Endogenous Volatility, Endogenous Growth, and Large Welfare Gains from Stabilization Policies*

Peng-fei Wang
Cornell University
pw77@cornell.edu

Yi Wen
Federal Reserve Bank of St. Louis
yi.wen@stls.frb.org

October 16, 2006

Abstract
This paper makes three key contributions by showing: (i) imperfect information can cause coordination failures among imperfectly competitive firms and lead to endogenous fluctuations in economic growth; (ii) short-run volatilities can negatively affect long-run growth; and (iii) the welfare gain from further stabilizing the U.S. economy can be hundreds of times larger than that calculated by Lucas because policies designed to reduce fluctuations can generate permanently higher rates of growth.

Keywords: Imperfect Information, Endogenous Growth, Welfare Cost of Business Cycle, Stabilization Policy, Sunspots, Imperfect Competition, Coordination Failures.

JEL codes: E12, E32, O40.

*We thank John McAdams for able research assistance. The views expressed in the paper and any errors that may remain are the authors’ alone. Correspondence: Yi Wen, Research Department, Federal Reserve Bank of St. Louis, St. Louis, MO, 63144. Phone: 314-444-8559. Fax: 314-444-8731. Email: yi.wen@stls.frb.org.
1 Introduction

Business cycles and growth are undoubtedly the two most important issues in macroeconomics, yet traditionally they have been treated as separate areas of research, as if fluctuations and growth are unrelated. This dichotomy is illustrated most clearly by the independent development of the neoclassical growth model (Solow, 1956) and the Keynesian IS-LM model (Hicks, 1937). The modern real business cycle (RBC) theory, developed by Kydland and Prescott (1982) and Long and Plosser (1983), intends to end this dichotomy by using a common general-equilibrium framework and hypothesizing a common driving force for both growth and fluctuations. Nonetheless, RBC theory maintains a fundamental assumption that the mean growth rate of technology is independent of the volatility of shocks to the economy.\(^1\) Based on this fundamental assumption, temporary fluctuations may have permanent effects on the level of output, but they do not affect the mean growth rate of output (i.e., a distinction between a level effect and a growth effect). Thus, long-run growth and short-run fluctuations are still viewed as unrelated and determined by fundamentally different forces. Therefore, by merely postulating a common driving force for growth and business cycles, the RBC theory fails to completely end the dichotomy.\(^2\) This is further highlighted by the popularity of the Hodrick-Prescott filter developed in the RBC literature, used widely by macroeconomists to decompose aggregate output into a trend (growth) component and a cyclical component, of which only the cyclical component is analyzed seriously by RBC models (see, Hodrick and Prescott, 1997). The underling assumption behind this practice is that growth and fluctuations can be understood in isolation.

One of the most far-reaching implications of this classical dichotomy between growth and fluctuations is that the welfare gains of eliminating fluctuations are trivial compared to that of stimulating long-run growth (Lucas, 1987). This influential calculation made by Lucas has survived numerous robustness analyses and has been a major challenge to the old Keynesian belief that stabilization policies are desirable (see Lucas 2003, and the references therein). In fact, the policy implication of the Lucas calculation is even more robust than its welfare implication because even if one can find models in which the welfare costs of fluctuations are large, the gains from stabilization policy may still be small (see, e.g., Kiley 2003, and Barlevy 2004a). The reason is that general-equilibrium business-cycle models typically imply volatile consumption as optimal allocation under exogenous

\(^1\)For example, the RBC theory assumes that technology shocks can follow a random walk with a constant drift, where the drift is independent of the innovations to technology.

\(^2\)The RBC literature views business cycles as temporary deviations around a long-run steady state. Although the requirement for balanced steady-state growth places restrictions on the structure of RBC models, the steady state itself cannot be affected by business cycle volatility. For a clear presentation of the underling dichotomy in the RBC theory, see King, Plosser, and Rebelo (1988).
shocks.

Yet there is a growing awareness that the dichotomy between volatility and growth is hard to square with the facts. For example, Ramey and Ramey (1995) present convincing evidence of a negative relationship between business cycle volatility and long-run growth: countries with higher output volatility tend to have lower output growth. This negative relationship has also been validated by other empirical studies.³

There is a large theoretical literature lending support to the old Keynesian belief that business cycles can be endogenous, driven largely by animal spirits or self-fulfilling expectations (see, e.g., Azariadis 1981, Cass and Shell 1983, Woodford 1986, Boldrin and Motricchio 1986, and Benhabib and Farmer 1994, among others).⁴ Recent development of this literature suggests stochastic dynamic general equilibrium models, driven by self-fulfilling expectations, may provide equally good explanations of business cycles (including procyclical productivity) to models driven by exogenous technology shocks.⁵ This literature also shows that growth models with multiple equilibria may better explain the empirical pattern of cross-country convergence in income levels than models featuring a unique balanced growth path.⁶

If growth is negatively related to volatility and fluctuations are largely endogenous, then the fundamental assumptions behind the Lucas calculation, as well as its policy implications, need to be re-evaluated in light of new models which integrate growth and fluctuations. This paper proposes such a model and uses it to demonstrate three key points: (i) imperfect information can cause coordination failures and endogenous fluctuations in the growth rate of output under imperfect competition; (ii) long-run growth and short-run fluctuations can be negatively linked; and (iii) the welfare cost of business cycles and the associated gain of stabilization policy can be hundreds of times larger than that calculated by Lucas (approximately 25% of aggregate consumption).

Our model is an extension of the AK growth model (see, e.g., Rebelo 1991) with new features, including variable capacity utilization, imperfect competition and imperfect information, all of which are key ingredients of traditional Keynesian theory. Due to imperfect information, imperfectly competitive firms face extrinsic uncertainty regarding other firms’ price-setting behavior and the level of aggregate demand (even in the absence of fundamental shocks). Because of strategic complementarity among firms’ actions, which arises from imperfect substitutability of firms’ output

⁴There is also a literature studying the possibility of endogenous and deterministic growth cycles. See, e.g., Schumpeter (1927), Goodwin (1967), Benhabib and Nishimura (1985), Shleifer (1986), and Francois and Lloyd-Ellis (2003), among others.

⁶See, e.g., Benhabib and Perli (1994), Xie (1994), and Benhabib and Gali (1995), among others. For a comprehensive review on the literature of economic growth, see Barro and Sala-i-Martin (2003).
in the goods market, extrinsic uncertainty can be self-fulfilling and, consequently, the economy can suffer from coordination failures and endogenous fluctuations. In an endogenous growth model, fluctuations in firms’ markup and profit translate directly into fluctuations in the rate of output growth. These stochastic growth paths, driven by firms’ speculations about aggregate demand under imperfect information, yield a strictly lower mean growth rate than the fundamental-equilibrium growth path – a path in the absence of extrinsic uncertainty. Under parameter values calibrated to the U.S. data, the model predicts a negative relationship between short-run volatility and long-run growth. Because of this, the welfare cost of business cycles can be hundreds of times larger than that calculated by Lucas under the assumption of the dichotomy. Since expectations-driven fluctuations are inefficient, the welfare gain from eliminating such fluctuations by stabilization policy is equally large.

Our approach relates to the work of Francois and Lloyd-Ellis (2003) and Barlevy (2004a). Francois and Lloyd-Ellis show growth and business cycles can be intimately linked via a Shumpeterian process of creative destruction. In particular, they show volatility and growth can be negatively related across cycling economies. However, our approach differs from theirs in at least three aspects: 1) the mechanisms for generating endogenous growth cycles are different; 2) growth cycles in their model are deterministic whereas in our model growth cycles are stochastic; and 3) we conduct quantitative analysis on the welfare cost of business cycles and study optimal stabilization policies, whereas such analyses are not conducted by Francois and Lloyd-Ellis.7

Using an AK endogenous growth model featuring adjustment costs in investment, Barlevy (2004a) shows that volatility and growth can be negatively related. Consequently, the welfare gain of eliminating fluctuations can be very large since it enhances long-run growth. However, the negative relationship between volatility and growth in Barlevy’s model relies crucially on the existence of large investment adjustment costs. Our model does not rely on such adjustment costs. In addition, the policy implication of Barlevy’s model fundamentally diverges from ours. In Barlevy’s model, little scope exists for stabilization policies despite the potentially large welfare gains from eliminating fluctuations, because fluctuations in his model are optimal responses to exogenous shocks. Thus, there is no gain from stabilizing the economy unless the source of fluctuations lies in government policy itself. In our model, fluctuations are caused by coordination failures and self-fulfilling expectations, and are intrinsically inefficient regardless of fundamental shocks.8

7Stabilization policy is always an important issue in macroeconomics. Ironically, the sunspots literature has largely bypassed this question with only a few exceptions. For example, Shleifer (1986) shows that while an informed stabilization policy can sometimes raise welfare, stabilization policy can stop technological progress and harm the economy if large booms are necessary to cover fixed costs of innovation. Christiano and Harrison (1998) show that stabilizing sunspots fluctuations is desirable in an economy featuring production externalities. They identify an automatic stabilizer income tax-subsidy schedule with two properties: (i) it specifies the tax rate to be an increasing function of aggregate employment; and (ii) earnings are subsidized when aggregate employment is at its efficient level.

