G(j)

N , j ∈ {0, 1, π} be
classes of real-valued functions defined on the support of X with
corresponding envelope functions G(j)

N , j ∈ {0, 1, π}. For ε > 0,
let N (G(j)

N , ‖ · ‖, ε) be the covering number associated with G(j)
N

under some norm ‖·‖ defined onG(j)
N .9 The following conditions

are satisfied.
(i) The estimator η̂(I) obeys the error bounds

sup
x1∈X 1,j=0,1

∥∥∥(μ̂(j, X; I) − μ0(j, X))K1/2
h (X1 − x1)

∥∥∥
P,2

×
∥∥∥(π̂(X; I) − π0(X))K1/2

h (X1 − x1)
∥∥∥
P,2

= Op(δ
2
1N) (4)∑

j=0,1

∥∥μ̂(j, ·; I) − μ0(j, ·)∥∥
P,∞ + ∥∥π̂(X; I) − π0(X)

∥∥
P,∞

= O(δ2N). (5)

sup
x1∈X 1,j=0,1

∥∥∥(μ̂(j, X; I) − μ0(j, X))||X1 − x1||1/2
2 K1/2

h (X1 − x1)
∥∥∥
P,2

×
∥∥∥(π̂(X; I) − π0(X))||X1 − x1||1/2

2 K1/2
h (X1 − x1)

∥∥∥
P,2

= Op(δ
2
3N). (6)

(ii) With probability approaching one,

μ̂(j, ·; I) ∈ G(j)
N , j = 0, 1, and π̂(·; I) ∈ G(π)

N ,

where the classes of functions G(j)
N , j ∈ {0, 1, π} are such that

sup
Q

logN
(
G(j)

N , || · ||Q,2, ε||G(j)
N ||Q,2

)
(7)

≤ δ4N(log(AN) + log(1/ε) ∨ 0), j = 0, 1, π

with the supremum taken over all finitely supported discrete
probability measures Q.

9The covering number is the minimal number of balls with radius ε needed
to coverG(j)

N . A ball with radius ε centered on g is the collection of functions

g′ ∈ G(j)
N with ‖g′ − g‖ < ε.

(iii) The sequences δ1N , δ2N , δ3N , δ4N and AN satisfy:

min(δ1N/hd/2, δ2N) = o
(
(log(N)Nhd)−1/4), δ2N = o(1),

(8)

min(δ3N/hd/2+1, δ2N) = o
(
(log(N)Nhd+2)−1/4), (9)

δ4N log(AN ∨ N) log(N)δ2
2N = o(1), (10)

and δ2Nδ4N log1/2(N)N1/q log(AN ∨ N) = o((Nhd)1/2).
(11)

Remarks.

1. Part (i) of Assumption 3.2 controls the difference between η0
and η̂(I) (i.e., the estimation error) in various norms.

2. Part (ii) controls the complexity of the nuisance functions
and the estimators through restrictions on the entropy of the
classes G(j)

N .
3. It is of course part (iii) that fills parts (i) and (ii) with content

through specifying the behavior of the sequences δ1N , δ2N ,
δ4N , and AN . In particular, conditions (8) and (9) extend the
fairly standard requirement in semiparametric settings that
the first-stage nuisance function estimators converge faster
than N−1/4; see Ai and Chen (2003) and Belloni et al. (2017).
However, in estimating τ0(x1) and β0(x1), the second-stage
kernel regression relies only on observations local to x1, and
hence the relevant effective sample size is Nhd and Nhd+2

rather than N. The extra log(N) factor that appears in the
required convergence rate is the price to pay for uniform
results in x1.

4. If the first-stage estimators are based on (correctly specified)
parametric models, then, under standard regularity condi-
tions, η̂(I) converges to η0 at the rate of N1/2 both in L2
and L∞ norm. Thus, in this case (4) and (5) both hold with
δ1N = δ2N = N−1/2 (recall that Kh is bounded). In addition,
conditions (8), (10), and (11) are also easily satisfied with
δ4N = O(1), and AN = O(1). This is essentially the setting
in LOW (with allowance for partial misspecification).

5. Assumption 3.2 imposes rate restrictions on the complexity
of the first-stage estimators. The lasso-type regularization
method achieves variable selection along with estimation,
which greatly reduces the complexity of the estimator. Thus,
it is especially suitable for first-stage estimation when using
the full sample.

6. It is possible to establish sufficient conditions on the conver-
gence rate of π̂ , μ̂ and the kernel individually. For example,
following Kennedy et al. (2017), we can assume

sup
x1∈X 1

√√√√√ E

[(
μ̂(j, X; I) − μ0(j, X)

)2 |X1 = x1
]

E

[(
π̂(X; I) − π0(X)

)2 |X1 = x1
] = Op(δ

2
5N).

Note here we require the bound to hold uniformly over X 1
rather than a neighborhood of x1, because we aim to conduct
uniform inference over X 1. Then, it is easy to see that our
δ1N = δ5Nhd/2 and δ3N = δ5Nh(d+1)/2. Consequently, (8)
and (9) reduce to δ5N = o

(
(log(N)Nhd)−1/4) as δ2N ≤ δ5N .

