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Abstract

Instrumental variables (IV) and control variables are frequently used to assist re-

searchers in investigating the endogenous treatment effects. When used together, their

identities are typically assumed to be known. However, in many practical situations,

one is faced with a large and mixed set of covariates, some of which can serve as ex-

cluded IVs, some can serve as control variables, while others should be discarded from

the model. It is often not possible to classify them based on economic theory alone.

This paper proposes a data-driven method to classify a large (increasing with sample

size) set of covariates into excluded IVs, controls, and noise to be discarded. The re-

sulting IV estimator is shown to have the oracle property (to have the same first-order

asymptotic distribution as the IV estimator, assuming the true classification is known).
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1 Introduction

This paper considers the estimation of treatment effect with a potentially large number

of covariates when the treatment is endogenous, even conditional on the covariates. The

true identity of the high-dimensional covariates is often unknown to empirical researchers:

some are excluded instruments, some are useful control variables (and among those, some are

relevant for the treatment variable while some are not), and the rest are only noise. Thus,

we are motivated to develop an IV estimator that utilizes the rich dataset while robust to

weak instruments and unknown control variables.

We propose a three-step procedure for selecting the desired instruments and useful control

variables using adaptive Lasso. First, we select the relevant variables in a reduced form

model for the endogenous treatment variable. Second, we replace the treatment variable

with its post-adaptive Lasso predicted value and select useful controls. Third, we take

the selected controls and the predicted treatment variable to obtain the treatment effect

estimator via OLS. Our estimator has the desired oracle property: it can consistently select

the targeted instruments and controls in the first and second steps. Therefore, it is called the

Robust IV Estimator for both the Irrelevant instrument and uncertain Included controls

(R2IVE). The “2” in R2IVE refers to both types (reduced form and structural equation) of

model uncertainty. Monte Carlo simulations demonstrate that our estimator performs better

than other existing IV estimators for endogenous treatment effects. User-friendly R code to

implement our method is provided.

The most closely related study is Kang et al. (2016) and Windmeijer et al. (2019). Kang

et al. (2016) propose a Lasso-type procedure (“sisVIVE”) to identify the set of structural

equation variables. They show that causal effects are identified and can be estimated as long

as more than 50% of the covariates are excluded IVs (the “majority rule”, which was first

proposed by Han (2008)), without any prior knowledge about which variables are instruments

or controls. Under the same identification condition, Windmeijer et al. (2019) propose

a consistent median estimator that can be used for adaptive Lasso estimation, with the
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resulting estimator (“ALasso”) having oracle properties. However, these methods do not

consider the commonly encountered weak IVs. When the majority rule is satisfied, some of

the IVs might be irrelevant for the endogenous treatment variable. We extend the papers

mentioned above by allowing some of the candidate instruments to be irrelevant for the

treatment. Our method requires a modified sufficient condition for identification, which is

the majority rule among the relevant instruments (i.e., more than half of the relevant IVs

are excluded IVs). The majority rule allows some candidate instruments to have a direct

effect on the dependent variable. As such, it imposes a weaker assumption than the ad hoc

approach of choosing excluded instruments.

Furthermore, our paper extends the scope of Kang et al. (2016) and Windmeijer et al.

(2019) by allowing both the number of candidate instruments and the number of relevant

candidate instruments to grow with the sample size. In another related work, Guo et al.

(2018) consider the presence of irrelevant instruments and propose two-stage hard thresh-

olding (TSHT) with a voting procedure. Different from Guo et al. (2018), which select

the excluded IVs from the first-step selection of relevant IVs, we consider all candidate in-

struments in both steps. Our procedure provides more robust finite sample performance

in empirically relevant cases, especially when the magnitude of the first-step coefficient is

relatively small.

This paper also relates to the study of IV selection with known validity and control

variables, such as Donald and Newey (2001), Bai and Ng (2010), Okui (2011), Gautier and

Tsybakov (2011), Belloni et al. (2012), Caner and Fan (2015), Lin et al. (2015), and Fan and

Zhong (2018). The literature on selecting valid moment conditions (Cheng and Liao, 2015;

Caner et al., 2018) is related in the sense that if the useful control variable is misclassified as

an excluded IV, it leads to invalid moment conditions. The poor performances from 2SLS

and LIML in Section 5 show the problem.

The following notations are used throughout the paper. For any n × L matrix X, we

denote the (i, j)-th element of matrix X as Xij, the ith row as Xi., and the jth column as X.j.
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X> is the transpose of X. XS = X.{j:j∈S}, where S is a subset of {1, · · · , L}. MX = In−PX,

where PX = X(X>X)−1X> is the projection matrix onto the column space of X, and In

is the n-dimensional identity matrix. Let ιs denote a 1 × s vector of ones. The lp-norm is

denoted by ‖·‖p, and the l0-norm, ‖·‖0, denotes the number of non-zero components of a

vector. ‖·‖∞ denotes the maximal element of a vector. 1(·) is an indicator function that

takes a value of 1 if the event is true and 0 otherwise. We denote Ac to be its complement for

any set A, and |A| is the cardinality of set A. For the order of magnitude symbols, an � bn

(an � bn) means that an is much less (greater) than bn.

The rest of the article is organized as follows. After introducing the baseline model in

Section 2, we describe the identification condition and estimation procedure in Section 3.

Section 4 presents the theoretical results. Section 5 collects simulation results to evaluate

the finite sample performance of the proposed estimator. In section 6, we illustrate the

usefulness of our estimator by revisiting the trade and growth study. Section 7 concludes.

Technical proofs are given in the online Appendix.

2 Model

The baseline structural model is given by

Yi = Diβ
∗ + Z>i.α

∗ + εi, E (εi|Zi.) = 0, (2.1)

where Yi is the outcome variable. Di is an endogenous treatment variable, that is, E(εi|Di) 6=

0, where εi is the unobserved random error. β∗ ∈ R is the true treatment effect parameter

of interest. Zi. ∈ RLn is the Ln-dimensional vector of covariates, with α∗ being its true

coefficients vector. We extend the scope of Kang et al. (2016) and Windmeijer et al. (2019)

by allowing the dimensionality Ln to grow with n but not exceed the sample size (specifically,

we require Ln = o(n)) and provide an inference procedure for the treatment effect. Denote

Y = (Y1, ..., Yn)>, D = (D1, ..., Dn)>, Z = (Z1., ...,Zn.)
> and Σn = n−1Z>Z. Note that the

4



model (2.1) can have known included exogenous variables Xi ∈ Rp and if so, we can replace

the variables Yi, Di and Zi. with the residuals after regressing them on X (e.g., replace Y

byMXY, and the same for Z and D), following Zivot and Wang (1998). For simplicity, we

also assume that Y, D, and the non-constant columns of Z are all centered, which can be

obtained from a residual transformation with a vector of 1’s, ιn.

Definition 1. Covariate Zj is an excluded instrument if α∗j = 0, and it is a useful control

variable if α∗j 6= 0, for j ∈ {1, · · · , Ln}. Let AC = {j : α∗j 6= 0} and AcC denote the set

of useful control variables and excluded IVs, respectively, and |AC | = sC. Denote α∗min =

min
{∣∣α∗j ∣∣ : j ∈ AC

}
, ZC = Z.{j:j∈AC} and ΣC = n−1Z>CZC.

Next, we consider the reduced form equation,

Di = Z>i.γ
∗ + ξi, E (ξi|Zi.) = 0, (2.2)

where ξi denotes i.i.d. random errors with mean 0 and finite variance, and corr(εi, ξi) 6=

0. This reduced form equation accommodates the optimal instrument estimation in high

dimensions (Belloni et al., 2012). Since Zi. can include the nonlinear terms (such as B-

splines, dummies, polynomials, and various interactions) of the original economic variables,

it is without loss of generality to consider the dependence of Zi. and endogenous variables

(Di, Yi) as potentially nonlinear1.

Definition 2. Instrument Zj is a relevant IV if γ∗j 6= 0, for j ∈ {1, · · · , Ln}. Let AR = {j :

γ∗j 6= 0} denote the set of these instruments that can approximate the conditional expectation

of the endogenous variable and sR = |AR|. Denote γ∗min = min
{∣∣γ∗j ∣∣ : j ∈ AR

}
, ZR =

Z.{j:j∈AR}, and ΣR = n−1Z>RZR.

Remark 2.1. In empirical studies, AC ∩ AR is the set of control variables that can cause

omitted-variable bias, while AC∩AcR is the set of exogenous control variables that do not cause

1We thank the Editor for this point.
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omitted-variable bias since it is not correlated to the treatment variable. AC ∩ AcR improves

the efficiency of the IV estimator by reducing the variance in the “unobserved factors” and

also makes the validity of AcC ∩ AR more plausible in practice (Angrist and Pischke, 2009).

Therefore, our goal is to select relevant excluded instruments in AR consistently for model

(2.2) and useful controls AC consistently for model (2.1).

3 Identification and estimation

The models (2.1) and (2.2) imply the following moment conditions:

E
(
Zi.(Yi − Z>i.α

∗ −Diβ
∗)
)

= 0, E
(
Zi.(Di − Z>i.γ

∗)
)

= 0.

Combining these two conditions, we obtain Γ∗ = α∗+β∗γ∗, where Γ∗ = E(Zi.Z
>
i. )
−1E (Zi.Yi)

and γ∗ = E(Zi.Z
>
i. )
−1E (Zi.Di). Since we can identify both Γ∗ and γ∗ based on observed

data, β∗ and α∗ are identified if and only if there is a unique solution to equation Γ∗ =

α∗+ β∗γ∗ given Γ∗ and γ∗. When γ∗j 6= 0 for all j = 1, · · · , Ln, Kang et al. (2016) discuss a

sufficient condition called the “majority rule”; that is, if ‖α∗‖0 ≤ Ln/2, the parameters β∗

and α∗ can always be identified. The “majority rule” was first proposed by Han (2008) and

was also used in Windmeijer et al. (2019). Unlike Kang et al. (2016) and Windmeijer et al.