8For comprehensive literature reviews on the issue of welfare cost of business cycles and the benefits of stabilization, see Lucas (2003) and Barlevy (2004b). For previous works that evaluate welfare cost by linking endogenous growth to exogenous fluctuations, see Blackburn and Pelloni (2005), de Hek (1999), Epaulard and Pommeret (2003), Jones,
The rest of the paper is organized as follows. Section 2 presents the model. Section 3 calibrates the model and examines its dynamic properties. Section 4 discusses the welfare cost of business cycles. Section 5 studies optimal stabilization policies; and Section 6 concludes the paper.

2 The Model

2.1 Firms

There is a final good in the economy. The final good producers behave competitively and households buy the final good for both consumption and investment. The final good is produced by using intermediate goods according to the Dixit-Stiglitz technology:

\[Y = \left(\int_0^1 y(i)^{-\frac{1}{\epsilon}} di \right)^{-\frac{1}{\epsilon - 1}}, \]

where \(\epsilon > 1 \) measures the elasticity of substitution among intermediate goods \(y(i) \). The price of the final good is normalized to one and the price of intermediate good \(i \) is denoted \(p(i) \). Profit maximization in the final good sector yields the demand function for intermediate goods, \(y(i) = p(i)^{-\epsilon} Y \). Substituting this into the production function yields the aggregate price index, \(\int_0^1 p(i)^{1-\epsilon} di = 1 \).

The economy has a continuum of monopolistic intermediate good producers of measure one, each producing a single differentiated good \(y(i) \). Intermediate goods are produced by using capital \((k) \). The production function for intermediate goods is identical across firms and is given by:

\[y(i) = Au(i)k(i), \]

where \(A \) denotes the level of technology common to all firms and \(u(i) \) denotes the rate of capacity utilization for firm \(i \). Intermediate good producers are assumed to be price takers in the input market. Let \(r \) denote the market interest rate, and let \(\delta(i) \) denote the rate of capital depreciation for firm \(i \). Following Greenwood et al. (1988), the rate of capital depreciation is assumed to depend on its usage rate:

\[\delta(i) = \frac{\alpha}{1+\theta} u(i)^{1+\theta}, \quad \theta > 0. \]

Hence the user’s cost of capital facing firm \(i \) is \(r + \delta(i) \).\(^9\)

The importance of capacity utilization in understanding business cycles and growth has been emphasized by Greenwood et al. (1988), King and Rebelo (1999), Wen (1998), and Chatterjee (2003), among others.

\(^9\)The importance of capacity utilization in understanding business cycles and growth has been emphasized by Greenwood et al. (1988), King and Rebelo (1999), Wen (1998), and Chatterjee (2003), among others.
tion yields the relationship, \(r + \delta(i) = \phi Au(i) \) and \(\alpha u(i)^{\theta} = \phi A \). These first-order conditions imply \(\delta(i) = \delta = \frac{1}{1 + \theta} \alpha^{-\frac{1}{\theta}} (\phi A)^{\frac{\theta + 1}{\theta}} \) and

\[
 r = \theta \delta = \frac{\theta}{1 + \theta} (\alpha)^{-\frac{1}{\theta}} (\phi A)^{\frac{\theta + 1}{\theta}}.
\]
(4)

Since the production technology has constant returns to scale and firms face the same market interest rate, the marginal cost \(\phi \) is the same across all firms. Consequently, the optimal rates of capital utilization and depreciation are also the same across firms. Thus, firms’ output differ from each other if and only if their capital stocks differ in the absence of idiosyncratic shocks.

A key variable determining the endogenous growth rate in an \(AK \) model is the interest rate \(r \). Notice the equilibrium interest rate in this model is always positive, in sharp contrast to the standard \(AK \) model where the interest rate \(r = A - \delta \) can be negative in every period if the return to capital \(A \) is less than the rate of capital depreciation \(\delta \). This unpleasant feature of the standard \(AK \) model is eliminated by endogenous capital utilization and depreciation, which renders the real interest rate always positive.

Each intermediate good firm faces a downward sloping demand curve, \(y(i) = p(i)^{-\gamma} Y \), and sets prices to maximize profits. Since firms have no influence on the aggregate quantity \(Y \), there exists a strategic complementarity among firms’ actions, in the language of Cooper and John (1988). Namely, every firm will opt to set lower prices to induce higher demand if they all anticipate that the other firms will set lower prices to boost demand. This strategic complementarity, however, is a necessary but not sufficient condition for multiple Nash equilibria in this model. Another key condition for multiple equilibria is imperfect information regarding aggregate economic conditions.

A key feature of the model is that intermediate good firms each choose a price while taking as given the prices set by other firms, with quantities then determined by demand at these prices in general equilibrium. This sequential feature of the model permits imperfect information. That is, in each period \(t \), intermediate good firms must set prices without knowing the aggregate economic conditions (such as aggregate demand) that may prevail in period \(t \). These aggregate economic conditions depend crucially on the actions of the other firms over which an individual firm has no

10 The optimal rate of capital utilization is determined by maximizing the interest rate \(r = uA - \delta(u) \), which yields \(A = \delta'(u) \) or \(r = \frac{1}{1 + \theta} A^{\frac{\theta + 1}{\theta}} \). Consequently, optimal capital utilization also maximizes the growth rate in an \(AK \) model.

11 As far as we know, we are the first to show the existence of multiple Nash-sunspots equilibria in this class of dynamic general equilibrium models with Dixit-Stiglitz imperfect competition. The existing literature suggests unique equilibrium in this class of models. For example, Blanchard and Kiyotaki (1987) fail to notice the existence of multiple Nash-sunspots equilibria in this class of models. Thus they need menu costs to generate multiple equilibria in their model. Kiyotaki (1988) and Benhabib and Farmer (1994) also fail to notice multiple equilibria in this class of models and thus they need to introduce increasing returns to scale to generate multiple equilibria. The reason for this failure is that they implicitly assume that individual firms in the Dixit-Stiglitz world have perfect information about other firms’ actions and the aggregate demand. However, multiple Nash-sunspots equilibria emerge immediately in this class of models once this assumption is relaxed. This point is first noticed by Wang and Wen (2006a). For the early literature linking imperfect competition to sunspots equilibria, see Peck and Shell (1991), Woodford (1991), and Gali (1994), among others.
influence. Thus, each individual firm, without knowing how the other firms will set their prices, must form expectations for the level of aggregate demand (Y) when setting its own prices.

Without loss of generality, assume there are no fundamental shocks in the economy; then the only type of uncertainty, if any, is extrinsic uncertainty in the language of Cass and Shell (1983) (i.e., due to sunspots). An intermediate good firm’s objective function is then to solve

$$\max_{p(i)} E \left[(p(i) - \phi) y(i) \right]$$

subject to the demand function $y(i) = p(i)^{-\epsilon} Y$.\(^\text{12}\) The optimal price is given by $p(i) = \frac{\epsilon}{\epsilon - 1} E(\phi Y)$. Assuming firms are rational and have the same information sets, then they all set the same prices. Thus, $p(i) = p = 1$ and

$$E(\phi Y) = \frac{\epsilon - 1}{\epsilon} EY.$$

In the limiting case where $\epsilon \to \infty$, the model converges to a perfectly competitive economy. Our analysis of sunspots equilibria is independent of ϵ, hence it applies equally to perfectly (or near-perfectly) competitive economies where firms set prices equal to marginal cost with zero markup in the steady-state. Figure 1 illustrates the sequence of events in the model economy.

\(^\text{12}\)Modifying the firm’s expected profit to $E u'(c) [(p(i) - \phi) y(i)]$, where $u'(c)$ is household’s marginal utility, has no effect on the existence of sunspots equilibria in the model, although the particular sunspots process may differ. Even in this case, however, the sunspot process, $\phi = \begin{cases} 0 & \text{if } p \\ 1 & \text{if } 1 - p \end{cases}$, always constitutes a sunspot equilibrium for any probability measure $p \in (0, 1)$ regardless of the utility function.
Define $\tilde{\Omega}_t$ as the information set available to price-setting firms in period t, which includes the entire history of the economy up to period t except the realizations of sunspots (if any) in period t. Denote Ω_t as the information set containing $\tilde{\Omega}_t$ and any realization of sunspots in period t. Thus we have $\Omega_t \supseteq \tilde{\Omega}_t$. Since we do not consider fundamental shocks in this paper, we have $\tilde{\Omega}_t = \Omega_{t-1}$. Extension of the analysis to including fundamental shocks is straightforward.13 Based on this definition of information sets, Equation (6) can also be written as $E_{t-1}(\phi_t Y_t) = \frac{-1}{\epsilon} E_{t-1} Y_t$.