However, this condition is sufficient but necessary. It is pos-
sible to bound directly the estimation error of the nuisance
parameters weighted by the kernel, as shown in Su, Ura, and
Zhang (2019).
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7. Alternatively, because the kernel function is bounded, we can
write

sup
x1∈X 1,j=0,1

∥∥∥(μ̂(j, X; I) − μ0(j, X))K1/2
h (X1 − x1)

∥∥∥
P,2∥∥∥(π̂(X; I) − π0(X))K1/2

h (X1 − x1)
∥∥∥
P,2

≤M max
j=0,1

∥∥(μ̂(j, X; I) − μ0(j, X))
∥∥
P,2∥∥(π̂(X; I) − π0(X))

∥∥
P,2 .

for some constant M > 0. Thus, one could also state sufficient
conditions for (4) solely in terms of the L2-norm of the error
bounds associated with μ̂(j, X; I) and π̂(X; I).

8. Note that we only require bounds on the product of the L2-
norms of two estimation errors as in (4) and (6). The product
structure of these conditions allows for tradeoffs between
how fast π̂(·; I) versus μ̂(j, ·; I) converges.

The corresponding assumption about the cross-fitting (split-
sample) estimator is as follows.

Assumption 3.3 (Split sample, first stage). The split-sample first-
stage estimators η̂(Ic

k), k = 1, . . . , K are assumed to satisfy:

sup
x1∈X 1

{ ∥∥∥(π̂(X; Ic
k) − π0(X))K1/2

h (X1 − x1)
∥∥∥
PIk ,2

×
∥∥∥(μ̂(j, X; Ic

k) − μ0(j, X))K1/2
h (X1 − x1)

∥∥∥
PIk ,2

}
= Op

(
δ2

1n
)
, (12)

||π0(X) − π̂0(X; Ic
k)||P,∞ +

∑
j=0,1

||μ0(j, X) − μ̂(0, X; Ic
k)||P,∞

= O(δ2n), (13)∥∥∥(μ̂(j, X; Ic
k) − μ0(j, X))||X1 − x1||1/2

2 K1/2
h (X1 − x1)

∥∥∥
PIk ,2

×
∥∥∥(π̂(X; Ic

k) − π0(X))||X1 − x1||1/2
2 K1/2

h (X1 − x1)
∥∥∥
PIk ,2

= Op(δ
2
3n), (14)

where PIk f = E(f (W1, . . . , WN)|Wi, i ∈ Ic
k) for a generic

function f , h−dδ2
1n = o((log(n)nhd)−1/2), δ2n = o((log(n))−1),

and h−d−2δ2
3n = o((log(n)nhd+2)−1/2).

Remarks.

1. Because K is fixed and n = N/K, log(N)Nhd and log(n)nhd

have the same order of magnitude.
2. For the split-sample estimation, there is no requirement on

the entropy of the space where the estimated nuisance func-
tions take values. This weakening of the theoretical condi-
tions is due to the fact that, because of the cross-fitting tech-
nique, we can treat the estimators of the nuisance parameters
as fixed by conditioning on the subsample of the data used
for the estimation.

3. Assumption 3.3 does not impose restrictions on the com-
plexity of the first-stage estimator and thus accommodates
various machine learning methods. One can verify Assump-
tion 3.3 given the error bounds of machine learning first-
stage estimators in both L∞ and L2 norms by the same argu-
ment as described in Section 3.2. Deriving these error bounds

for various machine learning methods is beyond the scope
of our article. Partial results are available in the literature.
For example, the L2 bounds for the random forest method
and deep neural networks have already been established in
Wager and Athey (2018) and Farrell, Liang, and Misra (2018),
respectively.

4. Remarks 6–8 after Assumption 3.2 apply here as well. In
essence, Assumption 3.3 is the local analog of Assumption
5.1(f) used by Chernozhukov et al. (2018) to estimate the
unconditional average treatment effect via the cross-fitting
(split-sample) approach.

5. Similarly to Remark 7 after Assumption 3.2, one sufficient
condition for the requirement on δ1N is that√

n/hd max
j=0,1

∥∥(μ̂(j, X; Ic
k) − μ0(j, X))

∥∥
P,2∥∥(π̂(X; Ic

k) − π0(X))
∥∥
P,2 = o((log(n)−1/2)).

Chernozhukov and Semenova (2019) consider sieved estima-
tion of CATE with high-dimensional control variables and
require

√
nr max

j=0,1

∥∥(μ̂(j, X; Ic
k) − μ0(j, X))

∥∥
P,2∥∥(π̂(X; Ic

k) − π0(X))
∥∥
P,2 = o(1),

where r is the dimension of the sieve bases. In nonparametric
estimation, we know the variances of sieve- and kernel-based
estimators are of order r/n and 1/(nhd), respectively. This
implies our rate requirement is equivalent to Chernozhukov
and Semenova (2019, Assumption 4.4) up to some logarith-
mic factor. The requirement on δ3N is not essential and can
be avoided if one uses the local constant regression instead.

Theorem 3.1.

(a) If Assumptions 2.1, 2.2, 3.1, and 3.2 are satisfied, then

τ̂ (x1) − τ0(x1) = (PN − P)

[
1

hdf (x1)
(ψ(W, η0)

− τ0(x1))Kh (X1 − x1)

]
+ Rτ (x1),

where PNf = 1
N

∑N
i=1 f (Wi) for a generic function f (·) and

supx1∈X 1
|Rτ (x1)| = op((log(N)Nhd)−1/2).