(2019), we allow the presence of irrelevant instruments. Without loss of generality, we assume

that the first sR variables are relevant instruments. Let γ∗ = (γ∗>(1) ,0
>)>, Γ∗ = (Γ∗>(1),Γ

∗>
(2))
>

and α∗ = (α∗>(1),α
∗>
(2))
>, where γ∗(1), Γ∗(1) and α∗(1) are all sR × 1 vectors. Then, we have

Γ∗(1) = α∗(1) + β∗γ∗(1), (3.1)

Γ∗(2) = α∗(2). (3.2)

The solution of α∗(1) and β∗ is unique if the majority rule holds in the set of relevant instru-

ments, and α∗(2) is unique due to the uniqueness of Γ∗(2). Thus, we can obtain unique α∗ and

6



β∗ if the majority rule holds among relevant instruments, that is,
∥∥∥α∗(1)

∥∥∥
0
≤ sR/2.

3.1 Selection of relevant IVs

To select the relevant instruments, we consider the following objective function with an

adaptive Lasso penalty (Zou, 2006):

γ̈n = arg min
γ

{
‖D− Zγ‖2

2 + λn

Ln∑
j=1

ωj|γj|

}
, (3.3)

where the adaptive weights are defined by ωj = |γ̃j|−1, and γ̃n = (γ̃1, · · · , γ̃Ln)> is obtained

from the least squares estimator γ̃n(ols) when the dimension is much smaller than the sample

size (Ln � n) and the elastic-net estimator γ̃n(enet) (to enhance the robustness of the

initial estimator) when Ln is relatively large but no more than n. Specifically, the elastic-net

estimator as initial γ̃n is defined as

γ̃n(enet) =

{
arg min

γ
‖D− Zγ‖2

2 + λ2‖γ‖2
2 + λ1‖γ‖1

}
, (3.4)

where λ1, λ2 > 0 are the tuning parameters. The initial estimator γ̃n(enet) achieves
√
n/Ln-

consistency under some mild conditions (Zou and Zhang, 2009), satisfying the adaptive Lasso

estimator’s oracle property requirements. The information from the initial estimator γ̃n can

improve the variable selection performance. ÂR = {j : |γ̈j| > 0} is denoted as the adaptive

Lasso selected instruments. We then run the least squares of Di on the selected IVs, and we

obtain the refitted estimator γ̂n and the predicted Di:

D̂i =
∑
j∈ÂR

γ̂jZij. (3.5)
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Denote D̂ = (D̂1, · · · , D̂n)>. We suggest the BIC (Wang et al., 2009) method to choose

the tuning parameter λn in (3.3) adaptively in practice for transparency2 and model the

selection consistency property.

3.2 Selection of useful controls

We then describe the procedure to select the useful controls in (2.1). By taking the

conditional expectation of both sides of (2.1) given Zi., we have

E(Yi|Zi.) = D∗i β
∗ + Z>i.α

∗, (3.6)

where D∗i = E(Di|Zi.). Denote νi = Yi − E(Yi|Zi.). It is straightforward to show that

E(νi) = E[E(νi|Zi.)] = 0 and cov(D∗i νi) = E[E(D∗i νi|Zi.)] = E[D∗iE(νi|Zi.)] = 0. Adding νi

to both sides of (3.6), we have

Yi = D∗i β
∗ + Z>i.α

∗ + νi. (3.7)

Thus, D∗i is an exogenous variable in (3.7). The coefficient of the optimal instrument D∗i

in equation (3.7) remains the same β∗ as in the structural equation (2.1). Since D∗i is not

observable in practice, we replace D∗i with its estimate D̂i in (3.5). Substituting D̂i from

(3.5) into (3.7) yields

Y = D̂β∗ + Zα∗ + ν̈. (3.8)

We then partial out the effect of D̂ by multiplying by MD̂ on both sides of (3.8),

MD̂Y =MD̂Zα∗ +MD̂ν̈ (3.9)

2We provide standard R packages for easy implementation by practitioners. In our baseline model, the
BIC tuning parameter choice enjoys excellent variable selection performance and is easy to implement. For
the initial elastic-net estimator, we use the BIC and a fast grid search.
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. Denote Ỹ = MD̂Y, Z̃ = MD̂Z and ν̃ = MD̂ν̈. Then equation (3.9) can be written

as Ỹ = Z̃α∗ + ν̃, which is a linear model with a data matrix (Ỹ, Z̃). The adaptive Lasso

estimator for α∗ is

α̂n =

{
arg min

α

∥∥∥Ỹ − Z̃α
∥∥∥2

2
+ λ′n

Ln∑
j=1

ω′j|αj|

}
, (3.10)

where the adaptive weights are defined by ω′j = |α̃j|−1 and the initial estimator α̃n is con-

structed by elastic-net, with tuning parameters λ1 and λ2 that satisfy the same conditions

as their counterparts in (3.4),

α̃n(enet) =

{
arg min

α

∥∥∥Y −Dβ̃ − Zα
∥∥∥2

2
+ λ2‖α‖2

2 + λ1‖α‖1

}
. (3.11)

The β̃ in (3.11) is the median estimator proposed by Han (2008) and Windmeijer et al. (2019).

Specifically, denote Γ̃n(enet) as the elastic-net estimator of the reduced form equation of Y

on Z, and γ̃nj (enet) is the elastic-net estimator from (3.4). Then,

β̃ = median

({
Γ̃nj (enet)

γ̃nj (enet)
, j ∈ ÂR

})
. (3.12)

Similar to the first step, we use the BIC to choose λ′n in (3.10). Denote ÂC = {j : |α̂j| > 0}

as the selected set of useful controls in the structural equation.

Remark 3.1. The multicollinearity in transformed Z̃ does not interfere with the consistent

variable selection of the proposed adaptive Lasso procedure3. Theoretically, the initial esti-

mator α̃n is constructed based on an identified reduced form equation. The adaptive weight

constructed with this initial estimator satisfies the adaptive irrepresentable condition, which

is a sufficient consistent condition for variable selection (Huang et al., 2008). We formally

show this in Lemma 4.2.

3The Lasso-type estimation usually results in sparsity of γ̂n, implying the perfect multicollinearity of Z̃
only concentrates on the relevant set Z̃R. Even in low-dimensional models, it does not affect the selection
consistency. When Ln � n, it suffices to use the OLS estimator Γ̂n(ols).

9



The oracle property of step 2 indicates that the useful controls can be selected with

probability approaching 1. This property is crucial for the consistency of the R2IVE. Ad-

ditionally, since we consider all variables in the candidate set in both steps, we could select

AC ∩AcR and AC ∩AR as controls, in contrast to the TSHT, which selects the excluded IVs

from the relevant IVs in a sequential way (so that AC ∩AcR cannot be selected as controls).

Remark 3.2. The majority rule is not directly testable. Practically, the empirical researchers

could first look at the first step variable selection result and only determine whether the

majority rule would hold for the selected strong IVs. Furthermore, from the research design

step, the covariates set should focus on those likely to be excluded IVs. We use an empirical

example in Section 6 to demonstrate what to check in practice.

3.3 Treatment effect estimation

In the final step, we install the selected controls in the structural equation. Formally, the

proposed IV estimator for the treatment effect β∗, R2IVE, is the least squares solution

β̂ =
(
D̂>MÂCD̂

)−1

D̂>MÂCY, (3.13)

where MÂC = In − PÂC , and PÂC = ZÂC (Z>ÂC
ZÂC )−1Z>ÂC

is the projection matrix of ZÂC ,

where ZÂC = Z.{j:j∈ÂC}.

In summary, we present the following Algorithm 1 for the estimator.

4 Main theoretical results of R2IVE

We first define the desired convergence mode of an initial estimator. We will later verify

that these conditions hold for our proposed initial estimators.
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Algorithm 1 Robust IV Estimator to both the Irrelevant instrument and uncertain
Included controls (R2IVE)

Step 1. Obtain the penalized estimator γ̈n in (3.3) using adaptive Lasso. The post-

adaptive Lasso prediction of the conditional expectation of the endogenous treatment D̂
in (3.5) is used in the next step.

Step 2. Compute Ỹ = MD̂Y and Z̃ = MD̂Z. Obtain the penalized estimator α̂n and

the useful controls set ÂC in (3.10) via adaptive Lasso.

Step 3. Take the selected controls from the previous step and the predicted D̂ from the
first step to run a least squares regression for (3.8) to obtain the resulting IV estimator of

β̂ in (3.13).

Definition 3 [Initial (Estimator) Consistency]. The initial estimator γ̃j is rn-consistent if

rn max
j≤Ln

∣∣γ̃j − γ∗j ∣∣ = OP (1), rn →∞. (4.1)

Similarly, the initial estimator α̃j is rn-consistent if it satisfies corresponding conditions

as in (4.1).

Then we invoke the following conditions for theoretical study.

Assumption 1. (C1)
√
E(D2

i ) <∞, for i = 1, · · · , n.

(C2) |β∗| ≤ C1 and ‖α∗‖2/
√
n ≤ C2 for some constants C1 and C2.

(C3) γ∗j satisfies ∑
j∈AR

(
1∣∣γ∗j ∣∣
)2


1
2

≤MR = o (rn) , (4.2)

where MR is a parameter which we specify in the following (C8). Similarly, α∗j satisfies

corresponding conditions (with counterpart constants MC) as in (4.2).

(C4) The number of useful controls relevant for Di is less than 50% of the total relevant

instruments, that is, |AC ∩ AR| ≤ sR/2, where sR = |AR| ≥ 1.

(C5) The errors {ξi}i=1,2,··· ,n are independent and identically distributed random variables

with mean zero and finite variance σ2
ξ , and for certain constants 1 ≤ d ≤ 2, C3 > 0
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and K, the tail probability of ξi satisfies P (|ξi| > x) ≤ K exp
(
−C3x

d
)

for all x ≥ 0

and i = 1, 2, · · · , n. The same conditions also hold for {νi}i=1,2,··· ,n.