2.2 Households

There is a continuum of infinitely lived identical households of measure one. The representative agent chooses paths of consumption ($\{C_t\}_{t=0}^\infty$) and capital holdings ($\{K_t\}_{t=1}^\infty$) to solve

$$\max E_0 \sum_{t=0}^\infty \log(C_t)$$

subject to $K_0 > 0$ given and the budget constraint,

$$C_t + K_{t+1} = (1 + r_t)K_t + D_t,$$

where D_t denotes real profits distributed from intermediate good firms. The first-order condition is given by

$$\frac{1}{C_t} = \beta E_{t+1} \frac{1}{1 + \theta} (1 + r_{t+1}),$$

plus the transversality condition, $\lim_{T \to \infty} \beta^T \frac{K_{t+1}}{C_t} = 0$.

2.3 Symmetric Rational Expectations Equilibrium

The economy’s technology is symmetric with respect to all the intermediate inputs. This paper restricts attention to symmetric equilibria where $y(i) = Y$ and $k(i) = K$ for all $i \in [0, 1]$. Notice that in the absence of extrinsic uncertainty, Equation (6) implies the marginal cost is constant, $\phi = \frac{-1}{\epsilon}$. Given the value of ϕ, the value of interest rate is then fully determined, as is the balanced growth rate. However, as will be shown shortly, constant marginal cost is not the only possible equilibrium in this model. There are also multiple Nash-sunspots equilibria that feature stochastic marginal cost and stochastic interest rate.

The equilibrium conditions in this economy can be summarized by the following equations:

$$\frac{1}{C_t} = \beta E_{t+1} \frac{1}{C_{t+1}} \left(1 + \frac{\theta}{1 + \theta} \alpha^{\frac{1}{2}} (\phi_{t+1} A) \frac{\theta + 1}{\theta} \right),$$

13Notice that intrinsic uncertainty (due to fundamental shocks) can trigger extrinsic uncertainty in our model economy because without perfect foresight firms must form expectations and such expectations can be self-fulfilling even if the uncertainty is originally caused by fundamental shocks.
\[C_t + K_{t+1} = Y_t + (1 - \delta_t)k_t = \left[1 + \alpha^{-\frac{1}{\gamma}} A^{\frac{1+\theta}{1+\gamma}} \phi_t^{\frac{1}{\gamma}} \left(1 - \frac{\phi_t}{1+\theta} \right) \right] K_t, \]
(10)

\[E_{t-1}^{1+\theta} \phi_t^{1+\theta} = \epsilon^{-1} E_{t-1}^{\frac{1}{\gamma}} \nu_t^{\frac{1}{\gamma}}; \]
(11)

where the last equation is derived from Equation (6). These three equations, in conjunction with a transversality condition, fully determine the equilibrium paths of the marginal cost, consumption, and the capital stock. In particular, given any path of the marginal cost (\(\phi_t \)) as specified by Equation (11), Equations (9) and (10) fully determine the paths of consumption and the capital stock.

Notice that Equation (11) implies \(E_t^{\frac{1}{\gamma}} (E_t^{\phi} - \frac{1}{\gamma}) = -\text{cov}(\phi_t^{\frac{1}{\gamma}}, \phi) \leq 0 \), hence any stochastic process \(\{\phi_t\}_{t=0}^{\infty} \) satisfying \(E_t^{\phi} \leq \frac{1}{\gamma} \) and \(\text{cov}(\phi_t^{\frac{1}{\gamma}}, \phi) = E_t^{\phi^{\frac{1}{\gamma}}} \left(\frac{1}{\gamma} - E_t^{\phi} \right) \) constitutes a rational expectations equilibrium path for the marginal cost. The fundamental equilibrium (in the absence of extrinsic uncertainty or sunspots) corresponds to the case where \(\text{cov}(\phi_t^{\frac{1}{\gamma}}, \phi) = 0 \) and \(\phi_t = \frac{1}{\gamma} \epsilon_t \) and is clearly unique. But there also exists multiple sunspots equilibria. To construct such sunspots equilibria, consider the process \(\phi_t = \frac{1}{\gamma} \epsilon_t \), where \(\epsilon \) denotes sunspots shocks. Equation (11) implies

\[E_{t-1}^{1+\theta} \epsilon_t^{\frac{1+\theta}{\gamma}} = E_{t-1}^{\epsilon_t^{\frac{1}{\gamma}}}. \]
(12)

Clearly, any random variable satisfying the distribution,

\[E_{t-1}^{\epsilon_t} \in [0, 1], \quad \text{cov}(\epsilon_t^{\frac{1}{\gamma}}, \epsilon_t) = E_{t-1}^{\epsilon_t^{\frac{1}{\gamma}}} (1 - E_{t-1}^{\epsilon_t}); \]
(13)

constitutes an equilibrium. This paper restricts attention to i.i.d. sunspots shocks with mean \(E\epsilon = \bar{\epsilon} \in [0, 1] \).

Definition 1 A balanced growth path in the model is defined as an equilibrium path along which consumption, the capital stock, and output all grow at the same expected rate.

Proposition 2 For any and each i.i.d. sunspots shock process, there always exists a balanced growth path along which the stochastic growth rates of consumption and capital are both given by \(\ln [s(1 + \varphi_t)] \), and the growth rate of output is given by \(\ln \left[\left(\frac{\phi_t}{\phi_{t-1}} \right)^{1/\theta} s(1 + \varphi_t) \right] \); where \(\varphi_t \equiv \alpha^{-\frac{1}{\gamma}} A^{\frac{1+\theta}{1+\gamma}} \phi_t^{\frac{1}{\gamma}} \left(1 - \frac{\phi_t}{1+\theta} \right) \) and \(s \equiv \beta E_t^{1+\gamma(1+\epsilon_t^{\frac{1}{\gamma}})} \).

\[^{14} \text{Note that } K_t \text{ is a state variable known to firms in the beginning of period } t. \]

\[^{15} \text{To avoid complex values, the condition } E\phi \geq 0 \text{ must be imposed.} \]

\[^{16} \text{Notice that the uniqueness is regardless of fundamental shocks. For example, suppose the technology } A \text{ is a stochastic process, then in the fundamental equilibrium, we still have } \phi = \frac{\epsilon}{\alpha^{1-\gamma}}. \]
Proof. Since ϕ_t is $i.i.d.$, any function of ϕ_t is also $i.i.d.$ An educated guess of the equilibrium paths of consumption and the capital stock is given by

$$C_t = (1 - s)(1 + \varphi_t)K_t,$$

$$K_{t+1} = s(1 + \varphi_t)K_t,$$

where $s = \beta E_t \frac{1 + r_{t+1}}{1 + \varphi_{t+1}}$ denotes the optimal rate of savings, which is a constant under the $i.i.d.$ assumption and is derived from the intertemporal Euler equation

$$\frac{1}{(1 - s)(1 + \varphi_t)K_t} = \beta E_t \frac{1 + r_{t+1}}{(1 + \varphi_{t+1})(1 - s)s(1 + \varphi_t)K_t}.$$

Using Equations (14) and (15), it can be shown that $C_{t+1} = s(1 + \varphi_{t+1})$. Hence the balanced growth rates of consumption and capital are both given by $g = \ln [s(1 + \varphi_t)]$. The growth rate of output is given by $g_y = \ln \frac{u_tK_t}{u_{t-1}K_{t-1}} = \frac{1}{\theta} (\ln \phi_t - \ln \phi_{t-1}) + \ln [s(1 + \varphi_t)]$, which has the same (unconditional) expected value as g.

Proposition 3 In the absence of extrinsic uncertainty, the model has a unique balanced growth path with its growth rate determined by

$$g = \ln s(1 + \varphi) = \ln \left[\beta \left(1 + \frac{\theta}{1 + \theta} \alpha^{-\frac{1}{\theta}} \left(\frac{e-1}{e} A \right)^{\frac{\theta+1}{\theta}} \right) \right].$$

Proof. In the absence of extrinsic uncertainty, Equation (6) implies the marginal cost is constant, $\phi = \frac{e-1}{e}$. Hence r and φ are all constant. Consequently, the fundamental (no-sunspots) growth rate in the economy is uniquely determined by $\ln \beta(1 + r(\frac{e-1}{e}))$.