(b) If Assumptions 2.1, 2.2, 3.1, and 3.3 are satisfied, then the
representation established in part (a) also holds for the K-
fold cross-fitting estimator τ̌ (x1), that is,

τ̌ (x1) − τ0(x1) = (PN − P)
[ 1

hdf (x1)
(ψ(W, η0)

− τ0(x1))Kh (X1 − x1)
] + Řτ (x1),

where supx1∈X 1
|Řτ (x1)| = op((log(N)Nhd)−1/2).

Theorem 3.1 provides the linear (Bahadur) representations
of the nonparametric estimators τ̂ (x1) and τ̌ (x1) with uniform
control of the remainder terms. It serves as a building block for
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both pointwise and uniform inference about τ0(x1).10 Starting
with the former, we define

σ 2
N(x1) = hdvar

(
1

hdf (x1)
(ψ(W, η0) − τ0(x1))Kh (X1 − x1)

)
,

and suppose that σ 2
N(x1) satisfies:

Assumption 3.4. There exists some C > 0 such that
minx1∈X 1

σ 2
N(x1) ≥ C for all N.

Then Theorem 3.1, together with Lyapunov’s CLT, implies
√

Nhd(τ̂ (x1) − τ0(x1)
)

σN(x1)

d→ N (0, 1) (15)

for any fixed x1 ∈ X 1. One can estimate the variance σ 2
N(x1) as

σ̂ 2
N(x1) = 1

Nhdf̂ 2(x1; I)

n∑
i=1

(
ψ(Wi, η̂(I)) − τ̂ (x1)

)2K2
h (X1i − x1) ,

and we will show that

sup
x1∈X 1

|̂σN(x1) − σN(x1)| = op(1) and

sup
x1∈X 1

|̂σ−1
N (x1) − σ−1

N (x1)| = op(1).

Of course, this means that inference in practice can proceed
based on (15) with σ̂N(x1) replacing σN(x1). Furthermore, result
(15) remains valid if one uses the estimator τ̌ (x1) in place of
τ̂ (x1); in this case σ 2

N(x1) can be estimated as

σ̌ 2
N(x1) = 1

K

K∑
k=1

σ̌ 2
k (x1), where

σ̌ 2
k (x1) = 1

nhd

∑
i∈Ik

1
f̂ 2(x1; Ik)

(
ψ(Wi, η̂(Ic

k))

− τ̌k(x1)
)2K2

h (X1i − x1) .

Theorem 3.2. If Assumptions in Theorems 3.1 and Assump-
tion 3.4 hold, then

sup
x1∈X 1

|̂σN(x1) − σN(x1)| = op(1),

sup
x1∈X 1

|̂σ−1
N (x1) − σ−1

N (x1)| = op(1),

sup
x1∈X 1

|σ̌N(x1) − σN(x1)| = op(1), and

sup
x1∈X 1

|σ̌−1
N (x1) − σ−1

N (x1)| = op(1).

As can be seen from the proof, the op(1) term actually van-
ishes polynomially in N.

10In the online supplement, we provide the linear (Bahadur) representations
of the nonparametric estimators β̂(x1) and β̌(x1) with uniform control of
the remainder terms, which can be of independent interest.

3.2. CATE Estimators Based on First-Stage Lasso
Estimators

While the high-level assumptions stated in Section 3.1 can
accommodate multiple machine learning procedures for esti-
mating η0, here we describe the first stage using lasso estimation
as a leading example. We now discuss some primitive conditions
under which lasso estimation of η0 will satisfy Assumptions 3.2
and 3.3. Specifically, let b(X) = (b1(X), . . . , bp(X)) be a dictio-
nary of control terms based on X, where p is potentially larger
than the sample size N and can grow with N.11 Typically, b(X)

consists of X, and powers and interactions of the components
of X. The lasso approximates the nuisance functions η0 with
linear combinations of the components bi(X); in particular, for
p-vectors β , α, and θ , set

rα(x) := μ0(0, x) − b(x)′α,
rβ(x) := μ0(1, x) − b(x)′β ,

rθ (x) := π0(x) − �(b(x)′θ), (16)

where �(·) is the logistic c.d.f. A primitive condition that jus-
tifies using the lasso is approximate sparsity. Intuitively, this
means that it is possible to make the approximation errors rα ,
rβ , rθ small with just a small number of approximating terms,
that is, with α, β and θ having only a handful of nonzero
components.12 The coefficients α, β , and θ are estimated by
penalized least squares or maximum likelihood, where a penalty
is imposed for any nonzero component.

In the lasso computations, we set the tuning parame-
ter to be 2c

√
N�−1(1 − 0.1/(log(N)2p)) and c

√
N�−1(1 −

0.1/(log(N)4p)) for the conditional mean and propensity score
functions estimation, respectively, following Belloni, Cher-
nozhukov, and Hansen (2014b) and Belloni et al. (2017).13

To formalize the idea that the dimension p of b(X) is com-
parable with or larger than the sample size, we let p = pN be a
function of N and allow pN to grow to infinity as N increases,
possibly (much) faster than N. For example, one could set pN =
O(Nλ) for any λ > 0, but even log(pN) = O(Nλ) is allowed
if λ is not too large. The linear approximation errors to the
components of η0, defined in display (16), will be controlled
by the sparsity index s = sN , a nondecreasing sequence of
positive numbers potentially converging to infinity with N. Also
needing control is the upper bound on the components of b(X);
to this end, let ζ = ζN = max1≤j≤pN ‖bj(X)‖P,∞, and note that
ζ (weakly) increases as pN → ∞. The following assumption
formalizes the notion of approximate sparsity.