(C6) Let λmin(M) and λmax(M) denote the minimum and maximum eigenvalues of a positive

definite matrix M, respectively. Then, we assume

b1 ≤ λmin(
1

n
Z>Z) ≤ λmax(

1

n
Z>Z) ≤ B1,

where b1 and B1 are positive constants.

(C7) lim
n→∞

log(Ln)

log(n)
= C4 for some 0 ≤ C4 < 1.

(C8) The parameters {sR, λn,MR, γ
∗
min} satisfy

MRλn
γ∗minn

→ 0 and

(a) for 1 < d ≤ 2

(log sR)
1
d

√
nγ∗min

→ 0,

√
n (log(Ln − sR))

1
d

λnrn
→ 0; (4.3)

(b) for d = 1

(log n) (log sR)√
nγ∗min

→ 0,

√
n(log n) (log(Ln − sR))

λnrn
→ 0, (4.4)

and {sC , λ′n,MC , α
∗
min} satisfy similar conditions.

(C9) The tuning parameters {λ1, λ2} satisfy

λ1√
n
→ 0,

λ2

n
→ 0,

n

λ1

√
Ln
→∞, λ2√

n
‖γ∗‖2 → 0,

λ2√
n
‖α∗‖2 → 0. (4.5)

Condition (C1) imposes a mild restriction on the finite second moment of the endogenous

treatment variable Di. Condition (C2) requires the boundedness of the true treatment effect

and the non-zero coefficients for α∗. Condition (C3) restricts the boundedness of non-zero

γ∗j and α∗j . Condition (C4) formally present the majority rule. |AC ∩ AR| ≤ sR/2 is the
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identification condition, which is a sufficient condition here if the reduced form is linear.

And we need at least one strong excluded instrument4. Condition (C5) requires that the

distribution of the random errors should not be too heavy tailed. Condition (C6) assumes

that the eigenvalues of Σn are bounded below and above to ensure that the gram matrix

has good behavior. It then implies that the eigenvalues of ΣR and ΣC are also bounded.

Condition (C7) restricts the growth rate of the number of parameters, following the literature

on moderately high dimension case (Fan and Peng, 2004; Zou and Zhang, 2009). Condition

(C8) puts restrictions on the numbers of covariates with non-zero coefficients sR (sC), the

penalty parameter λn (λ′n), and the minimum non-zero coefficient γ∗min (α∗min), which can

imply that γ∗min (α∗min) are uniformly bounded away from zero over j ∈ AR (j ∈ AC) and

n. The maximum number of covariates permitted depends on the tail behavior of the error

term. Heuristically, for d = 2 (sub-Gaussian tail), the model can include more covariates

than the exponential tail case (d = 1). We can use some special cases to see the growth

rate. For example, we consider d = 2, and rn =
√
n/Ln (the rate of our initial estimator).

Assume that 1/γ∗min = O(1), MR = O
(
s

1/2
R

)
and λn = na for some 0 < a < 1, then the

above conditions can be simplified as

√
sR

n1−a → 0,
log sR
n
→ 0,

√
Ln log(Ln − sR)

na
→ 0.

Thus, we have λn = op(n), sR = op(min{n2(1−a), n/Ln}) and Ln − sR = op(exp(n2a/Ln)).

Condition (C9) follows the assumptions (A5) and (A6) in Zou and Zhang (2009), which

regulates the tuning parameters λ1, λ2. It allows the non-zero coefficients to vanish but at

a rate that can be distinguished by the penalized least squares.

Remark 4.1. We specify the convergence rate rn of the initial estimator in the relevant IV

4The high-dimensionality of the model provides a more plausible scenario that our assumption on the
IV set could hold. Even if we have all weak IVs (or many weak controls), we show in the simulations that
as long as there is model uncertainty in both structural and reduced form models, our method is still more
robust than the method that could deal with only one type of undesired instrument (such as LIML for many
weak instruments case).
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selection. For the low dimension n � Ln case, under conditions (C5) and (C6), the OLS

initial estimator γ̃n(ols) is known to be
√
n-consistent. In high-dimensional models, under

conditions (C5)-(C7), and (C9), the elastic-net estimator γ̃n(enet), proven by Zou and Zhang

(2009) in Theorem 3.1, has the rate

E
(
‖γ̃n (enet)− γ∗‖2

2

)
≤ 4

λ2
2 ‖γ∗‖

2
2 +BLnnσ

2
ξ + λ2

1Ln

(bn+ λ2)2 = O

(
Ln
n

)
.

Hence, γ̃n(enet) is a
√
n/Ln-consistent estimator.

Lemma 4.1. Assume that condition (C3), (C8) and other conditions in Remark 4.1 hold,

then

P
(
ÂR = AR

)
→ 1, as n→∞, (4.6)∥∥∥D∗ − D̂

∥∥∥
2

= op(1). (4.7)

The equation (4.6) shows the selection consistency of the adaptive Lasso for the high-

dimensional reduced form model. Based on this selection consistency, we give the proof of

equation (4.7) in the online Appendix.

Lemma 4.2. Assume conditions (C2), (C4)-(C7) and (C9) hold, the median estimator β̃

in (3.12) is consistent:

β̃
p−→ β∗, (4.8)

and the constructed initial estimator α̃n(enet) in the second step of R2IVE is consistent:

√
n/Ln‖α̃n(enet)−α∗‖2 = Op(1). (4.9)

Furthermore, based on this initial estimator, assume conditions (C1), (C2), (C3) and (C8)

hold,

P
(
ÂC = AC

)
→ 1, as n→∞. (4.10)
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Lemma 4.2 describes the behavior of the proposed median estimator β̃ and initial es-

timator α̃n. The median estimator β̃ is consistent, and the initial estimator α̃n satisfies

consistency in Definition 3. It suffices to provide control variable selection consistency of

the adaptive Lasso estimator in the second step. Hence, our oracle property is more general

than models that consider only AR or AC .

Remark 4.2. Note that despite its desired oracle property, the current procedure has a de-

ficiency regarding uniform inference. When the coefficient of some variables is non-zero but

small, the machine learning procedure may not select them and thus may lead to incorrect in-

ference in finite samples. This is different from the double machine learning (DML) procedure

of Belloni et al. (2014) and Chernozhukov et al. (2018), which gives uniform inference with

an unknown functional form of the model. This paper focuses on the first-order problem of

IV and control variable model uncertainty. In this regard, our study is rather complementary

to the DML method rather than competing with it. The simulation results show that R2IVE

is robust to the situation of many small coefficients; second, DML with the R2IVE-selected

model works well. We leave the uniform inference problem for future studies.

Theorem 4.1. Assume Assumption 1 holds, the R2IVE in (3.13) is
√
n-consistent and

asymptotically normal. That is

σ−1
n

√
n
(
β̂ − β∗

)
→ N(0, 1), (4.11)

where σ2
n =

[
E
(
D∗>MACD∗

)]−1
E
[
D∗>MACD∗ν2

i

] [
E
(
D∗>MACD∗

)]−1
. In the case in

which the structural error is homoscedastic, that is, E(ν2
i |Zi.) = σ2

ν, (4.11) holds with σ2
n =

σ2
ν

[
E
(
D∗>MACD∗

)]−1
.

Unlike the previous literature, adding controls AC ∩AR in the first step and AC ∩AcR in

the second step to our procedure improves efficiency by effectively reducing the space of the
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error term. For statistical inference, the asymptotic variance can be estimated by

σ̂2
n =

(
1

n

n∑
i,j=1

D̂iMÂC(i,j)D̂j

)−1(
1

n

n∑
i,j=1

D̂iMÂC(i,j)D̂j ν̂
2
i

)(
1

n

n∑
i,j=1

D̂iMÂC(i,j)D̂j

)−1

,

where ν̂i = Yi − D̂iβ̂ − Z>i. α̂. In addition, σ̂2
n =

(
1
n

∑n
i,j=1 D̂iMÂC(i,j)D̂j

)−1 (
1
n

∑n
i=1 ν̂

2
i

)
under the homoscedastic structural errors case. Then the asymptotic confidence interval for

the true treatment effect β∗ can be obtained by (β̂− zτ/2σ̂n/
√
n, β̂+ zτ/2σ̂n/

√
n), where zτ/2

denotes the τ/2 upper-tailed critical value of the standard normal distribution.

5 Simulation

We conduct various simulation studies to evaluate the performance of the proposed

method in finite samples. Specifically, the structural equation is

Yi = Diβ
∗ + Z>i.α

∗ + εi, (5.1)

where β∗ = 0.75. Zi. = (Zi1, Zi2, · · · , ZiLn)> is generated from a multivariate normal dis-

tribution N(0,Σ), and Σ = (ρj1j2)Ln×Ln with ρj1j2 = 0.5|j1−j2|, for j1, j2 = 1, · · · , Ln, and

i = 1, · · · , n. We consider two different coefficients generating patterns for α∗. One is

“cutoff at sC” sparse design, that is, α∗ = c × (0q, ιsC ,0Ln−q−sC )>, where ιsC is a 1 × sC

vector of 1’s, which denotes that the first q and the last Ln − q − sC covariates are ex-

cluded IV, and sC is the number of useful controls. The default value for the constant

c is 1 until otherwise noted. The other is an “exponentially decaying” design, that is,

α∗ = 0.5∗ (0Ln−sC , 1, 0.7, 0, 7
2, · · · , 0.7sC−1)>, which denotes that the first Ln−sC covariates

are excluded IVs, the last sC covariates are controls and the corresponding coefficients of

the controls decrease to zero. In the decaying parameter case, we allow that most Zis are

controls (a violation of the majority rule), which are designed to test the robustness of the

R2IVE in the more difficult situation to distinguish useful controls.
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The endogenous variable Di is generated based on the following reduced form model:

Di = Z>i.γ
∗ + ξi. (5.2)

For model (5.2), we consider three different coefficient patterns. The first is “cutoff at sR”

sparse design, that is, γ∗ = (2, 0.75, 1.5, 1, . . . ,0Ln−sR)>, where 0Ln−sR is a 1 × (Ln − sR)

vector of zeros and sR is the number of relevant IVs. We fill in the values of non-zero

elements in γ∗ by replicating the non-zero elements of (2, 0.75, 1.5, 1) until its length is

sR. For example, if sR = 6, the non-zero elements of γ∗ are (2, 0.75, 1.5, 1, 2, 0.75). We also

consider the fixed value of non-zero elements in γ∗ and vary the magnitude of the coefficients

in subsection 5.5. The second is the “many weak” design, and the corresponding coefficients

are γ∗ = ( τ√
n
, · · · , τ√

n
)>, where τ = 1.41. The third is an “exponentially decaying” design,

that is, γ∗ = 0.5 ∗ (1, 0.7, 0, 72, · · · , 0.7Ln−1)>, which denotes that the reduced form model is

non-sparse and has some weak instruments as the power series approaches 0.