Proposition 1 and Proposition 2 imply stochastic growth paths driven by sunspots (i.e., sunspots equilibria) are not mere randomizations over fundamental growth paths (i.e., fundamental equilibria), in sharp contrast to DSGE models that rely on the indeterminacy of the steady state or multiple fundamental equilibria to generate sunspots equilibria via randomization (see, e.g., Benhabib and Farmer 1994). As Cass and Shell (1983) theorized, however, sunspots equilibria can exist in economies where the fundamental equilibrium is unique. The Cass-Shell theory was based on an overlapping generations model with incomplete markets. We show this theory remains valid in an infinite-horizon DSGE model with incomplete information.

Proposition 4 If $\varepsilon > \frac{1+\theta}{\theta} + 2\alpha^{-\frac{1}{\theta}} A \frac{1+\theta}{\theta}$, the mean growth rate of a stochastic growth path is strictly less than the deterministic growth rate without uncertainty ($\phi_t = \frac{e-1}{e}$), i.e., $E \left[s(1 + \varphi(\phi_t)) \right] < \beta(1 + r(\frac{e-1}{e}))$.

10
Proof. See the Appendix. \(\blacksquare\)

As an example, consider the limiting case where \(\epsilon = \infty\). In this case, the deterministic (gross) growth rate is given by
\[
g^* = \beta(1+r) = \beta \left(1 + \frac{\theta}{1+\theta} \alpha^{-\frac{1}{\delta}} A^{1+\theta} \right),
\]
and the price equation (11) becomes
\[
E\phi_t^{\frac{1}{\theta}+1} = E\phi_t^\frac{1}{\theta}.
\]
(18)

Since we restrict our attention to the interval, \(0 \leq \phi \leq 1\), the only distribution that can satisfy the above relationship for the marginal cost is the binary distribution, \(\phi_t = \{0, 1\}\) with probability \(\{1-p, p\}\). Under this distribution, we have \(r_t = \varphi_t\), hence \(s = \beta E_r^{1+r^{t+1}} = \beta\) and \(E\varphi_t = p\frac{\theta}{1+\theta} \alpha^{-\frac{1}{\delta}} A^{1+\theta}\). The mean (gross) growth rate is hence given by
\[
\bar{g} = \beta \left(1 + p \frac{\theta}{1+\theta} \alpha^{-\frac{1}{\delta}} A^{1+\theta} \right),
\]
(19)

which is strictly less than the deterministic (gross) growth rate \(g^*\) for any \(p \in (0, 1)\). In this limiting case, the condition, \(\epsilon > 1 + \frac{\theta}{\theta} + 2A^{\frac{1}{\theta}+1}\), is trivially satisfied.

3 Calibration

The AK growth model is a highly stylized model of endogenous growth with labor and human capital playing no role. Hence the calibration exercise is not meant to be rigorous or realistic but as reasonable as possible. Let the time period be a year and the time discounting rate \(\beta = 0.98\).\(^{17}\)

For economies similar to the U.S. economy, the markup is approximately \(10\% \sim 20\%\). This implies that \(\phi = 0.9 \sim 0.8\) or \(\epsilon = 10 \sim 6\). Let the real annual interest rate be \(r = 6\%\) and the annual rate of depreciation be \(\delta = 10\%\) in the deterministic economy without sunspots.\(^{18}\) Hence Equation (4) implies \(\theta = r/\delta = 0.6\). Since \(\alpha u^\theta = \phi A\) and \(\delta = \frac{1}{1+\theta} \alpha^{-\frac{1}{\delta}} (\phi A)^\frac{\theta+1}{\theta}\), these two equations can help pin down the values of \(\{\alpha, A\}\) once the value of the utilization rate \(u\) is given. Let \(u = \phi = 0.9\) in the deterministic economy (which implies \(\epsilon = 10\)); then the above two relationships imply \(\alpha = 0.18938\) and \(A = 0.19753\). Given these values, the condition required in Proposition 3, \(\epsilon > 1 + \frac{\theta}{\theta} + 2A^{\frac{1}{\theta}+1}\) (\(\approx 3.1\)), is more than satisfied. It can easily be shown that this condition is still satisfied under other plausible parameter configurations, such as when the annual real interest rate in the deterministic equilibrium is as low as \(1.5\%\). Figure 2 indicates that the condition can be satisfied for a wide range of parameter values. In particular, the higher the interest rate, the easier the condition can

\(^{17}\)Note that the condition required for Proposition 3 to hold is independent of \(\beta\). In addition, the equilibrium interest rate in the model is independent of \(\beta\). Hence, the calibration of \(\beta\) can be independent of the interest rate.

\(^{18}\)The average interest rate in the model can be significantly lower under the influence of sunspots than it is in the deterministic equilibrium.
be satisfied. For example, when $\delta = 0.1$, $\phi = 0.9$ (implying $\epsilon = 10$), the condition is satisfied for $r > 1.2\%$; when $\delta = 0.1$, $\phi = 0.8$ (implying $\epsilon \approx 6$), the condition is satisfied for $r > 2.4\%$.

![Figure 2. Parameter Region for $\epsilon > \frac{1+\theta}{\phi} + 2\alpha^{-\frac{1}{\phi}} A^{\frac{1+\theta}{\phi}}$.](image)

Based on the calibrated parameter values, the deterministic growth rate is given by $\ln s(1+\bar{\varphi}) = \ln \beta(1+r) \simeq 0.0381$; in other words, the fundamental growth rate is about 4\% a year. To compute the mean growth rate of a stochastic growth path, we generate a time series for $\phi_t = \frac{\epsilon}{\epsilon-1} \varepsilon_t$, where the sunspots shock (ε) has the log-normal distribution $\ln \varepsilon \sim N(\mu, \sigma^2)$ with

$$e^{\frac{\sigma^2}{2}} E\varepsilon_t = 1. \tag{20}$$

Notice that this distribution satisfies Equation (12) and the condition, $0 < E\varepsilon_t < 1$.

Based on these calibrated parameter values, Table 1 shows the statistical relationship between volatility and mean growth rate for the range of σ that yields empirically plausible mean growth rates. The statistics reported in the table are estimates based on simulated time series with sample size of 10^6. The table shows that, as the standard deviation of the sunspots shock (σ) increases, the standard deviation of the stochastic growth rate (σ_g) also increases, while the mean growth rate of the economy (\bar{g}) tends to decrease. Table 2 shows the same result is also confirmed for a uniform distribution of sunspots shocks.\footnote{Even with the large sample size, the standard deviation of the growth rate (σ_g) is quite large for the log-normal distribution, suggesting that the estimated mean growth rate can have large standard errors. Despite this, the}
growth is consistent with the empirical regularity documented by Ramey and Ramey (1995) in cross-country data.

Table 1. Predicted Volatility and Growth (Log-Normal Distribution)

<table>
<thead>
<tr>
<th>σ</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{g}(%)$</td>
<td>3.81</td>
<td>3.68</td>
<td>3.32</td>
<td>2.83</td>
<td>1.83</td>
<td>1.54</td>
<td>0.62</td>
<td>-0.11</td>
<td>-1.01</td>
<td>-1.22</td>
<td>-2.79</td>
</tr>
<tr>
<td>σ_g</td>
<td>0</td>
<td>0.003</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
<td>0.15</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 2. Predicted Volatility and Growth (Uniform Distribution)

<table>
<thead>
<tr>
<th>σ</th>
<th>0</th>
<th>0.029</th>
<th>0.058</th>
<th>0.087</th>
<th>0.12</th>
<th>0.14</th>
<th>0.17</th>
<th>0.23</th>
<th>0.29</th>
<th>0.35</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{g}(%)$</td>
<td>3.81</td>
<td>3.79</td>
<td>3.77</td>
<td>3.70</td>
<td>3.63</td>
<td>3.54</td>
<td>3.41</td>
<td>3.10</td>
<td>2.69</td>
<td>2.17</td>
<td>1.70</td>
</tr>
<tr>
<td>σ_g</td>
<td>0</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.007</td>
<td>0.011</td>
<td>0.016</td>
<td>0.022</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Figure 3 shows simulations of the stochastic growth paths of consumption and the implied log consumption levels for each of the distributions considered above. In particular, the simulation under the log-normal distribution is presented in the first row windows (A and B), and the simulation based on uniform distribution is presented in the second row windows (C and D). The growth rate series are graphed in the left column windows (A and C) and the log output level series are graphed in the right column windows (B and D). In windows showing the growth series (Window A and C), the horizontal line is the deterministic growth rate in the absence of sunspots shocks, the solid lines represent a growth rate series under the influence of a particular sunspots process, and the dashed lines represent the annual consumption growth of the U.S. economy for the period 1947-2005. Clearly, the model is able to generate similar volatility in growth rate to the U.S. data. Since the mean growth rate in the model under a particular sunspots process is lower than that of the U.S. data, the implied consumption level (Window B or D) is stochastically dominated by the U.S. consumption level. Notice that a mean growth rate similar to the actual U.S. data can also be generated from the model by using sunspots shocks with a smaller variance than the one represented by the solid lines. As suggested by Windows B and D, along a lower consumption growth path due to a higher volatility, the loss in consumption is irreversible (unrecoverable) even if the mean growth rate later recovers to the previous level due to a decrease in volatility. The fact that such a large and ever increasing gap in consumption levels, in sharp contrast to the Okun’s gap and the random walk phenomenon, can be caused by business cycles (volatility) alone is striking. The lesson: when growth is endogenous, fluctuations can affect not only the consumption level permanently, but also its long-run growth rate.