Assumption 3.5. Let sπ and sμ denote the individual sparsity
index sequences associated with π0(·) and μ0(j, ·), respectively.
There exist sequences of coefficients α = αN , β = βN and
θ = θN such that the linear approximations defined in (16)
satisfy the following conditions.

11To be fully consistent with the general notation, it would be more precise
to denote the dictionary as X = b(X∗) = (b1(X∗), . . . , bp(X∗)); see the
discussion in the second paragraph of Section 2. We opt for simplicity at a
small cost in notational consistency.

12The linear index structure and approximate sparsity are specific to the lasso;
other machine learning methods provide different types of approximations
which do not necessarily rely on sparsity.

13The constant value is usually chosen as c = 1.1. Also in practice, one could
use cross-validations to choose the tuning parameter here.
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(i) The number of nonzero coefficients is bounded by sμ and
sπ , that is, max{‖α‖0, ‖β‖0} ≤ sμ and ‖θ‖0 ≤ sπ .

(ii) The approximation errors are asymptotically small in the
sense that

||rα(X)||P,2 + ||rβ(X)||P,2 = O
(√

sμ log(p)/N
)

,

||rα(X)||P,∞ + ||rβ(X)||P,∞ = O
(√

s2
μζ 2 log(p)/N

)
,

||rθ (X)||P,2 = O
(√

sπ log(p)/N
)

,

||rθ (X)||P,∞ = O
(√

s2
πζ 2 log(p)/N

)
,

where s2
μζ 2 log(p)/N → 0 and s2

πζ 2 log(p)/N → 0 (and
therefore sμ log(p)/N → 0 and sπ log(p)/N → 0).

Part (i) of Assumption 3.5 states that the number of nonzero
coefficients in the b(X)-based linear approximations to η0 is at
most s. Part (ii) requires that the approximation errors associ-
ated with these linear combinations asymptotically vanish both
in L2 and L∞ norm. This generally requires s → ∞, but s needs
to stay small relative to N in the sense that s2ζ 2 log(p)/N → 0.

Given Assumption 3.5 and additional regularity conditions,
results by Belloni et al. (2017) imply that conditions (4) and (5)
hold with

δ2
1N ≤ sup

x1∈X 1,j=0,1

∥∥(μ̂(j, X; I) − μ0(j, X))
∥∥
P,2∥∥(π̂(X; I) − π0(X))

∥∥
P,2 ≤ (sμsπ )1/2 log(p ∨ N)/N,

δ2
2N =(s2

μ + s2
π )ζ 2 log(p ∨ N)/N, and

δ2
3N ≤(sμsπ )1/2 log(p ∨ N)h/N, (17)

where the last inequality holds because ||X1 − x1||2Kh(X1 −
x1) � h. Furthermore, Belloni et al. (2017) also established (7)
with δ4N = s and AN = p for the following function classes:

G(j)
N = {b(X)′β : ||β||0 ≤ �Nsμ,

sup
x∈X

|b(x)′β − μ0(j, x)| ≤ Mδ2N}, j = 0, 1,

G(π)
N = {�(b(X)′θ) : ||β||0 ≤ �Nsπ ,

sup
x∈X

|�(b(x)′θ) − π0(x)| ≤ Mδ2N},

where �N is some slowly diverging sequence, for example, �N =
log(log(N)) and M > 0. (As π0(·), μ0(1, ·), and μ0(0, ·) are
uniformly bounded,G(0)

N ,G(1)
N ,Gπ

N have bounded envelope func-
tions.)

Given these results, Assumption 3.2 with first-stage lasso
estimation boils down to the following conditions:

min

(
(sμsπ )1/2 log(p ∨ N) log1/2(N)

(Nhd)1/2 ,

ζ 2(s2
μ + s2

π ) log(p ∨ N) log1/2(N)hd/2

N1/2

)
= o(1),

ζ 2(sμ + sπ )3 log2(p ∨ N) log(N)

N
= o(1), and

ζ 2(sμ + sπ )4 log3(p ∨ N) log(N)

N2−2/qhd = o(1). (18)

These conditions all hold if sμsπ log2(p∨N) log(N)

Nhd = o(1) and
ζ 2(sμ+sπ )2 log(p∨N) log(N) = o(N1−2/q). For example, if q =
4, p = O(Nλ), λ > 0, and ζ = O(N1/4), then max(sμ, sπ ) =
o(

√
Nhd) is essentially sufficient for Assumption 3.2, ignoring

logarithmic factors of N.
By contrast, Assumption 3.3 holds under substantially

weaker sparsity conditions. Given the rates in (17), the l.h.s.
of (12) is at most of order O

(√sπ
√sμ log(p)/N

)
, as Kh is a

bounded function. Hence, Assumption 3.3 essentially reduces to√sπ
√sμ log(p)/(Nhd) = o