In summary, we vary (i) the number of useful controls sC , (ii) the number of relevant IVs

sR, (iii) the size of |AcC ∩ AR| and |AC ∩ AcR|, which is controlled by the value of q in the

strict cutoff designs, (iv) the sample size n and IV dimensionality Ln, (v) the strength of IVs

and (vi) the coefficient patterns introduced above. The model settings are also summarized

in Table 1.

[Insert Table 1 here]

The error terms in the structural model and reduced form models are generated by

 εi

ξi

 i.i.d.∼ N


 0

0

 ,
 1 0.8

0.8 1


 .

We repeat each simulation setting M = 500 times and compute the average of the

estimation bias (denoted by “bias”), M−1
∑M

m=1

(
β̂m − β∗

)
, with its empirical standard

deviation and the mean squared errors (denoted by “MSE”), M−1
∑M

m=1

(
β̂m − β∗

)2

, where
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β̂m denotes an estimator of β∗ in the mth experiment. We compare our method with OLS,

2SLS, Oracle 2SLS (the linear 2SLS when the relevant set AR and controls set AC are all

known), LIML, RJIVE, NAIVE, sisVIV, ALasso, TSHT, and median estimators. For 2SLS,

LIML, RJIVE, and NAIVE, we report the estimation results using the endogenous treatment

variable in the structural equation and all instrumental variables in the reduced form model.

We also present results for the so-called post-sisVIVE estimator (to compare with other post-

selection estimators), which is a 2SLS estimator that takes the set of controls selected by

sisVIVE. Post-sisVIVE also provides standard error in an empirical study in Section 6. We

report the model selection performance for the estimators that can perform variable selection.

Specifically, we report the average number (“mean”) of covariates selected as relevant IV (for

NAIVE,TSHT, and R2IVE), excluded IV (for TSHT), or useful control (for sisVIVE, post-

sisVIVE, ALasso, and R2IVE) together with the minimum, median and maximum numbers

of selected covariates, and the rate of successfully recognized covariates (“freq”)5. Finally,

we report the result for a double machine learning (DML) estimator (Chernozhukov et al.,

2015) using post Lasso with control variables selection by R2IVE. DML variable selection is

not reported since the model selection result is not directly comparable.

All simulation studies are conducted using R. In particular, the R package naivereg

(Fan and Zhong, 2018) and gcdnet (Yang and Zou, 2012) are used in R2IVE. The R package

sisVIVE (Kang et al., 2016) and the R code provided by Guo et al. (2018) are used to obtain

sisVIVE and TSHT, respectively. The computer codes for the implementation of the R2IVE

are available at https://github.com/microfan1/R2IVE.

5.1 A brief description of sisVIVE, ALasso, and TSHT

Here, we briefly describe sisVIVE, ALasso and TSHT, the most relevant comparison

estimators.

5The formula for this indicator is freq=
∑M

m=1 1(Si)

M , where Si is the event in ith loop that the selected
covariates include all the intended true set of instruments or controls.
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sisVIVE is numerically equivalent to a two-step estimation procedure. The preparation

step is to obtain the predicted value of D̂ using all IVs. Step 1 is the standard Lasso prob-

lem, which estimates the structural equation coefficients α̂λ based on a set of transformed

variables similar to (3.9). Then, the causal effect parameter β is obtained directly using the

estimates from step 1, β̂sisVIVE = D̂>(Y−Zα̂λ)

‖D̂‖22
.

ALasso uses OLS estimators to calculate median estimator β̃ similar to (3.12); that is, Γ̃

and γ̃ are from OLS using all IVs. Then the initial estimator α̃ is calculated by α̃ = Γ̃− γ̃β̃

which is used in adaptive Lasso to obtain α̂. At last, β is obtained similar to sisVIVE,

β̂ALasso = D̂>(Y−Zα̂)

‖D̂‖22
.

TSHT targets the set AcC ∩ AR. The first thresholding step selects AR, and the second

thresholding step selects AcC based on the selected strong instruments. The voting procedure

takes the candidate sets and uses majority and plurality rules to determine the true set of

excluded IVs. Finally, a two-stage least squares estimator with the selected valid IV set gives

a point estimate for the causal effect parameter.

5.2 Change the number of useful controls

In the first case, we fix the sample size n = 200, IV dimension Ln = 100, and the number

of relevant IVs sR = 10 and c = 1. We set sC = 0, 10, 30 to check the influence of the number

of useful controls on the estimation results. For sC = 0, we have |AC ∩AR| = |AC ∩AcR| = 0,

|AcC ∩ AR| = 10 and |AcC ∩ AcR| = 90. For other non-zero values of sC , we set q = 7, which

denotes |AcC ∩AR| = 7, |AC ∩AR| = 3, |AcC ∩AcR| = 100− sC − 7 and |AC ∩AcR| = sC − 3.

All settings here satisfy the majority rule. The results are shown in Table 2 and Figures 1(a)

and 1(b).

[Insert Table 2, Figure 1 here]

Due to space considerations, Figures 1(a) and 1(b) only show the box plots of bias for

these estimators for sC = 0, 30. Table 2 reports the estimation results for sC = 0, 10, 30.
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In Figures 1(a) and 1(b), we do not include the results of OLS in both panels since they

are always severely biased and have very large MSE, which inflates the scale of the figure

and disturbs the visual demonstration of the main estimator. For the same reason, LIML

is excluded from Figure 1(b) when it mistakenly uses the controls as excluded IVs (e.g., in

Table 2, sC = 30, the MSE of LIML is 7.618, which is much larger than the second-largest

MSE, post-sisVIVE, which is 0.1493).

When there are no useful controls (sC = 0), 2SLS, sisVIVE, and ALasso are outperformed

by LIML, RJIVE, NAIVE, TSHT, and R2IVE due to the presence of many irrelevant in-

struments. This is shown in Figure 1(a). R2IVE is almost as good as LIML and RJIVE.

We demonstrate the importance of control variable selection, e.g., when sC = 10, 30, 2SLS,

LIML, RJIVE, and NAIVE become severely biased when they confuse the true identities

of controls and excluded IVs. The sisVIVE and post-sisVIVE are also substantially biased

in models with irrelevant IVs. The reason is that sisVIVE tends to select too many con-

trols (and sometimes missing the true controls), which causes bias. Post-sisVIVE does not

mitigate this problem. The post-selection 2SLS using many wrong variables from sisVIVE

(specifically, with many weak instruments that are regarded as excluded IV) aggravates the

bias problem in our baseline simulation settings. The median estimator proposed in Wind-

meijer et al. (2019) is severely biased. Since the ALasso relies on this initial estimator, the

performance of ALasso is hence negatively affected. As a result, the ALasso is also biased

due to the biased initial estimator and not selecting all control variables correctly. TSHT

tends to select too many excluded instruments, which means that some control variables

were wrongly selected as excluded IVs. Moreover, the simulation results show the cost of

ignoring the other useful covariates (namely, AC ∩ AR in step 1 and AC ∩ AcR in step 2)

in the finite sample. Specifically, in Table 2, Panel 2, where |AC ∩ AcR| = 7, the MSE of

TSHT is much larger than that of R2IVE. The median estimator proposed in (3.12) is best

in methods other than R2IVE and DML. R2IVE is very close to oracle 2SLS in linear re-

duced form models and performs the best among the non-oracle estimators. It can select
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relevant and excluded IVs and utilize the useful IV sets in different estimation stages. Based

on the R2IVE-selected controls, DML is the second-best estimator following R2IVE. DML

has a notably larger bias that diminishes as the sample size increases, as shown in Figures

1(e)-1(g).

5.3 Change the number of relevant IVs

In the second case, we fix the sample size n = 200, IV dimension Ln = 100, and the

number of useful controls sC = 30 and c = 1 but change the number of relevant IVs sR =

4, 15, 20. For each of the aforementioned sR, we set the number of strong and excluded

instruments q = 3, 10, 14, respectively. The majority rule is satisfied in this setting. The

results are shown in Table 3 and Figures 1(c) and 1(d).