tendency for the mean growth rate to decline as the growth volatility increases is clear. When a uniform distribution is assumed instead for sunspots shocks, the standard error of the growth rate (σ_g) is much smaller and the mean growth rate is more tightly estimated, which makes the negative relationship between volatility and growth even clearer (see Table 2). Note that under the uniform distribution the growth rate of the model is always positive when the parameters of the distribution (mean and variance) of sunspots shocks satisfy Equation (12).
4 Welfare Cost of Fluctuations

4.1 The Lucas Calculation

The Lucas calculation of the cost of business cycles is based on a simple yet fundamental assumption: volatility and growth are unrelated. Given this dichotomy and the fact that the aggregate consumption series is smooth, Lucas (1987 and 2003) concludes that the welfare cost of fluctuations is trivial in terms of consumption goods. Suppose a representative consumer is endowed with the stochastic consumption stream,

$$c_t = Ae^{ut}e^{-(1/2)\sigma^2 \varepsilon_t}, \tag{21}$$

where u is a deterministic growth rate and $\ln(\varepsilon_t)$ is a normally distributed random variable with zero mean and variance σ^2. Hence $Ee^{-(1/2)\sigma^2 \varepsilon_t} = 1$. The preference over consumption is assumed to be $E_{\sum_{t=0}^{\infty}} \left(\beta^t \frac{c_t^{1-\gamma}}{1-\gamma} \right)$. The welfare gain can be computed as the percentage increase in consumption one would get by eliminating all the volatility, namely:

$$E_{\sum_{t=0}^{\infty}} \left[\beta^t \frac{(1 + \lambda)c_t^{1-\gamma}}{1-\gamma} \right] = \sum_{t=0}^{\infty} \left[\beta^t \frac{(Ae^{ut})^{1-\gamma}}{1-\gamma} \right], \tag{22}$$
where λ measures the welfare gain. Since growth and fluctuations are unrelated, λ can be computed easily by comparing the utilities in a single period:

$$E((1 + \lambda)c_t)^{1-\gamma} = (Ae^{\gamma t})^{1-\gamma},$$

(23)

which implies $\lambda \approx \frac{1}{2}\gamma \sigma^2$. The annual U.S. real consumption growth in the period of 1947-2005 is about 3.5% with a standard deviation of 1.65%. Assuming log utility ($\gamma = 1$), the welfare cost is estimated to be $\lambda \approx \frac{1}{2}(0.0165)^2 \approx 0.014\%$. This is less than 1.5¢ for every $100 of annual consumption.20

4.2 Calculation based on Hall's (1978) Random Walk

A crucial feature of the Lucas calculation is that random shocks to consumption have no permanent effect on the consumption level. According to the permanent income theory, however, consumption follows a random walk, hence transitory shocks can have permanent effects (Hall, 1978). Adopting the random walk framework, the consumption path can be described by

$$c_t = c_{t-1}(e^{u-\frac{\sigma^2}{2} \varepsilon_t}),$$

(24)

where u is a drift term in the random walk specification of log consumption, which determines the average growth rate of consumption. This characterization of consumption is also an implication of the RBC theory where technology shocks follow random walks. Suppose the initial consumption level is given by $c_0 = A$. Equation (24) implies that in the absence of uncertainty (i.e., $\varepsilon_t = e^{\sigma^2/2}$ for all t), consumption grows at the rate $u : c_t = Ae^{ut}$. It also implies that under random shocks consumption evolves according to

$$c_t = Ae^{(u-\frac{\sigma^2}{2})t}\varepsilon_1 \varepsilon_2...\varepsilon_t.$$

(25)

The welfare cost of fluctuations can then be computed as the solution (λ) to Equation (22) based on the random-walk consumption in (25). Again assuming log utility ($\gamma = 1$) and $\ln \varepsilon_t \sim N(0, \sigma^2)$, Equation (22) implies

$$\ln(1 + \lambda) - \frac{\sigma^2}{2}(\beta + 2\beta^2 + 3\beta^3 + ...) = 0$$

(26)

Solving for λ we get

20Of course, a higher γ can increase the estimation. Micro evidence suggests that $\gamma \in [1, 4]$. But even with $\gamma = 100$, the annual cost of business cycle is still less than 1.5 percent of consumption.
\[
\lambda \approx \frac{\sigma^2}{2} \frac{\beta}{(1-\beta)}.
\]
(27)

Notice that the welfare measure under the random walk assumption is a multiplier, \(\frac{\beta}{1-\beta} \), times the welfare measure of Lucas. This is the result obtained by Obstfeld (1994).\(^{21}\) This multiplier exists because a one dollar increase in consumption today is translated into a \(\sum_{t=1}^{\infty} \beta^t = \frac{\beta}{1-\beta} \) dollar increase in life-time consumption. This suggests that when shocks to consumption have permanent effects, the welfare cost of business cycles can be potentially much larger. Letting \(\beta = 0.98 \) and \(\sigma = 0.0165 \), we get \(\lambda \approx 0.67\% \), which is more than 47 times larger than the welfare gain under the Lucas specification of the consumption path. However, it is still small in absolute magnitude: less than one dollar for every $100 of annual consumption. Notice that this calculation is still based on the assumption that volatility and growth are unrelated. Namely, even if shocks have permanent effects on the level of consumption, they have no effects on the average growth rate of consumption. Consequently, the welfare cost of fluctuations is still small.

4.3 Calculation based on Ramey and Ramey (1995)

According to the empirical studies of Ramey and Ramey, volatility and growth are negatively related. Hence eliminating volatility should increase the growth rate, which implies a large welfare cost of business cycles, consistent with Lucas’s (1987) analysis on the welfare effect of long-run growth. But Lucas did not relate business cycle to growth, hence he failed to appreciate the welfare cost of fluctuations. To illustrate this, consider a counterfactual experiment where completely removing uncertainty can increase the growth rate by \(\pi \) percent from \(u \) to \(u(1+\pi) \). Then Equation (22) becomes

\[
E \sum_{t=0}^{\infty} \left[\beta^t \frac{(1 + \lambda)\epsilon_t}{1 - \gamma} \right] = \sum_{t=0}^{\infty} \left[\beta^t \frac{A e^{u(1+\pi)\lambda}}{1 - \gamma} \right].
\]
(28)

Under the random-walk consumption path (25), Equation (28) then becomes

\[
\frac{\ln(1+\lambda)}{1-\beta} - \frac{\sigma^2}{2} (\beta + 2\beta^2 + 3\beta^3 + \ldots) = \pi u \left(\beta + 2\beta^2 + 3\beta^3 + \ldots \right),
\]
(29)

which implies \(\lambda \approx \left(\frac{\sigma^2}{2} + \pi u \right) \frac{\beta}{1-\beta} \). According to Ramey and Ramey (1995, p1141), one standard deviation of the volatility in growth rate of output translates into about one-third of a percentage point of the mean growth rate. Applying this estimate to consumption, it means that by decreasing

\(^{21}\) Also see Reis (2005) for a more general ARMA specification of the consumption process.
the consumption volatility from $\sigma = 0.0165$ to zero, the gain in growth rate is about $\frac{0.0165}{3} = 0.55\%$, which is about 16% of the current mean consumption growth rate for the U.S. economy ($u = 3.5\%$). This implies that $\pi = 16\%$ and $\pi u = 0.55\%$. Assuming $\beta = 0.98$, we have $\lambda \approx 28\%$. This is an enormous welfare gain: more than a quarter of total annual consumption.22