(
(log(N)Nhd)−1/2). Again, setting

p = O(Nλ), λ > 0, and ignoring the logged factors of N
gives sπ sμ = o(Nhd). This condition is of course satisfied if
sπ = sμ = o(

√
Nhd), but there can be tradeoffs between the two

sparsity indexes. For example, if sπ = O(1), that is, the propen-
sity score essentially obeys a finite dimensional model linear in
parameters, then sμ = o(Nhd) is possible, that is, μ0(j, ·) can
be a function that is substantially harder to approximate. Given
Remark 5 after Assumption 3.3, we can see that our sparsity
conditions for Assumption 3.3 are essentially equivalent to those
in Chernozhukov and Semenova (2019). On the other hand,
Lee, Okui, and Whang (2017) is based on parametric first-stage
estimators with the dimension of the regressors fixed. Therefore,
they do not need sparsity conditions (though one could regard
the parametric assumption as an extreme form of sparsity).

Other types of lasso methods such as the group lasso by Far-
rell (2015) and the penalized local least squares and maximum
likelihood methods by Su, Ura, and Zhang (2019) can also be
used. One can verify the rate restrictions in a manner similar to
the above.

4. Uniform Inference Based on the Multiplier
Bootstrap

Turning to uniform inference, one option is to construct uni-
form confidence bands analytically similarly to LOW. We pro-
vide an alternative method based on the multiplier bootstrap.
Our multiplier bootstrap procedure is computationally efficient
and takes the nuisance function estimators from the first stage
as given and only recomputes the nonparametric regression
estimator(s) from the second stage. This step simply involves
a random rescaling of the terms in the sums (2) and (3). As
lasso estimation is usually time consuming, our procedure is
less costly to implement than, say, a standard nonparametric
bootstrap requiring new samples from the original data and
recomputing the whole estimator.

To describe the procedure formally, we make the following
assumption.

Assumption 4.1. The random variable ξ is independent of W
with E(ξ) = var(ξ) = 1, and its distribution has sub-
exponential tails.14

Assumption 4.1 is standard for multiplier bootstrap infer-
ence. For example, a normal random variable with unit mean

14A random variable ξ has sub-exponential tails if P(|ξ | > x) ≤ K exp(−Cx)

for every x and some constants K and C.
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and standard deviation satisfies this assumption. The bootstrap
is implemented as follows:

1. Compute the first-stage nuisance function estimates
μ̂(0, x; I), μ̂(1, x; I), π̂(x; I) OR μ̂(0, x; Ic

k), μ̂(1, x; Ic
k),

π̂(x; Ic
k), k = 1, . . . , K.

2. Draw an iid sequence {ξi}N
i=1 from the distribution of ξ .

3. Choose the number of bootstrap replications B, for example,
B = 1000. Compute τ̂ b(x1) by the local linear regression, for
b = 1, . . . , B,

(τ̂ b(x1), β̂b(x1)) = arg min
a,b

∑
i∈I

ξi
[
ψ(Wi, η̂(I)) − a

− (X1i − x1)
′b

]2Kh (X1i − x1) ,

or τ̌ b(x1) = 1
K

∑K
k=1 τ̂ b

k (x1), where for k = 1, . . . , K,

(τ̂ b
k (x1), β̂b

k (x1)) = arg min
a,b

∑
i∈Ik

ξi
[
ψ(Wi, η̂(Ic

k)) − a

− (X1i − x1)
′b

]2Kh (X1i − x1) .

The following theorem is the bootstrap version of Theo-
rem 3.1, and it forms the basis of our inference procedure.

Theorem 4.1.

(a) If Assumptions 2.1, 2.2, 3.1, 3.2, and 4.1 are satisfied, then

τ̂ b(x1) − τ̂ (x1) = (PN − P)
[ ξ − 1

hdf (x1)
(ψ(W, η0)

− τ0(x1))Kh (X1 − x1)
] + Rb

τ (x1),

where supx1∈X 1
|Rb

τ (x1)| = op((log(N)Nhd)−1/2).
(b) If Assumptions 2.1, 2.2, 3.1, 3.3, and 4.1 are satisfied, the

representation established in part (a) also holds for τ̌ b(x1)−
τ̌ (x1), that is,

τ̌ b(x1) − τ̌ (x1) = (PN − P)
[ ξ − 1

hdf (x1)
(ψ(W, η0)

− τ0(x1))Kh (X1 − x1)
] + Řb

τ (x1),

where supx1∈X 1
|Řb

τ (x1)| = op((log(N)Nhd)−1/2).

Theorem 4.1 justifies the validity of the multiplier bootstrap
in implying that

√
Nhd(τ̂ b(x1) − τ̂0(x1)) converges in distribu-

tion to the limiting distribution of
√

Nhd(τ̂ (x1) − τ0(x1)) con-
ditional on the sample path (data) with probability 1. Therefore,
if Assumption 3.4 also holds, then, conditional on data,

√
Nhd(τ̂ b(x1) − τ̂ (x1)

)
σ̂N(x1)

d→ N (0, 1). (19)

The same statements of course hold true if τ̌ b(x1) and τ̌ (x1)
replaces τ̂ b(x1) and τ̂ (x1), respectively.15 In addition to point-
wise inference, the uniform control of the error term Rb

N(·) in
Theorem 4.1 makes it possible to employ the multiplier boot-
strap for uniform inference. For the rest of the article, we focus
on the inference of τ0(x1). The uniform inference of β0(x1) can
be implemented in the same manner. We propose the following
algorithm.