[Insert Table 3 here]

In Figures 1(c) and 1(d), we see that 2SLS, RJIVE, and NAIVE all have large biases and

MSEs. LIML (very large MSE) is excluded from Figures 1(c) and 1(d). When the number of

relevant IVs increases, these estimators perform better. With irrelevant instruments in the

model, e.g., sR = 4, sisVIVE is even outperformed by RJIVE and NAIVE. The post-sisVIVE

does not help to reduce the bias. The sisVIVE is still biased when sR = 20. This shows the

importance of selecting relevant IVs. The median estimator used in ALasso is most biased

other than LIML, and hence ALasso has a large bias. TSHT improves with sR but has

a larger MSE in finite samples than R2IVE. The simulation results show that R2IVE has

better finite sample performance than DML in our baseline model setting in terms of bias

and MSE. The median estimator in this paper has comparable performance to DML.
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5.4 Change the sample size n, IV dimensionality Ln and the mag-

nitude of control variable coefficients

In this case, we increase the sample size and IV dimensionality and simultaneously change

the magnitude of α∗ (controlled by c), the control variable coefficients. We first fix the IV

dimensionality at Ln = 100, and sR = 20, sC = 20 and q = 14 while changing the sample size

(and the magnitude of α∗) to n = 200 (c = 1), 500 (c = 0.75), 1000 (c = 0.5). The results are

shown in Table 4 and Figures 1(e)-1(g). The estimation performances of OLS, 2SLS, LIML,

RJIVE, and NAIVE all improve with larger sample sizes, but they are always biased due

to misclassifying the useful control as an excluded IV. sisVIVE and DML have diminishing

bias and MSE when the sample size increases. sisVIVE tends to over select controls and

has a relatively large bias compared to other selection-based estimators in different sample

sizes. ALasso can not correctly select all control variables with a poorly performing median

estimator. The R2IVE is quite robust to changes in c or n. TSHT’s performance in sample

size n = 200 is not very satisfactory. It improves significantly and is on par with R2IVE

when the sample size n = 500, 1000. R2IVE is the best performer in different sample sizes.

Then, we fix n = 500, sR = 20, sC = 20 and q = 14 while letting Ln = 100 (c = 1),

250 (c = 0.5). The results are shown in Table 4 and Figures 1(f) and 1(h). As the IV

dimensionality grows while the magnitude of non-zero α is smaller (e.g., Panel 4 of Table

4), the performance of TSHT becomes poor. R2IVE and DML are quite robust to the IV

dimensionality when the sample size is large.

[Insert Table 4 here]

5.5 Change the IV strength

As discussed in Section 3, if a variable is irrelevant for Di and is a useful control, the

IV relevancy and control eligibility are evaluated in two separate steps of the procedure;

therefore, the ratio of αj and γj (in the cutoff design) does not directly affect the variable
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selection results (in contrast to a sequential selection method such as TSHT). In this case,

we change the magnitude of non-zero coefficients in γ∗. We first fix the IV dimensionality

at n = 200, Ln = 100, sR = 20, sC = 20, q = 14 and c = 1 while changing the magnitude of

non-zero coefficients in γ∗ = 1, 0.75, and 0.5, respectively, e.g., γ∗ = (1, · · · , 1, 0, · · · , 0)>.

The results are shown in Table 5 and Figures 2(a) and 2(b). The decrease in values of γ∗

generally worsens the performance of all estimators, while R2IVE and DML always dominate

other estimators. When γ = 0.5, the performance of DML is slightly better than R2IVE.

[Insert Table 5, Figure 2 here]

5.6 Change the IV model design patterns

Now, we consider some different coefficient patterns for IV models. Specifically, we use the

conventional “many weak IVs” setting and the “exponentially decaying” design regarding

1) the IV strength for (5.2) only and 2) both IV strength for (5.1) and control variable

coefficients in (5.2). Due to space limitations, we fix n = 200 and Ln = 100. The simulation

results are shown in Tables 6-8 and Figures 2(c)-2(h). First, in the “many weak IVs” design,

we consider two cases of sC = 0, 10. When the true model has no useful controls (sC = 0),

LIML and RJIVE are the best estimators. R2IVE is the best after these two, as shown in

Panel 1 of Table 6. However, there is a large bias to LIML and RJIVE when they do not

distinguish useful controls from excluded IVs, as shown in Panel 2. sisVIVE and ALasso

can correctly select all control variables but are still biased. TSHT always has a large bias

and MSE due to undesirable variable selection performance. It tends to select fewer relevant

instruments than NAIVE. R2IVE and DML have the smallest bias and MSE, and R2IVE is

most robust to the many weak IVs and uncertainty of controls. Second, in the “exponentially

decaying” design for the (5.2) case, which is shown in Table 7 and Figures 2(e) and 2(f),

R2IVE consistently outperforms TSHT, and it is very close to LIML and RJIVE when there

are no useful controls. LIML has good performance in the “many IVs” case (with the best

MSE of 0.0072), as shown in Table 7. Similar to the previous case, when the model does
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not select useful controls, the MSE of LIML is very large. In this design, R2IVE is again

the most robust to both irrelevant IVs and structural model uncertainty. DML also has

good performance when there are many weak instruments. Finally, in the “exponentially

decaying” design (shrinking coefficients for both (5.1) and (5.2)), we allow more than 50%

IVs that are useful controls (a violation of the majority rule, hence a difficult case by design)

and consider sC = 90, 95. When sC = 90, DML and R2IVE perform best in estimators

other than RJIVE, which performs relatively well since all useful controls are very weak in

this setting. Ignoring these controls does not induce a large bias since they can be taken

as nearly exogenous variables. When sC = 95, RJIVE becomes seriously biased due to the

presence of AC ∩ AR, while R2IVE and DML are less affected by this change.

[Insert Tables 6-8 here]

6 Application to trade and economic growth

In this section, we illustrate the usefulness of R2IVE by revisiting the classic question

of trade and growth, which remains a hot debate topic with important policy implications.

One lingering issue in the empirical study of trade and growth is the endogeneity of trade

due to the unobserved common driving forces that cause both trade and growth. Frankel

and Romer (1999, FR99 henceforth) construct an instrumental variable using the primary

workhorse of empirical trade studies, the gravity model of trade (Anderson, 1979). The

instrumental variable (called “proxy for trade” in FR99 ) is the sum of predicted bilateral

trade shares for country i using geographical variables. They show that trade positively

affects growth using cross-sectional data from 150 countries from the 1980s. Fan and Zhong

(2018) extend the study of FR99 by considering more potential instruments and a nonlinear

reduced form equation. In addition to the instrument used in FR99, they also include total

water area, coastline, arable land as a percentage of total land, land boundaries, forest area

as a percentage of land area, the number of official and other commonly used languages in a
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country, and the interaction terms of constructed trade proxy with all these variables. They

provide a stronger result regarding trade on growth than FR99. However, FR99 and Fan

and Zhong (2018) did not consider that some instruments might actually be controls. We

show the solutions to this structural model uncertainty using R2IVE. In this study, we use

an additional air pollution variable (PM2.5) as a potential instrument.

Whether the air pollution variable can serve as an instrument or control is not clear

from previous literature. Frankel and Rose (2005) find little evidence that trade is related

to environmental pollution using cross-country data. In contrast, Kukla-Gryz (2009) finds

that air pollution is related to international trade and per capita income. Many developing

countries are gradually adopting new policies with more environment-friendly standards,

hence, raising production costs, which means that air pollution can provide a direct path to

growth. We try to get a clearer answer to this problem.

In addition to the aforementioned candidate IVs, we also include two randomly simu-

lated variables from a standard normal distribution in the model to test the sensitivity of

the proposed estimator6. The economic interpretation of the majority rule is that some can-

didate instruments may directly affect the outcome variable; however, the number of those

unknown controls is less than valid IVs. Under the baseline model of Fan and Zhong (2018),

the geographical variables form the majority group of the candidate IVs, therefore likely

satisfying the majority rule. This point will be verified in a later subsection. Our study is a

relaxation of Fan and Zhong (2018) regarding unknown exclusion restrictions.

6.1 Model and data

We use cross-sectional data from 158 countries (economies) and update the data to 2017

to investigate the contemporary effect of trade on growth. The summary statistics of the

main data are presented in Table 9. Figure 3 is the scatter diagram of the actual and

constructed share of international trade. Their correlation coefficient is 0.36.

6We thank an anonymous reviewer for this point.
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[Insert Table 9, Figure 3 here]

We first standardize all data and consider a linear structural equation

Yi = Diβ + Z>i.α + S>i.δ + εi (6.1)

where Yi is the log of GDP per worker in country i, Di is the share of international trade

to GDP, Si. is the size of the country, namely, population and land area, Zi. is the vector of

other covariates that include all aforementioned candidate IVs summarized in Table 9 and

the two randomly generated “noise” variables, and εi is unobserved random disturbances

in the growth function. As discussed in Section 2, R2IVE considers a general nonlinear

relationship between the covariates and endogenous variables. Here, we use the polynomial

terms (up to order 3) of the original variables7.

The reduced form model we consider is

Di =
∑
j

Zijγj + ξi (6.2)

where Zs are the same variables in (6.1), and ξi is unobserved random disturbances, which

is correlated with εi.

Note that we can replace the variables Yi, Di, and Zi. with the projections after regressing

them on Si (e.g., replace Y by Ÿ =MSY). Then, equation (6.1) and (6.2) becomes

Ÿi = D̈iβ + Z̈>i.α + ε̈i

D̈i =
∑
j

Z̈ijγj + ξ̈i
(6.3)

7In an earlier version of the paper (Fan and Wu, 2020), we considered a nonparametric additive reduced
form model. The new variable selection results (with data standardization to highlight variable selection
performance across different methods) of R2IVE are comparable to the earlier version.
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6.2 Empirical results

To investigate the influence of the uncertain IV on the estimation of β, we explore the

empirical results with and without the air quality index (PM2.5) in Z and compare our esti-

mated value with FR99, NAIVE, sisVIVE, post-sisVIVE, TSHT, and the median estimators

defined in Windmeijer et al. (2019) and in (3.12), respectively. The results are summarized

in Tables 10 and 11.

When the variable PM2.5 is not included in the candidate set, NAIVE and R2IVE select

two relevant instruments in the reduced form: the proxy for trade and the interaction term

of the proxy for trade and the number of official and other commonly used languages, which

are likely to be excluded IVs (the J test p value is 0.40), while TSHT only selects the latter.

In Table 10, OLS has severe bias because of the endogeneity issue. The t statistics for the

NAIVE on trade is 2.76, compared to 4.66 for the 2SLS. Post-sisVIVE is not feasible here

since sisVIVE does not select any excluded instrument.

