Syllabus

Course Description This course reviews mathematical methods that are required for graduate level courses in economic theory. Topics include logic, proof methods, sets, functions, basic topology, matrix, differentiation, exponential functions, concave functions, unconstrained optimization, constrained optimization, integration, and differential equations. Related economic applications will also be discussed.

Learning Outcomes After taking this course, students should be familiar with mathematical methods that are required for graduate level courses in economic theory.

Readings Teaching materials are based on the textbook [CW] and other references. Lecture notes will be distributed to students.

Grade The course grade is counted as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-term</td>
<td>50%</td>
</tr>
<tr>
<td>Final</td>
<td>50%</td>
</tr>
</tbody>
</table>

Academic Honesty Attention is drawn to University policy and regulations on honesty in academic work, and to the disciplinary guidelines and procedures applicable to breaches of such policy and regulations. Details may be found at http://www.cuhk.edu.hk/policy/academichonesty/.

Discussion Topics

1. Logic and Proofs: connectives, quantifiers, proof methods
2. Sets, Functions, and Countable Sets
3. Basic Topology: sequence, limit, supremum, continuous functions, open sets, closed sets, convex sets, compact sets
4. Matrix: matrix operations, inverse, determinant, Cramer’s Rule, rank
5. Differentiation (Single Variable): derivative, differential rules, Mean Value Theorem, L’Hôpital Rule, Taylor expansion
6. Differentiation (General Case): differential, partial and total derivative, Inverse Function Theorem, Implicit Function Theorem

7. Unconstrained Optimization (Single Variable): first-order conditions, second-order conditions

8. Exponential and Logarithmic Functions: natural exponential number, differentiation rules

9. Concave Functions: characterizations of concavity, negative (semi)definite matrices, eigenvalues and eigenvectors, quasiconcave functions

10. Unconstrained Optimization (General Case): first-order conditions, second-order conditions for local maximization, global maximization


12. Optimization with Inequality Constraints: Kuhn-Tucker conditions

13. Integration: indefinite integrals, definite integrals, improper integrals


15. Second Order Linear Differential Equations

References