4.4 Calculation Based On Our Model

Consumption in our model follows the path $c_t = c_{t-1} \{s(1 + \varphi_t)\}$, where $c_0 = (1 - s)(1 + \varphi_0)k_0$. Notice that since the sunspots shocks are i.i.d., we have $E_0g(\varphi_1) = E_0g(\varphi_2) = \cdots = E_0g(\varphi_t)$ for all $t > 0$. Hence the expected life-time utility is given by

$$E_0 \sum_{t=0}^{\infty} \beta^t \ln(c_t(1 + \lambda)) = \frac{\ln(1 + \lambda)}{1 - \beta} + \frac{\ln c_0}{1 - \beta} + \frac{\beta (\ln s + E\ln(1 + \varphi))}{(1 - \beta)^2}. \quad (30)$$

In the absence of uncertainty, the model implies $\phi = \frac{\sigma - 1}{\sigma}$, and the fundamental growth rate of consumption is given by $\ln \beta(1 + r) = 3.81\%$. The life-time value of the deterministic consumption path is given by

$$\sum_{t=0}^{\infty} \beta^t \ln \left(c_0 \{1.0388\}^t\right) = \frac{\ln c_0}{1 - \beta} + \frac{\beta \ln 1.0388}{(1 - \beta)^2}. \quad (31)$$

Comparing the two expressions in (30) and (31) gives the welfare gain:

$$\lambda \approx \frac{\beta}{1 - \beta} \left(0.0381 - E\ln s(1 + \varphi)\right), \quad (32)$$

Notice that the welfare gain is the multiplier $(\frac{\beta}{1 - \beta})$ times the difference between the maximum sustainable growth rate under full information and the mean of the stochastic growth rate under sunspots shocks. As Proposition 3 shows, the mean growth rate of a stochastic growth path is strictly less than the fundamental growth rate. Hence λ is always positive. Furthermore, as Table 1 and Table 2 both show, when the volatility of sunspots shocks increases in the model, the mean of the stochastic growth rate, $E\ln s(1 + \varphi)$, decreases, which increases the value of λ. For example, under the assumption of a log-normal distribution (Table 1), a standard deviation of 0.3 for sunspots shocks (ε_t) implies a stochastic consumption growth path with a standard deviation $\sigma_g = 0.02$, similar to the U.S. consumption data. Under this volatility, the mean consumption growth is 2.83%. Substituting this number into Equation (32) implies $\lambda = 24\%$. Under the assumption of a uniform distribution (Table 2), a standard deviation of 0.29 for sunspots shocks implies a

22Interestingly, this estimate is very close to the estimate obtained by Alvarez and Jermann (2004) using a non-parametric asset-pricing approach.
stochastic growth path with a standard deviation $\sigma_g = 0.016$, which almost exactly matches the U.S. consumption data. Under this volatility, the mean consumption growth is 2.69%. Substituting this number into Equation (32) implies $\lambda = 27\%$. Thus, based on our endogenous growth model, the welfare cost of business cycles with volatility similar to the U.S. data is about a quarter of annual consumption. The estimates are quite consistent with the estimate based on Ramey and Ramey’s empirical studies and the estimates obtained by Alvarez and Jermann (2004) based on a nonparametric asset-pricing approach. Although our quantitative estimates of the welfare cost depend on the calibrated parameter values of the model (such as β), their qualitative scales are robust to small changes in the parameter values because fluctuations in the model can significantly decrease the average growth rate for a wide range of plausible parameter values and the welfare cost of a small decrease in growth is very large (as realized by Lucas, 1987).

An important caveat is that the welfare-cost estimates implied by our model only represent possible upper bounds. This is not only because the AK model is a highly stylized model without labor and human capital but also because there are no fundamental shocks in the model except sunspots. Hence, a correct reading of our welfare estimates is that the cost of business cycles can be as large as one fourth of annual consumption if all fluctuations are driven by sunspots. But how much of the business cycle in reality is driven by sunspots and how much by fundamental shocks are yet to be determined by empirical studies.

5 Optimal Stabilization Policy

A large welfare cost of fluctuations by no means implies an equally large welfare gain from stabilization policy since volatile consumption can itself be optimal. For example, Barlevy (2004a) provides a model in which the welfare cost of fluctuations can be at least as large as 7 – 8 percent of annual consumption. But, since volatile consumption is an optimal response to technology changes in his model, there are no gains from reducing or eliminating consumption fluctuations. Thus, despite the large welfare cost of business cycles, the policy implication of Barlevy’s model is the same as the Lucas calculation: stabilization policy is counter-productive and hence undesirable. However, fluctuations in the real world may be highly inefficient as suggested by our model. In this case, the welfare gain from stabilizing consumption is as large as the welfare cost of fluctuations.

5.1 Pareto Optimal Allocation

Consider the Pareto optimal allocation first. Without loss of generality, assume $\alpha = 1$. The Pareto allocation is determined by solving the following social planner problem,

\[\text{Suppose we use the actual U.S. consumption growth rate } (u = 3.5\%) \text{ instead. Equation (32) implies that the welfare cost of volatility is about 7\% of annual consumption.} \]
\[\max E_0 \sum_{t=0}^{\infty} \beta^t \log(c_t) \]

subject to

\[C_t + K_{t+1} = A u_t K_t + (1 - \delta_t) K_t, \]

and

\[\delta_t = \frac{1}{1 + \theta} u_t^{1+\theta}. \]

Define \(\varphi_t \equiv A u_t - \delta_t \). It can be shown that under optimal capacity utilization we have \(\delta_t = \frac{A (1+\theta)/\theta}{1+\theta} \) and

\[\varphi_t = \frac{\theta}{1 + \theta} A^{(1+\theta)/\theta}. \]

Thus, in the absence of technology change, \(\delta_t \) and \(\varphi_t \) are constant. The optimal allocation is thus given by

\[C_t = (1 - \beta) (1 + \varphi) K_t, \]

\[K_{t+1} = \beta (1 + \varphi) K_t, \]

where the balanced growth rate \(\beta (1 + \varphi) \) is given by \(\beta (1 + \frac{\theta}{1+\theta} A^{(1+\theta)/\theta}) \). The result also holds for the case where \(A \) is stochastic.

5.2 Optimal Policy without Sunspots

Under imperfect competition and in the absence of extrinsic uncertainty (i.e., no sunspots), the Pareto optimal allocation can be achieved by subsidizing monopolistic firms for production, which is a standard result in the literature. To see this, consider that the government subsidizes the intermediate producers by the amount \(\tau \) for each unit of good it sells. The profit maximization problem for each intermediate good producer becomes

\[\max (p + \tau - \phi) p^{-\epsilon} y. \]

The optimal price is given by \(p = \frac{\phi - \tau}{\epsilon - 1} \), which is lower than the monopolistic price \(\frac{\phi}{\epsilon - 1} \). In equilibrium, \(p = 1 \), hence the optimal rate of subsidy must satisfy \(\tau = \phi - \frac{\phi}{\epsilon - 1} \). Since Pareto allocation requires \(\phi = 1 \), the optimal subsidy is given by \(\tau = \frac{1}{\epsilon} \). Notice that a positive price
requires $\tau < 1$, which is satisfied since $\epsilon > 1$. The equilibrium allocation of consumption and capital is given by

$$C_t = (1 - \beta) \left(1 + \frac{\theta}{1 + \theta} A^{\frac{1+\theta}{\theta}} \right) K_t,$$

(40)

$$K_{t+1} = \beta \left(1 + \frac{\theta}{1 + \theta} A^{\frac{1+\theta}{\theta}} \right) K_t,$$

(41)

which is Pareto optimal.

Notice that the optimal policy allows monopolist firms to make positive profits that are the same as the amount they would make without subsidies. To finance the amount of subsidies, τY, the government can use a non-distortionary lump-sum tax (T) on household income. A balanced budget implies $T_t = \tau Y_t$.