15In the online supplement, we also show similar results regarding β̂b(x1)

and β̌b(x1) that might be of separate interest.

Uniform Confidence Band Implementation Procedure.

1. Compute τ̂ (x1) and σ̂N(x1) for a suitably fine grid over X 1.
2. Compute τ̂ b(x1) over the same grid for b = 1, . . . , B while

generating a new set of iid N (1, 1) random variables {ξb
i }N

i=1
in each step b.

3. For b = 1, . . . , B, compute

M1-sided
b = sup

x1∈X 1

√
Nhd(τ̂ b(x1) − τ̂ (x1))

σ̂N(x1)
,

M2-sided
b = sup

x1∈X 1

√
Nhd

∣∣τ̂ b(x1) − τ̂ (x1)
∣∣

σ̂N(x1)
,

where the supremum is approximated by the maximum over
the chosen grid points.

4. Given a confidence level 1 − α, find the empirical (1 − α)

quantile of the sets of numbers {M1-sided
b : b = 1, . . . , B} and

{M2-sided
b : b = 1, . . . , B}. Denote these quantiles as Ĉ1-sided

α

and Ĉ2-sided
α , respectively.

5. The uniform confidence bands are constructed as

IL =
{(

τ̂ (x1) − Ĉ1-sided
α

σ̂N(x1)√
Nhd

, ∞
)

: x1 ∈ X 1
}

,

IR =
{(

− ∞, τ̂ (x1) + Ĉ1-sided
α

σ̂N(x1)√
Nhd

)
: x1 ∈ X 1

}
,

I2 =
{(

τ̂ (x1) − Ĉ2-sided
α

σ̂N(x1)√
Nhd

, τ̂ (x1) + Ĉ2-sided
α

σ̂N(x1)√
Nhd

)
: x1 ∈ X 1

}
.

The following theorem formally states the asymptotic valid-
ity of the confidence regions proposed above.

Theorem 4.2. If Assumptions 2.1, 2.2, 3.1, 3.2, 3.4, and 4.1 are
satisfied, then

lim
N→∞P

(
τ0 ∈ IL

) = lim
N→∞P

(
τ0 ∈ IR

) = lim
N→∞P

(
τ0 ∈ I2

) = 1 − α.

Remarks.

1. Theorem 4.2 states that the random confidence bands IR,
IL, and I2 contain the entire function τ0 with the prescribed
probability 1 − α in large samples.

2. If the grid in step 1 is chosen to be a single point x1, then
the algorithm provides pointwise confidence intervals IL(x1),
IR(x1), and I2(x2).

3. One can construct uniform confidence bands for τ0 based on
the cross-fitting estimator τ̌ following the exact same steps as
above; of course, one needs to replace τ̂ , τ̂ b, and σ̂N with τ̌ ,
τ̌ b, and σ̌N , respectively.

4. It is also possible to construct the uniform confidence band
by approximating the supremum of the empirical process via
a Gumbel distribution. However, the Gumbel approximation
is accurate only up to the logarithmic rate, as pointed out by
Lee, Okui, and Whang (2017). The bootstrap approximation
proposed in this article has the advantage that the approxi-
mation error has a geometric rate of decline and the quality
of the approximation is better than that of Gumbel.16 We also

16We thank an anonymous referee for this excellent comment.
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note that both the bootstrap and the Gumbel approximations
rely on the linear expansions established in Theorem 3.1.

We discuss the bandwidth choice in practice. To obtain our
theoretical results, we require undersmoothing to eliminate bias
asymptotically. When d = 1 as in the simulations, we suggest
setting hN = ĥ × N1/5 × N−2/7, where ĥ = 1.06 · σ̂x1 N−1/5 and
σ̂x1 is the estimated standard deviation of X1. The formula for
ĥ corresponds to the rule-of-thumb bandwidth with a Gaussian
kernel suggested by Silverman (1986).17 The bandwidth selec-
tion is done with the entire sample even for the cross-fitting
method. Also the same selection method is employed in the
empirical application.

We investigate the finite sample properties of the proposed
high-dimensional CATE estimators and the inference proce-
dure outlined above using Monte Carlo experiments. Because
of the space constraint, this material can be found in the online
supplement.

5. Empirical Application

In this section, we employ the proposed high-dimensional
CATE estimators to analyze the average effect of maternal smok-
ing on birth weight while allowing for virtually unrestricted
treatment effect heterogeneity conditional on the mother’s age.
Birth weight has been associated with health and human capital
development throughout life (Black, Devereux, and Salvanes
2007, Almond and Currie 2011), and maternal smoking is con-
sidered to be the most important preventable cause of low birth
weight (Kramer 1987). In recent studies, AHL and LOW both
explored this causal relationship using the CATE approach, and
found different degrees of heterogeneity by age. Using observa-
tions from 3754 white mothers in Pennsylvania, LOW found
that the CATE of smoking is decreasing from 17 to around
29 years of age, but they differ from AHL in that the contrast
between young and 30-year-old mothers is still not large.18

Our study improves on these previous investigations by con-
sidering a much larger pool of covariates and explicitly incorpo-
rating a variable selection mechanism into the estimation. This
initial pool consists of a vector X of raw covariates as well as
technical regressors (powers and interactions) to account for
the fact that the functional form of π0 and μ0 is unknown. By
contrast, AHL assume that a low dimensional parametric model
(known up to its coefficients) is correctly specified for π0, while
LOW assume that either π0 or μ0 obeys such a model. While we
still assume that π0 and μ0 are sparse functions, we let a data-
driven procedure (lasso) select the most relevant regressors.