[Insert Tables 10 and 11 here]

When the variable PM2.5 is considered, it is selected by R2IVE and NIAVE as a relevant

variable for trade, in addition to the aforementioned two excluded IVs. The valid IV to

control ratio is at worst 2:1. Therefore, the majority rule is likely satisfied here. Table 11

summarizes the estimation results. If we use NAIVE, under the operating assumption that

all IVs are valid, the estimated causal effect is 0.88 (with a standard error of 0.18). For the

identity of PM2.5, the sisVIVE, ALasso, and R2IVE all select it as a useful control. This

result supports the conjecture that there may be a direct air pollution pathway to growth,

as discussed in some theoretical models on the environmental Kuznets Curve (Dasgupta

et al., 2002). The simulated completely random noise IVs are not selected by R2IVE as an

excluded instrument or control. The causal effect is estimated to be 1.15, which is close to

the results in Table 10. At last, the median estimators tend to be sensitive to the unknown

control variables.
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In summary, this empirical study shows that our method is most robust when facing

“noisy” instruments and uncertain controls. Other methods, specifically, sisVIVE and

ALasso can select the strong control variable (PM2.5). However, sisVIVE cannot select

any excluded instrument without PM2.5 in the model, and ALasso does not discard the

pure noise variables. TSHT does not perform well in the weak IV case and is inconsistent

in the selection results (it selects the constructed trade and language interaction as a valid

instrument without the PM2.5, and only PM2.5 as a control variable after it is added). In

hindsight, the NAIVE in Fan and Zhong (2018) did not accurately estimate the effect of

trade in the 2010s due to misclassifying instruments and controls. Our method can select

useful control variables and discard weak IVs in the presence of a mixed set of covariates.

7 Conclusion

This paper develops an IV estimator (R2IVE) robust to both structural and reduced form

model uncertainty when estimating endogenous treatment effects. The proposed method

extends Kang et al. (2016) and Windmeijer et al. (2019) by considering a high-dimensional

instrumental variable setting which allows for a more general (possibly nonlinear) relationship

between the instruments and endogenous variables. The proposed R2IVE is shown to be

root-n consistent and asymptotically normal. Monte Carlo simulations demonstrate that

R2IVE performs better than the existing IV estimators (such as RJIVE, NAIVE, sisVIVE,

ALasso, and TSHT) in many empirically relevant scenarios. The empirical study revisits

the classic question of trade and growth. It is shown that the R2IVE can estimate the

endogenous treatment effect with a large set of instruments without knowing which ones are

relevant or valid and whether a variable is a useful control. We will pursue causal inference

in the model of many weak and nearly valid instruments in the future.
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Table 1: The summary of all simulation model settings

(5.1) (5.2) n Ln sR sC q |M1| |M2| |M3| |M4|
200 100 10 0 10 10 0 90 0

200 100 10 10 7 7 3 83 7

200 100 10 30 7 7 3 63 27

Cutoff Cutoff 200 100 4 30 3 3 1 67 29

200 100 15 30 10 10 5 60 25

200 100 20 30 14 14 6 56 24

200/500/1000 100 20 20 14 14 6 66 14

500 250 20 20 14 14 6 216 14

Cutoff Many weak
200 100 - 0 - - - - -

200 100 - 10 7 - - - -

Cutoff Exp. Decay
200 100 - 0 - - - - -

200 100 - 10 7 - - - -

Exp. Decay Exp. Decay
200 100 - 90 - - - - -

200 100 - 95 - - - - -

NOTE: The sets M1−M4 are AcC ∩ AR, AC ∩ AR, AcC ∩ A
c
R, and AC ∩ AcR. (5.1) and (5.2) are structural and reduced

form equations stated in Section 5. Ln is the dimension of Z; sR and sC are the number of relevant IV and useful controls,
respectively; q ≤ sR determines the distribution of 2×2 contingent sets M1−M4. The cardinality of the IV set is shown for
strict cutoff designs. The default coefficient values are γ∗ = (2, 0.75, 1.5, 1, . . . ,0Ln−sR )> and α∗ = (0q , ιsC ,0Ln−q−sC )>

for the cutoff designs until further noted such as in Section 5.5. To distinguish from the strong IV case, “-” is shown in many
weak IVs case (including exponential decaying non-sparse cases with some weak IVs). In the following, Section 5.2 uses
row 1-3 of panel 1, Section 5.3 uses row 4-6 of panel 1, Section 5.4 uses row 7-8 of panel 1, Section 5.5 uses row 7 (n = 200)
of panel 1, and Section 5.6 uses panels 2-4, which are the approximate sparse and nearly valid (panel 4) situations.
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Table 2: Change the number of controls sC , fix n = 200, Ln = 100, sR = 10, c = 1

sC Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.0171 0.0102 0.0004
2SLS 0.0079 0.0141 0.0002

Oracle 2SLS 0.0002 0.0169 0.0001
LIML -0.0005 0.0102 0.0001
RJIVE 0.0001 0.0102 0.0001
NAIVE 0.0037 0.0157 0.0001 R(10) 12.21 12 17 10 1

0 sisVIVE 0.0081 0.0107 0.0002
C(0) 0.16 0 63 0 -

post-sisVIVE 0.0081 0.0142 0.0002

median 0.7030 0.1262 0.5102
ALasso 0.0078 0.0103 0.0002 C(0) 0 0 0 0 -

TSHT 0.0024 0.0406 0.0002
Cc ∩R(10) 10.22 10 13 9 0.99

R(10) 10.22 10 13 9 0.99

median -0.0023 0.0195 0.0004

R2IVE 0.0001 0.0168 0.0001
R(10) 10.14 10 15 10 1
C(0) 0 0 1 0 -

OLS 0.2754 0.0497 0.0781
2SLS 0.2698 0.0511 0.0751

Oracle 2SLS 0.0008 0.0228 0.0002
LIML -0.3085 0.1318 0.1126
RJIVE 0.2663 0.0531 0.0737
NAIVE 0.2679 0.0517 0.0741 R(10) 12.19 12 16 10 1

10 sisVIVE 0.2620 0.1130 0.0814
C(10) 46.20 48 69 11 0.99

post-sisVIVE 0.4824 0.1893 0.2722

median 0.7138 0.1200 0.5238
ALasso 0.2489 0.0368 0.0633 C(10) 5.93 6 10 0 0

TSHT 0.1704 0.0650 0.0305
Cc ∩R(7) 9.06 9 12 7 0.99

R(10) 10.23 10 13 9 0.99

median 0.0468 0.0336 0.0033

R2IVE 0.0007 0.0226 0.0002
R(10) 10.16 10 14 10 1
C(10) 10.01 11 11 10 1

DML -0.0037 0.0214 0.0003

OLS 0.2731 0.0941 0.0838
2SLS 0.2674 0.0952 0.0809

Oracle 2SLS 0.0003 0.0241 0.0002
LIML -2.6342 0.8242 7.6180
RJIVE 0.2658 0.0948 0.0796
NAIVE 0.2652 0.0957 0.0801 R(10) 12.10 12 17 10 1

30 sisVIVE 0.1848 0.1144 0.0472
C(30) 60.88 65 87 31 1

post-sisVIVE 0.3217 0.1901 0.1493

median 0.6904 0.1418 0.4968
ALasso 0.2620 0.0558 0.0718 C(30) 26.14 27 32 14 0

TSHT 0.1864 0.0880 0.0353
Cc ∩R(7) 9.30 9 12 8 0.99

R(10) 10.19 10 12 8 0.98

median 0.0559 0.0361 0.0044

R2IVE 0.0015 0.0240 0.0003
R(10) 10.15 10 14 10 1
C(30) 30.07 30 32 29 1

DML -0.0543 0.0248 0.0040

NOTE: This table summarizes the averages of estimated bias, standard deviations, MSE, and model selection performance.
The sixth column “Oracle” indicates the type and number of variables that are intended to be selected by various methods,
where R, Cc ∩R, C represent relevant covariates in AR, excluded IV and control variables (and in the parenthesis, we put
the true number of each type of variable that is intended to be selected by respective methods, e.g., for TSHT, the intended
IV set is AcC ∩AR). The average number of variables selected, together with the median, minimum and maximum numbers,
and the proportion of times that selected variables include all relevant IVs, excluded IVs, or controls, are reported for
respective estimators. Notice that sisVIVE and post-sisVIVE share the same selection results. The first median estimator
in the same panel of ALasso is the median estimator defined in Windmeijer et al. (2019). The second median estimator in
the same panel of R2IVE is defined in (3.12). DML uses post Lasso as the machine learning method. We show the results
of DML for models with included controls, such as the cases in panels 2 and 3 (sC=10, 30). DML variable selection is not
reported due to the transformed model structure.
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Table 3: Change the number of relevant instruments sR, fix
n = 200, Ln = 100, sC = 30, c = 1

sR Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.3843 0.1694 0.1754
2SLS 0.3697 0.1735 0.1664

Oracle 2SLS -0.0002 0.0453 0.0007
LIML -12.9344 96.6007 9.50E+03
RJIVE 0.3577 0.1924 0.1650
NAIVE 0.3638 0.1756 0.1650 R(4) 5.42 5 9 4 1

4 sisVIVE 0.5236 0.0898 0.2822
C(0) 46.45 46 68 34 0.80

post-sisVIVE 0.6771 0.1792 0.4660

median 0.7430 0.1409 0.5720
ALasso 0.2931 0.0694 0.0908 C(30) 29.79 30 32 26 0.01

TSHT 0.1870 0.2916 0.0388
Cc ∩R(4) 4.11 4 6 3 0.97

R(4) 4.27 4 7 3 0.99

median 0.0553 0.0740 0.0085

R2IVE 0.0065 0.0454 0.0038
R(4) 4.15 4 8 4 1
C(30) 30.30 30 36 29 0.99

DML -0.0510 0.0414 0.0068

OLS 0.2679 0.0749 0.0773
2SLS 0.2642 0.0756 0.0755

Oracle 2SLS 0.0019 0.0186 0.0001
LIML -1.3929 96.6007 2.0783
RJIVE 0.2621 0.0774 0.0747
NAIVE 0.2629 0.0759 0.0750 R(15) 16.84 16 22 15 1