5.3 Optimal Policy under Sunspots

When there exists imperfect information, there is an additional source of inefficiency in the economy - the decrease of the average growth rate due to sunspots-driven fluctuations. Hence, we can design two separate policies to deal with the two source of inefficiency: one is the subsidizing policy (τ) discussed above, and another is a stabilization policy (ω) to deal with volatility specifically. Since fluctuations arise from firms’ expectation about other firms' production levels, the stabilization policy can focus on stabilizing firms' output level via subsidizing capacity utilization. Consider a policy that subsidizes a firm's marginal cost of production by the amount, ωt, for each additional unit of output produced or for each unit-increase in capacity utilization. The cost minimization problem of the intermediate good producer becomes to minimize $(r + \delta(i) - \omega Au(i)) k(i)$ subject to $Au(i)k(i) \geq y(i)$. The first order conditions are

$$r + \delta(i) - \omega Au(i) = \phi Au(i)$$

(42)

$$u(i)^\theta - \omega A = \phi A.$$

(43)

These equations imply $u_t = (\phi_t + \omega_t)^{\frac{1}{\theta}} A^{\frac{1}{\theta}}$ and $r_t = \theta \delta_t = \frac{\theta}{1 + \theta} [(\phi_t + \omega_t)A]^{\frac{\theta+1}{\theta}}$. The output level is given by

$$y(i) = (\phi_t + \omega_t)^{\frac{1}{\theta}} A^{\frac{1+\theta}{\theta}} k(i).$$

(44)

The price-setting problem for an intermediate good firm is the same as before, which is to maximize the expected profits $E [(p(i) + \tau - \phi) p(i)^{-\tau} Y]$. The optimal monopoly price is given by

$$p(i) = \frac{\epsilon}{\epsilon - 1} \frac{E(\phi_t - \tau)Y_t}{EY_t}.$$

(45)
In a symmetric equilibrium, \(p(i) = 1 \), \(y(i) = Y \), and \(k(i) = K \). Substituting output from Equation (44) into the above price equation gives

\[
1 = \frac{\epsilon}{\epsilon - 1} \frac{E(\phi_t - \tau)(\phi_t + \omega_t)^\frac{1}{\beta}}{E(\phi_t + \omega_t)^\frac{1}{\beta}}. \tag{46}
\]

As before, we can set \(\tau = \frac{1}{\epsilon} \). Hence the pricing rule requires

\[
E(\phi_t + \omega_t)^\frac{1}{\beta} = \frac{1}{\epsilon - 1} E(\phi_t + \omega_t)^\frac{1}{\beta} (\epsilon \phi_t - 1). \tag{47}
\]

Clearly, the optimal stabilization policy is given by

\[
\omega_t = 1 - \phi_t. \tag{48}
\]

Under this policy, the paths of consumption and capital are given by

\[
C_t = (1 - \beta) \left(1 + \frac{\theta}{1 + \theta A^\frac{1+\theta}{\beta}}\right) K_t, \tag{49}
\]

\[
K_{t+1} = \beta \left(1 + \frac{\theta}{1 + \theta A^\frac{1+\theta}{\beta}}\right) K_t, \tag{50}
\]

which were shown to be Pareto optimal previously. Equation (46) implies that the marginal cost is given by \(E\phi_t = 1 \). Although the marginal cost can be stochastic in equilibrium, its volatility has no consequence on the real variables in the economy under the stabilization policy \(\omega_t \). In order to have a balanced budget for the government, the government can simultaneously impose a lump-sum income tax on households such that:

\[
T_t = (\tau + \omega_t) Y_t \tag{51}
\]

\[
= \left(\frac{1}{\epsilon} + (1 - \phi_t)\right) Y_t.
\]

We can also combine the two policies together into one single policy that eliminates both types of inefficiencies simultaneously. Clearly, it is still required that \(\omega_t = 1 - \phi_t \) so as to ensure constant growth rate. Setting \(\tau = \omega \) and replacing \(\tau \) by \(\omega \) in Equation (46) gives \(E\phi_t = \frac{2\epsilon - 1}{2\epsilon} \). In this case, the expected profit is the same as before but the markup is smaller than the monopolistic markup but greater than zero.
5.4 Optimal Policy under Imperfect Information for the Government

5.4.1 Case 1:

The stabilization policy, $\omega_t = 1 - \phi_t$, requires that the government have full information about the marginal cost, or that ϕ_t is observable to the Government. In reality, the marginal cost is difficult to observe directly. Here we discuss optimal stabilization policies which do not depend on the observability of the marginal cost. The only assumption required in this policy is that the government can observe the aggregate utilization rate of capital.

Without loss of generality, continue to assume $\alpha = 1$ and, in addition, assume $\epsilon = \infty$ so that the only source of inefficiency is from sunspots-driven fluctuations.\(^{24}\) Denote $u = \int_0^1 u(i)di$ as the aggregate (average) capacity utilization rate, and denote $\omega_t = \omega(u_t)$ as the optimal subsidy to each firm’s marginal cost of production via capacity utilization. A firm’s total cost of production is given by $(r + \delta(i) - \omega(u_t)Au(i))k(i)$. In a symmetric equilibrium, the first-order condition from cost minimization is given by

$$u_t^\theta - \omega(u_t)A = \phi_t A,$$

where ϕ is the marginal cost. Notice the Pareto optimal allocation is given by a constant capacity utilization rate, $u^* = A^{\frac{1}{\theta}}$. The key of the policy design is to find an incentive compatible subsidy policy $\omega(u_t)$ such that all firms choose $u_t = u^*$ in equilibrium.

Proposition 5 The subsidy policy,

$$\omega(u) = \begin{cases}
0 & \text{if } u_t > u^* \\
u^\theta / A - A^{\frac{1}{\theta}} & \text{if } u_t \leq u^*
\end{cases},$$

achieves the Pareto allocation.

Proof. Equation (52) implies

$$\phi = \frac{u^\theta - \omega(u)A}{A}.$$

The monopolist price is determined by the equation $E\phi_t Y_t = EY_t$. Substituting out ϕ_t and Y in the price equation gives

$$E \left[u_t^{1+\theta} - \omega(u_t)Au_t - Au_t \right] = 0,$$

the firm’s profit maximization condition or incentive compatibility condition. Define the function $P(u) \equiv u^{\theta+1} - \omega(u)Au - Au$. Substituting the subsidy policy into $P(u)$ gives $P(u) > 0$ for $u \neq u^*$.

\(^{24}\)Namely, we consider stabilization policies that are separate from τ.
and \(P(u) = 0 \) for \(u = u^* \). Since \(EP(u) \neq 0 \) is not optimal (or incentive compatible), firms will never choose \(u_t \neq u^* \) under the above subsidy policy. Note that under the optimal capacity utilization \(u^* \), the marginal cost is given by \(\phi_t = 1 \). Hence the allocation under \(\omega(u) \) is Pareto optimal.

Clearly the functional form of the optimal policy is not unique. In fact, any policy function \(\omega(u) \) such that \(P(u) = 0 \) if \(u_t = u^* \) and \(P(u) \neq 0 \) if \(u \neq u^* \) is optimal. Whatever the optimal policy is, it must provide incentives to induce firms to choose \(u^* \) and penalize them when \(u \neq u^* \). Otherwise the policy is ineffective. For example, let \(\omega(u) = \frac{u^\theta - \Delta}{A} \). This policy is derived by setting \(\phi = 1 \) in equation (52). This policy is not effective in eliminating sunspots equilibria because under this policy, \(P(u) = 0 \) regardless of \(u \). Hence it cannot eliminate sunspots-driven fluctuations.

5.4.2 Case 2:

The previous analyses have assumed away any fundamental shocks in order to simplify the exposition. Although allowing for fundamental shocks in the model will not change the results, it does complicate the issue of policy design when information is imperfect for the government. For example, since sunspots shocks to the marginal cost behave very much like technology shocks (i.e., sunspots shocks affect the marginal product of capital by affecting capacity utilization), it may not be possible for the government to distinguish where the shocks are coming from if neither sunspots shocks nor technology shocks are directly observable to the government. In this case, policies that completely stabilize the growth rate are no longer optimal if technology shocks dominate.

We show it is still possible to find stabilization policies completely eliminating the undesirable effects of sunspots, provided that the government has access to certain types of information. Assume the public information available to the government include firms’ output \((y) \), capital stock \((k) \) and the market interest rate \(r \). To prevent the government from deducing the level of technology \((A_t) \) from the production function, assume the government cannot observe the rate of capacity utilization \((u) \). Define a firm’s output-capital ratio as \(z(i) = y(i)/k(i) = Au(i) \) and the aggregate (average) output-capital ratio as \(z = \int z(i)di \). Because \(z = Y/K \) is observable to the government, it can be used as the basis for designing stabilization policy. However, note that since \(z = Au \), the government cannot differentiate whether movements in \(z \) are caused by technology or by capacity utilization driven by sunspots.