5.1. Data Description

We start with the same dataset as AHL, composed of vital
statistics collected by the North Carolina State Center Health

17When d = 2 or 3, we suggest setting for j = 1, . . . , d, hjN = ĥj ×N1/(4+d) ×
N−2/(4+3d) and ĥj = 1.06 · σ̂x1j N−1/(4+d) and σ̂x1j is the estimator of the
standard deviation of the jth element of X1.

18As the smoking effect is negative, “decreasing” means that the detrimental
effects of smoking become stronger with age.

Services, and extract the records of first-time mothers19 between
1988 and 2002. The variables include whether the mother
smokes (the treatment dummy), the baby’s birth weight (the
main outcome variable, measured in grams), the parents’ socio-
economic information, such as age, education, income, race,
etc., as well as the mothers’ medical and health records. The
dataset includes 45 raw covariates and 591,547 observations
in total. Table 1 summarizes the most important pretreatment
covariates in the dataset.20

5.2. High-Dimensional CATE Estimation

In this section, we estimate the CATE of maternal smoking on
the baby’s birth weight with mother’s age as the conditioning
variable. Following AHL and LOW, we estimate CATE sepa-
rately for black mothers and white mothers. We only report
the estimation results for white mothers in this section; the
results for the black mothers can be found in the online sup-
plement. The dependent variable Y is the baby’s birth weight
measured in grams. The treatment dummy D takes on the value
1 if the mother smokes and 0 otherwise. We start from the
set of variables displayed in Table 1, and construct an even
larger dictionary b(X) by adding polynomial terms to account
for the unknown form of the nuisance functions in a flexi-
ble way. Specifically, we include, up to degree 3, the powers
and interaction terms of key dummy variables and continuous
and integer covariates. We then end up with 792 covariates in
total.

With such a large set of covariates, it is not clear which
variables are important in estimating the CATE function. The
true set of variables which belong to the estimating equations
is assumed to be sparse, as discussed in the previous sections.
We hence apply the lasso method in Belloni et al. (2017) to
estimate propensity score (π0) and conditional mean function
(μ0). We then compute the robust score function ψ for each
observation i, and run a local linear regression of ψi on mother’s
age evaluated at numerous grid points in the interval [15, 36]
(years of age). We use the cross-fitting variant of the estima-
tor, that is, the nuisance function estimation and the kernel
regression take place in different subsamples, and then these
roles are rotated. In the empirical study, we use the same K
(= 4) as in the simulations. Granted that the theoretical prop-
erty of the proposed K-fold cross-fitting estimator is the same
as the full-sample estimator in large samples, we recommend
using sample-splitting estimator with K = 4 or 5 following
the suggestion of Chernozhukov et al. (2018). We refer to the
resulting point estimates as HDCATE (HD stands for “high
dimensional”).

AHL include the mother’s age, education, month of first pre-
natal visit (=10 if prenatal care is foregone), number of prenatal
visits, and indicators for the baby’s gender, the mother’s marital

19The motivation for focusing on first-time mothers is discussed in AHL. In
effect, the restricted sample enables more credible identification of the
causal effect, as there cannot be uncaptured feedback from the previous
birth experience to the current one.

20We drop some covariates from the analysis for various reasons. For example,
the mother’s weight gain during pregnancy is arguably not a pretreatment
variable, and the Kessner index of prenatal care is basically a function of the
number of prenatal visits and the timing of the first visit.
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Table 1. Variable definitions.

Name Type Description

Outcome variable bweight Real number Birth weight(g)

Treatment smoke Dummy Whether mother smokes or not

Covariates

Parents
Basic
Info

mage Real numbera Mother’s age
meduc Integer Mother’s years of schooling
fage Integer Father’s age
feduc Integer Father’s years of schooling
fagemiss Integer Whether or not father’s age is missing
married Dummy Whether or not mother is married
popdens Real number Population density in mother’s zip code (units/km2)

Mothers’
Medical

Care
&

Health
Status

prenatal Integer Month of first prenatal visit (=10 if prenatal care is foregone)
pren_visits Integer Number of prenatal visits
terms Integer Previous (terminated) pregnancies
amnio Dummy Did mother take amniocentesis?
anemia Dummy Did mother suffer from anemia?
diabetes Dummy Did mother suffer from gestational diabetes?
hyperpr Dummy Did mother suffer from hypertension?
ultra Dummy Did mother take ultrasound exams?