15 sisVIVE 0.0633 0.0526 0.0068
C(30) 46.14 42 92 30 1

post-sisVIVE 0.0852 0.0512 0.0167

median 0.6746 0.1353 0.4734
ALasso 0.2682 0.0514 0.0746 C(30) 19.58 20 31 5 0

TSHT 0.1826 0.0598 0.0344
Cc ∩R(9) 13.81 14 18 11 0.98

R(15) 15.24 15 18 14 0.97

median 0.0631 0.0348 0.0052

R2IVE 0.0016 0.0186 0.0002
R(15) 15.19 15 19 15 1
C(30) 31.93 30 31 29 1

DML -0.0464 0.0205 0.0028

OLS 0.2378 0.0640 0.0605
2SLS 0.2350 0.0646 0.0592

Oracle 2SLS 0.0005 0.0152 0.0001
LIML -0.8341 0.2274 0.7475
RJIVE 0.2393 0.0651 0.0615
NAIVE 0.2340 0.0648 0.0589 R(20) 21.81 21 29 20 1

20 sisVIVE 0.0329 0.0139 0.0013
C(30) 40.81 40 85 31 1

post-sisVIVE 0.0352 0.0216 0.0018

median 0.6047 0.1448 0.3867
ALasso 0.2371 0.0529 0.0590 C(30) 13.52 14 29 0 0

TSHT 0.1655 0.0474 0.0281
Cc ∩R(14) 18.33 18 22 15 0.97

R(20) 20.14 20 22 19 0.96

median 0.0517 0.0255 0.0033

R2IVE 0.0010 0.0155 0.0001
R(20) 20.25 20 24 20 1
C(30) 31.92 31 31 30 1

DML -0.0404 0.0179 0.0021

Please see the table notes in Table 2.
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Table 4: Change the sample size n, IV dimensionality Ln, and α∗ values, fix
sR = 20, sC = 20

Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.2453 0.0509 0.0626
2SLS 0.2424 0.0515 0.0612

Oracle 2SLS 0.0012 0.0149 0.0001
LIML -0.3567 0.1289 0.1439
RJIVE 0.2409 0.0515 0.0607

n = 200 NAIVE 0.2417 0.0518 0.0610 R(20) 21.70 21 29 20 1

Ln = 100 sisVIVE 0.0340 0.0127 0.0013 C(20) 28.01 27 62 20 1c = 1 post-sisVIVE 0.0327 0.0192 0.0016

median 0.6331 0.1184 0.4148
ALasso 0.2350 0.0466 0.0574 C(20) 6.32 7 17 0 0

TSHT 0.1459 0.0403 0.0220 Cc ∩R(14) 17.58 17 21 14 0.97
R(20) 20.18 20 23 19 0.97

median 0.0484 0.0228 0.0029

R2IVE 0.0005 0.0149 0.0001 R(20) 20.24 20 24 20 1
C(20) 21.44 21 30 20 1

DML -0.0180 0.0156 0.0006

OLS 0.1834 0.0243 0.0342
2SLS 0.1783 0.0251 0.0324

Oracle 2SLS 0.0003 0.0092 0.0001
LIML -0.1082 0.0868 0.0131
RJIVE 0.1776 0.0253 0.0322

n = 500 NAIVE 0.1781 0.0251 0.0323 R(20) 25.64 26 31 21 1

Ln = 100 sisVIVE 0.0176 0.0065 0.0004 C(20) 24.31 23 45 20 1c = 0.75 post-sisVIVE 0.0121 0.0111 0.0003

median 0.5996 0.1105 0.3718
ALasso 0.1748 0.0191 0.0309 C(20) 13.32 13 21 6 0

TSHT 0.0018 0.0276 0.0001 Cc ∩R(14) 14.14 14 17 14 1
R(20) 20.18 20 23 20 1

median 0.0277 0.0126 0.0009

R2IVE 0.0001 0.0092 0.0001 R(20) 20.09 20 23 20 1
C(20) 20 20 20 20 1

DML -0.0062 0.0094 0.0001

OLS 0.1250 0.0117 0.0158
2SLS 0.1188 0.0125 0.0142

Oracle 2SLS 0.0001 0.0065 0.0001
LIML 0.0041 0.019 0.0002
RJIVE 0.1184 0.0118 0.0142

n = 1000 NAIVE 0.1186 0.0125 0.0142 R(20) 25.76 26 30 22 1

Ln = 100 sisVIVE 0.0121 0.0042 0.0002 C(20) 22.33 22 48 20 1
c = 0.5 post-sisVIVE 0.0056 0.0074 0.0001

median 0.5444 0.1124 0.3090
ALasso 0.1129 0.0128 0.0129 C(20) 13.80 14 21 6 0

TSHT 0.0005 0.0239 0.0001 Cc ∩R(14) 14.14 14 17 14 1
R(20) 20.17 20 23 20 1

median 0.0191 0.0085 0.0004

R2IVE 0.0003 0.0065 0.0001 R(20) 20.05 20 22 20 1
C(20) 20 20 20 20 1

DML -0.0027 0.0065 0.0001

OLS 0.1259 0.0165 0.0161
2SLS 0.1218 0.0173 0.0151

Oracle 2SLS 0.0005 0.0092 0.0001
LIML 0.0047 0.0305 0.0004
RJIVE 0.1195 0.0168 0.0146

n = 500 NAIVE 0.1206 0.0175 0.0148 R(20) 20.03 20 21 20 1

Ln = 250 sisVIVE 0.0226 0.0074 0.0006 C(20) 26.93 25 118 20 1c = 0.5 post-sisVIVE 0.0188 0.0110 0.0006

median 0.7136 0.0789 0.5155
ALasso 0.1209 0.0170 0.0149 C(20) 0.40 0 14 0 0

TSHT 0.0856 0.0271 0.0075 Cc ∩R(14) 18.74 19 22 16 1
R(20) 20.19 20 22 20 1

median 0.0270 0.0126 0.0009

R2IVE 0.0007 0.0092 0.0001 R(20) 20.09 20 22 20 1
C(20) 20 20 20 20 1

DML -0.0043 0.0091 0.0001

Please see the table notes in Table 2. 35



Table 5: Change the size of non-zero coefficients in γ∗, fix n = 200, Ln = 100, sR = 20,
sC = 20, q = 14, c = 1

γ Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.2484 0.0505 0.0643
2SLS 0.2434 0.0517 0.0619

Oracle 2SLS 0.0017 0.0200 0.0002
LIML -0.3454 0.1239 0.1346
RJIVE 0.2387 0.0545 0.0600
NAIVE 0.2417 0.0521 0.0612 R(20) 34.83 35 43 26 1

sisVIVE 0.0560 0.0244 0.0037
C(20) 31.17 29 83 20 1

1 post-sisVIVE 0.0643 0.0314 0.0062

median 0.6815 0.1467 0.4859
ALasso 0.3061 0.0514 0.0963 C(20) 10.60 11 22 0 0

TSHT 0.0792 0.0708 0.0111
Cc ∩R(14) 15.50 15 21 14 1

R(20) 20.19 20 22 20 1

median 0.0585 0.0260 0.0041

R2IVE 0.0017 0.0200 0.0002
R(20) 20.26 20 24 20 1
C(20) 20.01 20 21 20 1

DML -0.0139 0.0194 0.0005

OLS 0.3350 0.0667 0.1170
2SLS 0.3278 0.0685 0.1124

Oracle 2SLS 0.0020 0.0265 0.0002
LIML -1.0585 0.3538 1.2455
RJIVE 0.3214 0.0749 0.1089
NAIVE 0.3256 0.0692 0.1111 R(20) 34.77 35 44 27 1

sisVIVE 0.1147 0.0777 0.0192
C(20) 41.66 35 86 21 1

0.75 post-sisVIVE 0.1610 0.0764 0.0440

median 0.6791 0.1518 0.4843
ALasso 0.3465 0.0808 0.1266 C(20) 15.14 15 24 6 0.03

TSHT 0.1198 0.1270 0.0239
Cc ∩R(14) 15.47 15 21 13 0.94

R(20) 20.11 20 23 18 0.92

median 0.0793 0.0333 0.0074

R2IVE 0.0028 0.0265 0.0003
R(20) 20.38 20 24 20 1
C(20) 20.03 20 21 20 1

DML -0.0109 0.0248 0.0006

OLS 0.6529 0.1307 0.4417
2SLS 0.6477 0.1346 0.4360

Oracle 2SLS 0.0054 0.0399 0.0006
LIML -7.3013 1.44E+5 8.22E+04
RJIVE 0.6457 0.1438 0.4376
NAIVE 0.6479 0.1366 0.4378 R(20) 27.06 27 34 21 1

sisVIVE 0.2788 0.1147 0.0909
C(20) 53.62 56 83 23 1

0.5 post-sisVIVE 0.4140 0.1664 0.2027

median 0.6845 0.1412 0.4885
ALasso 0.3416 0.0942 0.1256 C(20) 18.92 19 21 13 0.39

TSHT 0.1944 0.4754 0.0573
Cc ∩R(14) 12.24 12 18 5 0.04

R(20) 16.31 16 20 8 0.01

median 0.1171 0.0535 0.0166

R2IVE 0.0073 0.0397 0.0008
R(20) 20.64 20 26 20 1
C(20) 20.04 20 22 20 1

DML 0.0016 0.0358 0.0008

Please see the table notes in Table 2. 36



Table 6: Many weak setting, n = 200, Ln = 100, c = 1

sC Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.2013 0.0327 0.0415
2SLS 0.1141 0.0517 0.0142

Oracle 2SLS 0.1141 0.0517 0.0142
LIML -0.0023 0.0432 0.0019
RJIVE -0.0032 0.0453 0.0021
NAIVE 0.0961 0.0554 0.0105 R(100) 60.20 60 72 47 -