Under technology shocks, the Pareto optimal allocation is given by \(u_t = A_t^{1/\theta} \), \(Y_t = A_t^{(1+\theta)/\theta} K_t \), and \(r_t = \frac{\theta}{1+\theta} A_t^{(1+\theta)/\theta} \). This implies the Pareto optimal output-capital ratio is given by \(z_t^* = \frac{1+\theta}{\theta} r_t \). If there is influence from sunspots, however, \(z_t = \frac{1+\theta}{\theta} r_t \). The key of the policy design is to find an incentive compatible subsidy policy where it is in the best interest of all firms to choose \(z_t = z_t^* \) in equilibrium.
Denote \(\omega_t = \omega(r, z) \) as the optimal subsidy to each firm’s marginal cost of production, which individual firms take as given. A firm’s total cost of production is then given by \((r + \delta(i) - \omega(r, z)Au(i))k(i)\). In a symmetric equilibrium, the first-order conditions can be expressed as

\[
\begin{align*}
 r + \delta &= (\phi + \omega(r, z))z \\
 u^{1+\theta} &= (\phi + \omega(r, z))z
\end{align*}
\]

These imply \(r = \theta \delta \) and

\[
\phi = \frac{(1 + \theta) r}{\theta} - \omega(r, z).
\]

The optimal monopoly price is still determined by the pricing rule, \(E\phi Y = EY \). Since \(Y = zK \) and \(K \) is known to firms in the beginning of each period, substituting out \(\phi \) and \(Y \) in the pricing rule gives

\[
E \left[\frac{1 + \theta}{\theta} r - \omega(r, z)z - z \right] = 0.
\]

Define the function \(P(r, z) \equiv \frac{(1+\theta)}{\theta} r - \omega(z)z - z \). Since \(EP(r, z) \neq 0 \) is not optimal (or incentive compatible) to firms, the key of the policy design is to set the subsidy rate \(\omega(r, z) \) such that firms will never choose an output-capital ratio \(z_t \neq z^*_t \) under the subsidy policy. Hence, any policy function \(\omega(r, z) \) such that it makes \(P(r, z) = 0 \) if \(z = z^* \) and \(P(r, z) \neq 0 \) if \(z \neq z^* \) can achieve the Pareto allocation. For example, it is easy to check that the following policy can achieve the Pareto allocation:

\[
\omega(r, z) = \begin{cases}
0 & \text{if } z_t \geq \frac{1+\theta}{\theta}r \\
\frac{2(1+\theta)}{\theta} \frac{r}{z} - 2 & \text{if } z < \frac{1+\theta}{\theta}r
\end{cases}.
\]

Under this policy, we have \(EP(r, z) = 0 \) if and only if \(z = \frac{1+\theta}{\theta}r \). When \(z = \frac{1+\theta}{\theta}r \), we can show \(\phi_t = 1 \), \(u_t = A_t^{1/\theta} \), and \(r_t = \frac{\theta}{1+\theta}A_t^{(1+\theta)/\theta} \). Hence the allocation under the policy \(\omega(r, z) \) is Pareto optimal.

6 Conclusion

Ordinary market imperfections (i.e., imperfect competition and imperfect information) can lead to endogenous fluctuations in firms’ markup, which can directly translate into fluctuations in output growth and adversely affect its mean growth rate. Consequently, the welfare cost of business cycle and the associated gain from stabilization can be potentially large. In particular, the welfare gain
from further stabilizing the U.S. economy can be hundreds of times larger than that calculated by Lucas (1987), in the order of around 25% of annual consumption. Although this figure is likely to be an upper bond, it is too large to ignore. The optimal stabilization policy we found is consistent with those in practice: stabilizing output growth (or capacity utilization) around a potential target.

Appendix: Proof of Proposition 3.

Proof. The key of the proof is showing that \(E\phi_t^{\frac{1}{\beta}} \leq \left(\frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\beta}} \) and that the average growth rate is a strictly increasing function of \(E\phi_t^{\frac{1}{\beta}} \) under certain conditions. In such a case, the maximum growth rate is achieved when \(\phi_t = \frac{\epsilon - 1}{\epsilon} \).

The growth rate of the model is given by

\[
g_t = s(1 + \varphi_t),
\]

where \(\varphi_t = \alpha^{-\frac{1}{\beta}} A^{1 + \theta} \phi_t^{\frac{1}{\beta}} (1 - \frac{\phi_t}{1 + \phi_t}) \), \(s = \beta E \frac{1 + r_t}{1 + \varphi_t} \), and \(r_t = \frac{\theta}{1 + \theta} \alpha^{-\frac{1}{\beta}} (\phi_t A)^{1 + \theta} \). The monopolistic price follows the rule, \(E\phi_t^{\frac{1}{\beta} + \theta} = \frac{\epsilon - 1}{\epsilon} E\phi_t^{\frac{1}{\beta}} \). Since \(E x^{1 + \theta} \geq (E x)^{1 + \theta} \), we have \(\frac{\epsilon - 1}{\epsilon} E\phi_t^{\frac{1}{\beta}} = E\phi_t^{\frac{1}{\beta} + \theta} \geq \left(E\phi_t^{\frac{1}{\beta}} \right)^{1 + \theta} \). It follows that

\[
E\phi_t^{\frac{1}{\beta}} \leq \left(\frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\beta}}.
\]

Given the definition of \(\varphi_t \), we have

\[
E\varphi_t = \alpha^{-\frac{1}{\beta}} A^{1 + \theta} \left(E\phi_t^{\frac{1}{\beta}} - \frac{1}{1 + \theta} E\phi_t^{\frac{1}{\beta} + \theta} \right) = \alpha^{-\frac{1}{\beta}} A^{1 + \theta} E\phi_t^{\frac{1}{\beta}} \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right) \leq \alpha^{-\frac{1}{\beta}} A^{1 + \theta} \left(\frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\beta}} \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right).
\]

Notice that \(s \) can be approximated as

\[
s \approx \beta E(1 + r_t - \varphi_t) \]

\[
= \beta E \left(1 + \frac{\theta}{1 + \theta} \alpha^{-\frac{1}{\beta}} (\phi_t A)^{1 + \theta} - \alpha^{-\frac{1}{\beta}} A^{1 + \theta} \phi_t^{\frac{1}{\beta}} \left(1 - \frac{\phi_t}{1 + \phi_t} \right) \right) \]

\[
= \beta \left(1 + \alpha^{-\frac{1}{\beta}} A^{1 + \theta} \left(E\phi_t^{\frac{1}{\beta} + \theta} - E\phi_t^{\frac{1}{\beta}} \right) \right) \]

\[
= \beta \left(1 - \alpha^{-\frac{1}{\beta}} A^{1 + \theta} \frac{1}{\epsilon} E\phi_t^{\frac{1}{\beta}} \right) .
\]
Denoting \(\tilde{x} \equiv E\phi_t^{\frac{1}{\theta}} \), the mean growth rate is then given by

\[
g \equiv s (1 + E\varphi_t) = \beta \left[1 - \alpha^{-\frac{1}{\theta}} A^{-\frac{1}{\theta}} \frac{1}{\epsilon} \tilde{x} \right] \left[1 + \alpha^{-\frac{1}{\theta}} A^{-\frac{1}{\theta}} \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right) \tilde{x} \right].
\]

If the condition,

\[
\tilde{x} < \frac{\epsilon - \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right)^{-1}}{2\alpha^{-\frac{1}{\theta}} A^{-\frac{1}{\theta}}},
\]

is satisfied, then \(\tilde{g} \) is a strictly increasing function of \(\tilde{x} \). Since \(\tilde{x} \leq \left(\frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\theta}} \) according to (62), hence the maximum growth rate will be achieved by the certainty equilibrium where \(\phi_t = \frac{\epsilon - 1}{\epsilon} \), provided that Condition (66) holds.

But a sufficient condition for (66) to hold is the condition,

\[
\left(\frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\theta}} < \frac{\epsilon - \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right)^{-1}}{2\alpha^{-\frac{1}{\theta}} A^{-\frac{1}{\theta}}}. \tag{67}
\]

Notice that \(\left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right)^{-1} \leq \frac{1 + \theta}{\theta} \) since \(\epsilon \leq \infty \), hence we have the following inequality for the right-hand side of Equation (67):

\[
\frac{\epsilon - \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right)^{-1}}{2\alpha^{-\frac{1}{\theta}} A^{(1 + \theta)/\theta}} \geq \frac{\epsilon - \frac{1 + \theta}{\theta}}{2\alpha^{-\frac{1}{\theta}} A^{(1 + \theta)/\theta}}. \tag{68}
\]

If the right-hand side of the above equation is greater than one, namely, if

\[
\epsilon > \frac{1 + \theta}{\theta} + 2\alpha^{-\frac{1}{\theta}} A^{\frac{1 + \theta}{\theta}}, \tag{69}
\]

we then have

\[
\frac{\epsilon - \left(1 - \frac{\epsilon - 1}{\epsilon} \frac{1}{1 + \theta} \right)^{-1}}{2\alpha^{-\frac{1}{\theta}} A^{\frac{1 + \theta}{\theta}}} \geq \frac{\epsilon - (1 + \theta)/\theta}{2\alpha^{-\frac{1}{\theta}} A^{\frac{1 + \theta}{\theta}}} > 1 \geq \left(\frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\theta}}. \tag{70}
\]

Hence, (69) is a sufficient condition for the inequality (66) to hold. \(\blacksquare \)

26
References