Others

male Dummy Whether or not baby is male
drink Dummy Mother’s alcohol use
by88-02 Dummy 13 birth year dummies (from 1988 to 2002)

aNOTE: mother’s age is originally recorded as an integer but for the purposes of this exercise we add a uniform [−1, 1] random number to this value to make it a continuous
variable. The main results are robust when we add a uniform [−0.5, 0.5] random number to the age variable. See more empirical results in the online supplement.

status, whether or not the father’s age is missing, gestational dia-
betes, hypertension, amniocentesis, ultrasound exams, previous
(terminated) pregnancies, and alcohol use as the confounding
factors. The variables selected by our first-step estimation are
similar to those used in AHL, with some notable differences.21

In the propensity score function, we also select father’s age,
and father’s education, besides the ones used in AHL, but not
gestational diabetes and amniocentesis. In the conditional mean
function, we have father’s education, and the rest overlap with
that of AHL.

The HDCATE estimates are displayed in Figures 1–3, along
with 90%, 95%, and 99% confidence bands, respectively. For
a given confidence level, we compute two types of intervals.
“HDCATE CB” is the proposed uniform confidence band com-
puted according to the algorithm given in Section 4. “PW CB”
is a pointwise confidence band, given for purposes of com-
parison, where the critical value Ĉ2-sided

α is replaced by the
corresponding value from the standard normal distribution
(e.g., 1.96 for α = 5%), and “LOW CB” is the uniform con-
fidence band by that of LOW. The constant function labeled
“ATE” represents the estimated average treatment effect across
all ages.

Figures 1–3 show that maternal smoking has a negative effect
on birth weight at all ages (the upper bounds of the confidence
bands are negative), and the average effect is likely to become
more negative with age. For example, the point estimates show
that for teenage mothers of age 18 or younger the negative
effect of smoking is, on average, less than 180 g in absolute
value. For mothers around age 24, the same effect is −220 g,

21Given that we use the cross-fitting method, there are K = 4 first-stage
estimates, and each has its own variable selection. The reported set of
variables selected in the first stage is the union of the selected variables
in the four split-sample first stages.

Figure 1. CATE for the effect of smoking on birth weights conditional on mother’s
age, 99% confidence bands.

and it approaches −250 above 35 years of age.22 Thus, there is
substantial variation in the estimated average treatment effect by
age. A potential explanation is that older mothers are likely to
have smoked for a longer period, and the detrimental effects of
smoking are cumulative (the smoking dummy does not control

22The nonmonotonicities in the point estimate between ages 25 and 35
could be due to undersmoothing and the quickly declining number of first-
time mothers toward the top of this age range.
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Figure 2. CATE for the effect of smoking on birth weights conditional on mother’s
age, 95% confidence bands.

for duration or intensity of smoking). The figures also shed some
light on the gains from using the proposed method compared
with the original study of AHL. The CATE function changes the
shape and location of the treatment effect estimates, especially
for the younger mothers, and shows that the estimated treatment
effects are always significantly negative using our method.23

Another important difference is that in this study we provide
a valid uniform confidence band.

Examining the confidence bands qualifies the analysis of
the point estimate in important ways. In Figure 1, the lower
bound of the 99% uniform confidence band (dashed line)
attains its maximum at around 16 years of age, and the value
of this maximum lies just below the minimum of the upper
bound attained at around age 24. Thus, it is possible to fit a
constant function (at about −185 g) inside the uniform con-
fidence bands. Nevertheless, if one is less conservative and
uses the 95% or 90% uniform confidence bands displayed in
Figures 2 and 3, respectively, then it is no longer possible to
do so. Thus, there is fairly compelling (statistically significant)
evidence that the smoking effect becomes more negative at
least between the ages of 16 and 24. Based on the pointwise
confidence band, there is some evidence of further decline in
HDCATE at higher ages but it is possible to fit constant func-
tions even within the 90% uniform confidence bands over the
interval [25, 35]. (Again note that these bands become rather
wide at higher ages due to the relatively small number of
observations.) The LOW confidence band is visibly wider than

23 Granted, the choice of bandwidth is different for the two studies, which
affects the shape of the estimated heterogeneous treatment curve to some
extent, but it is not the key reason for the different results. If we were to use
the same bandwidth choice as in AHL, we would still observe the difference,
as we mentioned in the main text.

Figure 3. CATE for the effect of smoking on birth weights conditional on mother’s
age, 90% confidence bands.

our confidence band, which is consistent with our simulation
results.

6. Conclusion

We advance the literature on the estimation of the reduced
dimensional CATE function by proposing that the nuisance
functions necessary for identification be estimated by flexible
machine learning methods, followed by a traditional local lin-
ear regression. The asymptotic theory we develop builds on
previous work by Belloni et al. (2017) and Chernozhukov et
al. (2018). Nevertheless, the theory requires nontrivial modi-
fications to accommodate local linear regression in the second
stage. Moreover, CATE is a functional parameter, and our results
can be used to conduct uniform inference through a bootstrap
procedure. In line with Chernozhukov et al. (2018), we also
advocate using the cross-fitting approach to estimate the nui-
sance functions and conduct the second-stage regression.

Using the proposed methods, we revisited the problem of
estimating the average effect of smoking during pregnancy on
birth weight as a function of the mother’s age. Our results fall in
between AHL and LOW in the sense that we do find age-related
heterogeneity (unlike LOW), but it is less marked than in the
former study. In particular, there is evidence that the negative
effect of smoking becomes somewhat more pronounced with
age.

Supplementary Materials

The supplementary material contains additional empirical studies, the
Monte Carlo simulations as well as detailed technical proofs.
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