0 sisVIVE 0.1781 0.0859 0.0391
C(0) 20.07 13.5 80 0 -post-sisVIVE 0.2432 0.0712 0.0788

median 0.4206 0.0943 0.1858
ALasso 0.1153 0.0349 0.0145 C(0) 0 0 0 0 -

TSHT 0.4496 3.5185 0.2758
Cc ∩R(100) 59.01 100 100 1 -

R(100) 59.03 100 100 1 -

median 0.1008 0.0825 0.0170

R2IVE 0.1069 0.0545 0.0128
R(100) 44.24 58 84 1 -
C(0) 20.13 0 96 0 -

OLS 0.9637 0.1726 0.9596
2SLS 0.9872 0.1896 1.0154

Oracle 2SLS 0.1239 0.0574 0.0167
LIML 81.7957 943.7155 8.97E+05
RJIVE 1.0280 0.2641 1.1266
NAIVE 0.9936 0.1942 1.0348 R(100) 59.72 60 75 47 -

10 sisVIVE 0.2706 0.0776 0.0792
C(10) 40.72 41 81 10 1post-sisVIVE 0.3540 0.0940 0.1404

median 0.4797 0.0998 0.2400
ALasso 0.3254 0.0755 0.1116 C(10) 9.99 10 10 9 0.99

TSHT 0.8227 8.0574 0.8978
Cc ∩R(90) 56.93 93 99 1 -

R(100) 59.80 100 100 1 -

median 0.2230 0.2730 0.1242

R2IVE 0.1080 0.0929 0.0414
R(100) 44.58 58.5 86 1 -
C(10) 10.58 10 23 9 0.99

DML 0.1052 0.0572 0.0128

Please see the table notes in Table 2.

37



Table 7: Exponentially decaying design for Eq. (5.2), n = 200, Ln = 100, c = 1

sC Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.3979 0.0412 0.1601
2SLS 0.2657 0.0767 0.0730

Oracle 2SLS 0.2657 0.0767 0.0730
LIML 0.0007 0.0850 0.0072
RJIVE -0.0160 0.0912 0.0086
NAIVE 0.1439 0.0978 0.0244 R(100) 18.39 18 28 9 -

0 sisVIVE 0.5398 0.0749 0.2970
C(0) 8.67 8 26 2 -post-sisVIVE 0.7398 0.1281 0.5534

median 0.7642 0.1203 0.5985
ALasso 0.2620 0.0464 0.0708 C(0) 0 0 0 0 -

TSHT 0.1970 6.1882 0.1090
Cc ∩R(100) 4.52 2 100 1 -

R(100) 4.61 2 100 1 -

median 0.0436 0.1189 0.0160

R2IVE 0.0409 0.1185 0.0099
R(100) 4.93 5 10 2 -
C(0) 52.89 57 97 2 -

OLS 0.6553 0.2541 0.4927
2SLS 0.6050 0.3004 0.4805

Oracle 2SLS 0.2552 0.0819 0.0677
LIML -14.9401 515.5947 2.66E+05
RJIVE 0.5998 0.6050 0.7258
NAIVE 0.5636 0.3367 0.5233 R(100) 17.98 18 28 8 -

10 sisVIVE 0.5961 0.0782 0.3614
C(10) 20.53 20 36 13 1post-sisVIVE 0.7374 0.1445 0.5500

median 0.7605 0.1231 0.5935
ALasso 0.3128 0.0751 0.1035 C(10) 10.01 10 11 10 1

TSHT 0.1785 7.3405 0.0988
Cc ∩R(90) 3.82 2 98 1 -

R(100) 4.03 2 100 1 -

median 0.0270 0.1426 0.0211

R2IVE 0.0249 0.1230 0.0098
R(100) 5.08 5 12 2 -
C(10) 11.84 11 21 10 1

DML 0.0915 0.1061 0.0172

Please see the table notes in Table 2.
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Table 8: Exponentially decaying design for both Eqs. (5.1) and (5.2), n = 200, Ln = 100

sC Bias Std Dev MSE Oracle Mean Median Max Min Freq

OLS 0.4254 0.0641 0.1849
2SLS 0.3013 0.0955 0.0972

Oracle 2SLS 0.0651 0.1472 0.0104
LIML -1.0370 0.3769 1.2174
RJIVE 0.0534 0.1476 0.0246

90 NAIVE 0.1426 0.0977 0.0243 R(100) 18.28 18 29 9 -

sisVIVE 0.5397 0.0700 0.2962
C(90) 8.78 8 37 3 -post-sisVIVE 0.7372 0.1282 0.5493

median 0.7529 0.1189 0.5810
ALasso 0.2646 0.0500 0.0725 C(90) 0 0 1 0 -

TSHT 0.1784 6.5985 0.0930
Cc ∩R(10) 3.42 2 100 1 -

R(100) 3.49 2 100 1 -

median 0.0415 0.1132 0.0145

R2IVE 0.0377 0.1188 0.0104
R(100) 4.98 5 10 2 -
C(90) 52.34 55 94 2 -

DML 0.0390 0.1975 0.0265

OLS 0.5428 0.0597 0.2989
2SLS 0.4571 0.0931 0.2158

Oracle 2SLS 0.0237 0.1671 0.0114
LIML -1.2486 1.4646 3.7042
RJIVE 0.3182 0.1391 0.1206

95 NAIVE 0.1372 0.0980 0.0223 R(100) 18.09 18 28 9 -

sisVIVE 0.6316 0.0767 0.4048
C(95) 13.65 13 45 7 -post-sisVIVE 0.7517 0.1354 0.5712

median 0.7461 0.1201 0.5711
ALasso 0.2636 0.0478 0.0718 C(95) 0 0 0 0 -

TSHT 0.1853 6.3317 0.0996
Cc ∩R(5) 3.14 2 100 1 -

R(100) 3.23 2 100 1 -

median 0.0351 0.1186 0.0153

R2IVE 0.0375 0.1196 0.0097
R(100) 5.02 5 10 2 -
C(95) 52.14 57 97 2 -

DML 0.0371 0.1980 0.0254

Please see the table notes in Table 2.
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Table 9: Summary statistics

mean std.dev median minimum maximum sample size

Ln Income Per Capita 10.18 1.1 10.42 7.46 12.03 158

Real Trade Share 0.87 0.52 0.76 0.2 4.13 158

Constructed Trade Share 0.09 0.05 0.08 0.02 0.3 158

Ln Population 1.38 1.8 1.48 -3.04 6.67 158

Ln Area (Land) 11.73 2.26 12.02 5.7 16.61 158

Area (Water) 25,378 100,818.4 2,365 0 891,163 158

Coastline 4,268.6 17,451.71 523 0 202,080 158

Land Boundaries 2,837.8 3,407.8 1,899.5 0 22,147 158

% Forest 29.89 22.38 30.62 0 98.26 158

% Arable Land 40.95 21.55 42.06 0.56 82.56 158

PM2.5 25.05 19.43 22 5.9 100 158

Languages 1.87 2.13 1 1 16 158

NOTE: Income per capita is measured in dollars. Population is measured in millions.
Land area and water area are measured in square kilometers. Coastline and land bound-
aries are measured in kilometers. PM2.5 is measured in micrograms per cubic meter.
Source: FR99, Penn World Table (PWT 9.1), the World Bank, and State of Global Air.
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Table 10: Estimation results for the trade and income data (PM2.5 not included)

OLS FR99 2SLS NAIVE sisVIVE

trade share 0.41*** 0.67*** 0.82*** 0.61*** 0.83

(0.08) (0.23) (0.17) (0.22) -

R2 0.13 0.05 0.12 0.05 0.15

Sample Size 158 158 158 158 158

median-W ALasso TSHT median R2IVE

trade share 0.79 0.76*** 0.76** 0.93 1.11***

- (0.16) (0.40) - (0.24)

R2 - 0.22 0.02 - 0.33

Sample Size 158 158 158 158 158
The sisVIVE method does not report standard deviation. All variables are standardized.
***, ** stand for significance levels of 1%, 5%, respectively. The first “median” column
(median-W) is the median estimator in Windmeijer et al. (2019). The second “median”
column is proposed in (3.12).
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Table 11: Estimation results for the trade and income data (PM2.5 included)

OLS FR99 2SLS NAIVE sisVIVE post-sisVIVE

trade share 0.41*** 0.67*** 0.94*** 0.88*** 0.94 0.89***

(0.08) (0.23) (0.15) (0.18) - (0.14)

R2 0.13 0.05 0.19 0.12 0.19 0.31

Sample Size 158 158 158 158 158 158

median-W ALasso TSHT median R2IVE

trade share 1.16 0.72*** 1.48*** 0.96 1.15***

- (0.15) (0.41) - (0.19)

R2 - 0.30 0.12 - 0.42

Sample Size 158 158 158 158 158
Please see the table notes in Table 10. The post-sisVIVE is a 2SLS estimator that takes the set of controls
selected by sisVIVE. All variables are standardized. *** and ** denote significance levels of 1% and 5%,
respectively.
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(a) sC = 0, q = 10 (b) sC = 30, q = 7

(c) sR = 4, q = 3 (d) sR = 20, q = 14

(e) n = 200, Ln = 100, c = 1 (f) n = 500, Ln = 100, c = 0.75

(g) n = 1000, Ln = 100, c = 0.5 (h) n = 500, Ln = 250, c = 0.5

Figure 1: Boxplots of simulation settings in Sections 5.2-5.4
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(a) γ = 1 (b) γ = 0.5

(c) “Many weak” setting, sC = 0 (d) “Many weak” setting, sC = 10

(e) Exp. decaying design for Eq. (5.2), sC = 0 (f) Exp. decaying design for Eq. (5.2), sC = 10

(g) Exp. decaying design for both Eqs. (5.1) and
(5.2), sC = 90

(h) Exp. decaying design for both Eqs. (5.1) and
(5.2), sC = 95

Figure 2: Boxplots of simulation settings in Sections 5.5-5.6
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Figure 3: Scatter plot of real and constructed trade share
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